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Abstract: Climate change has a major impact on the urban built environment, both with respect to
the heating and cooling energy requirements, but also regarding the higher probability of confronting
extreme events such as heatwaves. In parallel, the ongoing urbanization, the urban microclimate
and the formation of the urban heat island effect, compounding the ongoing climate change, is also a
considerable determinant of the building’s energy behavior and the outdoor thermal environment.
To evaluate the magnitude of the complex phenomenon, the current research investigates the effect
of climate change and urban heat island on heating and cooling energy needs of an urban building
unit in Thessaloniki, Greece. The study comparatively evaluates different tools for the generation
of future weather datasets, considering both statistical and dynamical downscaling methods, with
the latter involving the use of a regional climate model. Based on the output of the regional climate
model, another future weather dataset is created, considering not only the general climatic conditions,
but also the microclimatic parameters of the examined case study area, under the future climate
projections. The generated future weather datasets are then used as an input parameter in the
dynamic energy performance simulations with EnergyPlus. For all examined weather datasets, the
simulation results show a decrease of the heating energy use, an effect that is strongly counterbalanced
by the rise of the cooling energy demand. The obtained simulation results also reveal the contribution
of the urban warming of the ongoing climate change, demonstrating the need to perform a holistic
analysis for the buildings’ energy needs under future climate conditions.

Keywords: climate change; building energy performance; future weather datasets; heating and
cooling energy demand; statistical and dynamical downscaling

1. Introduction

Climate change refers to continuous changes in the distribution of weather patterns
that range from decades to millions of years [1]. The Mediterranean region is highly
susceptible to changes in climate and will be severely affected, as it will become warmer
and drier with an increased frequency of extreme weather events, such as heat waves and
extreme precipitations [2,3]. It has been also characterized as a “hot spot” by the scientific
community, as the future warming and the decrease in precipitation are expected to be
more pronounced in this area in contrast to the global mean change [4,5].

According to the IPCC Fifth Assessment Report [6], the climate system is affected by
human activities and anthropogenic GHG emissions, the atmospheric concentration of
which have increased significantly during the last years due to the economic growth, the
use of natural sources of energy (non-renewable) and population growth. The effects of
these concentrations in the climate system, combined with those of other anthropogenic
factors (e.g., land-use change), may be the main cause for the observed rise in temperature
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since the mid-20th century. The observed climate changes have severely affected the human
and natural environment. The temperature of the atmosphere and the oceans has increased,
the amount of snow and ice has decreased, and the sea level has risen. The global mean
surface warming, until the end of the 21st century, has been determined mainly by the
cumulative CO2 emissions. The continuous emission of GHGs will lead to further warming
and long-term changes, causing more severe effects to humans and ecosystems.

In order to analyze the possible climate change and its impacts and to propose possible
mitigation techniques, IPCC developed a series of different scenarios (Special Report on
Emissions Scenarios—SRES) that represent the main driving forces of future emissions
(economic, technological and population growth). There are four “families” of scenarios,
A1, A2, B1 and B2, and within the A1 “family” there are three different groups (A1FI, A1T
and A1B) according to the development of energy technologies [7]. In the Fifth Assessment
Report, IPCC introduced the Representative Concentration Pathways (RCPs), an up-to-date
package of emission scenarios, which are used in climate models for the future projections
of climate. These pathways include concentration and emission scenarios of GHGs, as
well as information for factors, such as stabilization and mitigation scenarios, land use and
socioeconomic conditions. Four different RCPs have been developed and considered as
representative of the literature [8]. They include a declining pathway that leads to very low
radiative forcing (RCP2.6), two intermediate stabilization pathways (RCP4.5/RCP6) and a
high radiative forcing pathway (RCP8.5). Future emission scenarios are the main input
data for General Circulation Models (GCMs), the models that are used for the evaluation
of the future climate change and provide climate data at spatial resolution of 150–300 km.
Hence, to achieve a regional increase in resolution, the use of nested Regional Climate
Models (RegCMs) is employed to account for sub-GCM grid-scale forcing. A detailed
overview of downscaling techniques is provided in the following sections.

Diffenbaugh et al. (2007) [9] have used regional climate models to assess the heat
stress intensification in the Mediterranean region under two SRES emission scenarios. The
authors found that the occurrence of hot extremes, and as a result the intensification of
heat stress risk, in the Mediterranean region increases dramatically (200–500%) due to
the pronounced greenhouse gas concentrations. In the study of Zanis et al., 2015, [10]
the use of forecasting regional climate models under the A1B SRES emission scenario
for the Greek region led to an annual increase of temperature which was more intense
at the end of the century. Tolika et al. (2012) [2] assessed the potential future changes
in temperature for Greece with the use of various regional climate models under three
SRES emission scenarios. The results of this study showed a rise in temperature over the
area of study which is more intense during summer. Regarding future climate change in
Greece [11], future projections with an up-to-date regional climate model under RCP4.5
emission scenario showed an increase of temperature by 2.0–3.0 ◦C until the mid of the
21st century, with a peak increase by 3.6 ◦C at the end of the 21st century. It is also worth
mentioning that the peak intensity of temperature rise is expected to occur during summer
months, while the highest rise of temperature is detected in the southern part of Greece
(Figure 1).
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Figure 1. Seasonal maps of differences (winter and spring) for mean temperature (◦C) between
future period 2041–2060 and reference period 1981–2000. The statistically significant differences are
illustrated as dots [11].

Based on the existing scientific evidence, it becomes obvious that the climate change
contributes to longer, more severe and more frequent heat waves. Particularly the urban
areas, which already experience the negative consequences of the heat island effect, are
expected to face extreme heat events. In fact, the increase of the air temperature in urban
areas is further intensified by the thermal and optical (absorbent, non-reflective) prop-
erties of conventional building materials [12,13], the reduced evapotranspiration due to
plant deficiency [14], the anthropogenic production of heat, as well as the atmospheric
pollution [15].

Undoubtedly, the increased urbanization along with the ongoing climate change and
the accompanying rising temperatures and extreme heat waves are considerable determi-
nants of human thermal comfort and well-being on one hand, and of the building’s energy
behavior on the other. More precisely, considering that the buildings’ heating and cooling
energy needs are strongly related to their immediate microclimatic conditions [16,17], it
becomes clear that a further increase of air temperature due to the climate change on the
already degraded urban environment will significantly affect the energy demand especially
in summer periods, which will in turn burden the urban environment with additional heat
and pollutants’ emissions [18].

It becomes obvious that the selection of suitable weather data, accounting for the
warming both from climate change and urban warming, is critical towards the acquisition of
high accuracy energy performance simulation results on the one hand, and the suggestion
of suitable mitigation and adaption strategies on the other. To date, current Building Energy
Performance Simulation (BEPS) tools generally use typical weather files that are based
on the statistical analysis of historical records at meteorological stations located in the
peripheral zones of cities [19]. However, this practice does not allow for the consideration
of the magnitude of climate change.

On the other hand, as previously mentioned, the evaluation of climate change and the
climate forecasting is conducted using the General Circulation Models or Global Climate
Models (GCMs) [20]; however, these models provide climate information on the global
scale and with a large spatial and temporal resolution. Consequently, the direct use of
their output on dynamic building energy performance simulation tools would not be
possible, as the latter requires climatic parameters at an hourly resolution. In order to
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acquire compatible, future climate data, the GCMs should be downscaled, and to this aim,
there are two main approaches involving dynamical and statistical downscaling methods
(see Section 2).

At this point it must be emphasized that, in the existing literature, numerous studies
have employed either statistical or dynamical downscaling approaches to assess the impact
of climate change on the buildings’ energy performance [21–26]. Yet, in all these cases,
the buildings’ energy performance is assessed only for the general governing climatic
conditions without considering the microclimatic conditions characterizing each study
area. As a result, the complex processes that occur between building blocks, solar radiation
and wind speed, determining the urban climate are neglected. Nonetheless, given that
the buildings’ energy demand is strongly correlated to the climatic conditions of the
study area [16], it becomes obvious that the acquisition of high accuracy building energy
simulation results necessitates a deep knowledge of the microclimatic conditions of each
study area, as well as the consideration of future climate change.

In this context, the present paper aims to examine different methods for generating
future weather datasets for dynamic building energy performance simulations and to
evaluate the potential differences occurring in the simulation output. More precisely, the
study aims to:

1. Generate future weather datasets that account for the warming due to climate change
but do not consider the site-specific microclimatic conditions and the aggravating
impact of the urban warming. To this aim, the study employs both statistical and
dynamical downscaling approaches for future weather file generation. Regarding
the statistical downscaling, the Meteonorm Weather generator is used, while for the
dynamical downscaling, the regional climate model RegCM4 is implemented.

2. Create a future weather dataset that also accounts for the urban warming, intensifying
the warming from climate change. Its generation will be based on the output of
the regional climate model RegCM4, and the detailed methodology is presented in
Section 3.1.3.

3. Evaluate the impact of urban warming, caused by both climate change and the urban
heat island effect, on the heating and cooling energy demand of a residential building
unit located in the Mediterranean city of Thessaloniki, Greece, with the use of dynamic
energy performance simulation tools.

The study is organized in the following way. As a first step, in Section 2, an overview
of the most common downscaling methods of GCMs, to create future weather files for
BEPS, is provided. Section 3 describes the methodology applied in this study, details on
generation of weather files and the investigated building model. The results of the study
are presented and discussed in Section 4, while the conclusions and the perspectives of the
study are provided in Section 5.

2. Downscaling Methods of General Circulation Models (GCMs)

As previously mentioned, future emission scenarios are the main input data for the
General Circulation Models (GCMs) applied for the forecasting of climate change. The
various geomorphological characteristics of an area have an important role in defining the
local climate. Yet, considering that the GCMs provide climate information at a rather coarse
spatial resolution of 150–300 km [27] and therefore cannot represent the heterogeneity of
climate variability, they must be temporally and spatially downscaled to be compatible
with building energy performance simulation tools, requiring input information at finer
spatial scale and at a temporal resolution of 1 h. To date, there are two main approaches
to downscale GCMs: statistical and dynamical downscaling. These methods can provide
high-resolution climatic information, as they model the interactions between large-scale
atmospheric processes and local-scale characteristics.
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2.1. Statistical Downscaling

The statistical downscaling method develops statistical relationships between ob-
served climatic variables (often issued by historical records at a meteorological station) and
larger (GCM) scale variables, employing analogue method regression analysis or stochastic
methods [28]. One of the most widely applied statistical downscaling techniques is the
morphing approach, a method proposed by Beclher et al. [29] to adjust present-day datasets
according to future projections to be used for building energy performance simulations.
The method involves the transformation or morphing of the hourly values of given weather
variables of a present-day hourly weather dataset (i.e., 8760 values), based on the monthly
trends and future projections, as issued by a GCM for a given location. There are three main
operations for the morphing approach involving shifting, applied when an absolute change
to a variable is required, the stretch or scaling factor when a relative or percentage change
is predicted for a given variable, and a combination of shifting and scaling when both
absolute and relative changes are predicted for a given variable. A detailed description of
the morphing downscaling approach is given in [24,28,29].

Up to the present time, the morphing technique has been widely used by many
researchers worldwide. Indicatively, Shen [30] employed the morphing methodology to
downscale the output of GCMs and predict future hourly weather data for the period
2040–2069, to be used for dynamic energy performance simulations for residential buildings
in the United States. The simulation results suggested that the expected climate change
would lead to an overall reduction of the annual heating energy needs by 14.7–49% and
an increase of the annual cooling energy use by 17.4–36.4%, depending on the examined
climatic zone and the emission scenario. Chan [31] used the morphing method to create
future hourly weather files to evaluate the effect of climate change on the energy demand
of an office and a residential building in Hong Kong. The results showed that the energy
consumption of the air-conditioning systems increased significantly by 2.6% to 14.3%
for the office building and by 3.7% to 24% for the residential flat, depending on the
emission scenario.

Wang and Chen [32] used a GCM to generate weather data for three future typical
meteorological years (2020, 2050, and 2080) for 15 cities in the United States, under three
emission scenarios. The obtained weather data were then downscaled using the morphing
approach and they were used as an input boundary condition for the energy performance
simulations of residential and commercial buildings, considered to be located at 15 different
cities. The obtained results indicated that the climate change would increase the cooling
energy loads for all the cities under the three CO2 emission scenarios, whereas the heating
energy demand would decrease in all cases. Still, given the climate variability from city to
city, the magnitude of change considerably varied.

In the same context, Robert and Kummert [33] applied the morphing method to gener-
ate future hourly weather files to be used for the energy performance analysis of a Nearly
Zero Energy Building; the results showed that, in order to obtain high-accuracy estimates
of the annual energy performance of climate-sensitive buildings such as NZEBs, multi-year
simulations with weather data that consider global warming and the ongoing climate
change should always be performed. The simplicity and the easiness on its application has
contributed to a wide use of the morphing method by the scientific community; yet, even if
the generation of future weather datasets under this method leads to a similar sequence
with the recorded, historical data, potential details and extremes of diurnal patterns in the
future conditions cannot be captured [34].

Another method for the statistical downscaling of GCMs involves the use of stochastic
weather generators that employ computer algorithms to generate long time-series of
climatic parameters with statistical properties similar to existing historical climatic records.
These models are very useful in cases that there are no complete datasets of all necessary
weather variables as they can fill in missing data and permit the generation of long synthetic
time series. A widely applied future weather generator is Meteonorm software, a weather
generator that uses interpolation methods of major weather variables to provide weather
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data for any site in the world [35]. While Meteonorm allows access to a long database of
historical time series of irradiation, temperature, humidity, precipitation and wind to create
a present-day time series, it is also used for climate change studies, where the stochastic
generation of the hourly time series is based on the results of IPCC’s Fourth Assessment
Report (AR4) [36]. More precisely, Meteonorm combines the current databases for solar
radiation and temperature and the interpolation algorithms to stochastically generate
typical years for any site, for different emission scenarios and for periods up to 2100.

The Meteonorm stochastic weather generator for future weather file creation has
been used in many previous studies, such as the work of Tootkaboni et al. [24] and
Moazami et al. [37], who comparatively evaluated different future weather datasets and
their effect on buildings’ energy performance simulations. Certainly, the use of such
weather generators facilitates the generation of both present-day and future time series,
especially for locations where there are not sufficient historical data. Yet, as underlined by
Herrera et al., when it comes to future weather datasets, an important disadvantage is that
they rely on the inherent hypothesis that future weather sequences will be similar to those
observed historically [38].

2.2. Dynamical Downscaling

The dynamical downscaling refers to the use of a Regional Climate Model (RegCM),
driven by the output of a GCM (used as initial and boundary conditions), to dynamically ex-
trapolate the effects of large-scale climate processes to regional or local scales of interest [39].
RegCMs, or Limited-Area Models (LAMs), nested into GCMs can simulate “atmospheric
and land surface processes, while accounting for high-resolution topographical data, land-
sea contrasts, surface characteristics, and other components of the Earth-system” [40]. They
can thus generate climate information at a much finer resolution than GCMs, down to
2.5–100 km, embracing in a more detailed way the topographical particularities and the
climatic dynamical processes of the region of interest. On the other hand, an important
disadvantage of the method relies on the considerable amount of computational power
required, along with the large storage devices for the creation of the datasets [41].

Berardi et al. [23] have applied both statistical and dynamical downscaling methods
to create future weather files for Canada, which have been then used for the energy
performance evaluation of 16 building prototypes. Regarding the dynamic downscaling
approach, the study applied the Hadley Regional Model 3 (HRM3) coupled with Hadley
Climate Model 3 to create future weather files with finer spatial and temporal resolution.
Based on the obtained results, the authors suggested that the higher spatial resolution
of the dynamical downscaling compared to the statistical methods resulted in a better
representation of the local climate conditions, leading to the higher accuracy of the dynamic
buildings’ energy performance simulations. A similar conclusion was also drawn by
Tootkaboni et al. [24], who comparatively assessed the effect of different future weather
datasets, created both with statistical and dynamical downscaling approaches, on the
dynamic energy performance analysis of typical buildings. As suggested by the authors,
the statistical downscaling methods, including morphing and the stochastic approach, may
provide adequate information to comparatively assess the long-term changes in energy
building performance, but the dynamical downscaling method is found to be more reliable
given its finer resolution.

3. Materials and Methods
3.1. Generation of Weather Datasets for Energy Performance Simulations

As previously mentioned, the scope of the study is to evaluate the role of climate
change and urban microclimate on the energy performance of a generic building unit,
located in Thessaloniki (40.6401◦ N, 22.9444◦ E), a city in the northern part of Greece.
According to the Köppen classification, the climate of the city is Mediterranean, and it is
generally characterized by hot, dry summers; mild, wet winters; and evenly distributed
rainfall throughout the year [42].
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To address its goal, the study employed both statistical and dynamical downscaling
methods for the generation of future weather datasets. For the statistical downscaling, the
stochastic weather generator Meteonorm was used, while for the dynamical downscaling,
the regional climate model RegCM4 (version 4.4.5.1) was applied. Still, given that the
buildings’ energy demand was strongly correlated to the microclimatic conditions of the
study area, the study also aimed to generate a future weather dataset based on the outcome
of the regional climate model RegCM4 that also considers the site-specific microclimatic
parameters as a function of the site’s morphological parameters. More precisely, numerical
simulations with RegCM4 were carried out with a horizontal grid spacing of 25 km (see
Figure 2b). Yet, despite the finer spatial resolution achieved through the downscaling
approaches, the microclimatic parameters of the specific case study area in which the
investigated building was located (Figure 2c) cannot be considered.
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grid point of the regional climate model.

To address this issue and account for the urban warming, compounding the warming
due to climate change, the output of the regional climate model was used as an input
boundary condition for the ENVI-met microclimate model; the microclimatic simulation
results was further processed as described in the following sections and all the generated
weather datasets were then used as input boundary parameters for the dynamic building
energy performance simulations. The various steps to generate the future weather datasets
are depicted in Figure 3 and they are described in the following sections.
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3.1.1. Meteonorm Weather Generator

Meteonorm is a widely applied tool for climate data generation. It has an extensive
climatic database but also offers the option of spatial interpolation for areas without any
historical climatic records. Meteonorm can calculate typical years with hourly resolution for
any site and its latest versions can also be used for climate change studies. More precisely,
Meteonorm uses general circulation models under the fourth IPCC assessment report (AR4)
and can create future weather files according to different IPCC emission scenarios (B1, A1B
and A2) for intervals of 10 years between 2010 and 2100 [43]. In this study, the Meteonorm
version 7.2 was used to generate:

• An hourly typical weather dataset for the current period for the city of Thessaloniki
(i.e., 2000), based on the irradiation database of the tool for the period 1991–2010 and
the air temperature database for the period 2000–2009 (i.e., Meteonorm 2000).

• An hourly future weather file for the A1B emission scenario (intermediate scenario
with rapid economic growth, more efficient technologies and a balanced use of energy
sources) for the year 2050 (i.e., Meteonorm 2050).

3.1.2. Regional Climate Model RegCM4

To generate a future weather file using a regional climate model, the RegCM4 (ver-
sion 4.4.5.1), a hydrostatic, compressible with sigma-p vertical coordinate model, was
used [44–46]. The model was originally developed by the National Center for Atmospheric
Research (NCAR) and its dynamical core is similar to that of the hydrostatic version of the
NCAR-PSU Mesoscale Model version 5 (MM5) [47]. The spatial resolution of the model
was 25 × 25 km. The simulation was driven by the HadGEM2 general circulation model
(GCM), and for the future projections the model was using RCP4.5 scenario, which is an
intermediate pathway with no exceedance of radiative forcing at a stabilization level of
~4.5 W/m2. The main purpose of Representative Concentration Pathways is to provide
time-dependent projections of atmospheric greenhouse gas concentrations [48]. In Table 1,
the main physics parameterizations of the model are presented, while further details are
also provided in the work of Velikou et al. [3]. The simulation covers the period 1981–2000
(current period) and the future period 2041–2060.
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Table 1. Configuration parameters of the RegCM4 model.

Configuration Parameter Reference

Driving Field HadGEM2
RCP (Future Scenario) RCP4.5

Cumulus Scheme Grell (over land) [49]
MIT-Emanuel (over ocean) [50]

Convective Closure Scheme Fritsch—Chappell [51]
Planetary Boundary Layer Scheme UW Planetary Boundary Layer [52]

Ocean Flux Scheme Zeng et al. [53]
Land Surface Model Biosphere—Atmosphere Transfer Scheme [54]

Two weather files were created according to the RegCM4 output:

• An hourly weather file, corresponding to the present-day climatic conditions and
issued by the simulation period 1981–2000 (i.e., RegCM 81-00).

• An hourly weather file, reflecting the future climatic conditions for the period 2041–2060
(i.e., RegCM 41-60).

To this aim and for every simulation run of the RegCM4, five meteorological parame-
ters were extracted from the corresponding grid point, which was closest to the center of
Thessaloniki, where the examined building is located. These parameters included the air
temperature, the relative humidity, the wind speed and the global solar radiation. At the
next step, RegCM4-extracted data for periods of 1981–2000 and 2041–2060 were organized
and averaged for the 20-year period to generate a single weather file of 8760 values for each
period. In parallel, given that the RegCM4 simulation output included 3-hourly temporal
resolution data, linear interpolation was used to estimate the hourly values for each me-
teorological parameter for both periods of 1981–2000 and 2041–2060. A similar approach
has been also followed by Berardi et al. [23]. Finally, the obtained 8760 hourly values of
each meteorological parameter and for both periods were introduced in Elements [55], an
open-source platform for editing and creating custom EPW weather files, compatible with
EnergyPlus dynamic building energy modeling.

3.1.3. Microclimatic Hourly Weather File

As previously mentioned, a third type of future weather dataset was created, consid-
ering not only the general climatic conditions but also the microclimatic parameters of the
examined case study area in which the investigated building unit is located. More precisely,
the urban microclimate’s effect, compounding the warming due to climate change, was
explored through the three-dimensional dynamic microclimatic ENVI-met v.4 model and
the input boundary conditions were based on the output of the RegCM4, as obtained by
the simulation described in Section 3.1.2. For the sake of comparison, simulations of the
microclimatic conditions were performed for 12 typical mean days, both for the present-day
conditions (i.e., 1981–2000) and the future period (2041–2060).

At this point, the following remark should be made: Based on the existing literature,
for the creation of typical climatic datasets for building energy performance simulations,
several years of meteorological values are needed; yet, considering the high computational
cost of microclimate simulations, it would have been extremely inefficient to simulate
all diurnal cycles of the periods 1981–2000 and 2041–2060 to obtain the corresponding
long-term microclimatic results. To overcome this limitation, in this study each one of
the 12 months was represented by a typical mean day, which was derived through the
statistical analysis of the long-term data. The microclimate analysis was performed for the
12 typical mean days and based on the results the specific weather dataset was generated
using Meteonorm, a synthetic year generation model that creates time series of hourly data
through the utilization of stochastic methods.

More specifically, Meteonorm utilizes stochastic methodologies to generate the daily
and hourly values of the most important weather variables (i.e., dry bulb temperature,
relative humidity, global radiation and wind speed) on the basis of their monthly average
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values. The derived values have the same statistical properties as the monthly imported
ones, i.e., average value, variance and characteristic sequence.

In this study, the input averages were provided by the ENVI-met microclimate sim-
ulation results for the selected typical days. The detailed approach for the creation of
site-specific climatic datasets is described in [56].

All necessary meteorological boundary conditions for each simulation day were
derived from the RegCM4 output. Finally, for both periods (i.e., present day and future
projections), the simulated hourly microclimatic parameters were organized and processed
to generate site-specific hourly weather datasets for the dynamic energy performance
simulations of the next steps of the research. In this way, the generated EPW for the
dynamic energy performance simulations did not involve the general climatic parameters,
but the microclimatic conditions under the future climate projections; both climate change
and morphological parameters of the study area were thus considered.

The methodology to create the Urban Specific Weather Datasets (USWDs), both for
the current and the future climatic conditions, was based on the following steps.

• 1st step: Definition of the typical mean days for microclimate simulation

Based on the output of the RegCM4 and the simulations for both periods, as described
in Section 3.1.2 (i.e., 1981–2000 and 2041–2060), the long-term average hourly values of the
air temperature, relative humidity and wind speed for every month of each examined pe-
riod were calculated. At the next step, these parameters will constitute the input boundary
conditions for the ENVI-met microclimate simulations. Figures 4 and 5 depict the hourly
air temperature and relative humidity evolution for each typical mean day of all months
for the periods 1981–2000 and 2041–2060. In terms of wind speed, the average daily values
during the mean typical days, as derived by the analysis of the RegCM4 output for both
periods, are given in Table 2.

• 2nd step: ENVI-met microclimate simulations
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Table 2. Daily average wind speed for the mean typical days of each month and simulation period, used in ENVI-met
microclimate simulations.

1981–2000

January February March April May June July August September October November December

Ws (m/s) 6.5 6.4 6.3 5.7 4.8 4.4 4.7 4.8 5.14 5.85 6.32 6.7

2041–2060

January February March April May June July August September October November December

Ws (m/s) 6.7 6.4 6.2 5.6 5.11 4.54 4.7 5.0 5.6 5.9 6.4 6.5

Microclimate simulations for the case study area, in which the examined building unit
is located, were conducted with the ENVI-met v.4 microclimate model, a prognostic, three-
dimensional, grid-based microclimate model that can simulate the interactions of the urban
surface, vegetation and the atmosphere [57]. The model contains (a) the one-dimensional
(1D) boundary model, used for the initialization of the simulation and the definition of the
boundary model conditions, (b) the 3D core model, consisting of 3D cells that represent
different elements, such as buildings, vegetation or atmosphere. A detailed overview of the
model’s characteristics, along with its limitations and advantages, is given in [58] and [59].

In this study, a total of 24 simulation runs were performed, one for each mean typical
day for the two simulation periods. The study area was modeled using a domain size
of 135 × 135 × 20 grids (i.e., x-grids × y-grids × z-grids), corresponding to a grid size
of 1.5 m × 1.5 m × 3.0 m. Seven nesting grids were also set around the model domain
area in order to assure numerical stability [60]. The ground properties of the nesting grids
were those of concrete pavements to approximate in a realistic way the surfaces on the
boundaries of the study area. Simulation start time was set to 00:00 and the total runtime
was 24 h. The thermal properties of the various construction materials were based on
the ISO standard 10,456 [61]. The Google Earth image of the study area, along with the
indication of the location of the examined building unit, are shown in Figure 6. It must be
also emphasized that the performance of the ENVI-met model to accurately reproduce the
microclimatic characteristics of the specific case study area has been evaluated and verified
in [62] and [63].
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• 3rd step: Extraction of the microclimate simulation output and generation of the
hourly weather datasets
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Figure 6. (a) Google Earth image of the urban district and indication of the location of the examined
building (b) plan and (c) 3D view of the ENVI-met area input file, (d,e) indication of the receptor
files, placed in front of the examined building unit to extract the necessary simulation output.

The proposed computational method to consider the urban microclimate, compound-
ing the climate change and its overall effect on the dynamic energy performance simu-
lations, was applied for a third-floor generic building unit located inside the main street
canyons of the case study area (i.e., Mitoudi canyon). The height of the base-floor was
considered equal to 4.5 m, whereas the height of the remaining floors was equal to 3.0 m.
Five “receptors” were considered at a distance of 0.75 m away from the façade (Figure 6d,e),
which provided the values of all major microclimatic parameters at different heights, from
the ground level until the top of the model domain. In our case, the results focused on
air temperature (Tair), relative humidity (RH), wind speed (WS) and solar radiation (SR),
on the basis of which the hourly climatic dataset was stochastically generated. For the
examined third-floor building unit, the analysis concerned the heights of 10.5 m and 13.5 m.
The obtained values of the studied parameters were then averaged and inserted as input
data in the Meteonorm weather generator to create the two site-specific weather datasets:

• the first one reflects the microclimatic conditions occurring near the examined building
unit under the present-day climatic conditions (i.e., USWD _81-00),

• the second one reflects the microclimatic conditions in the near vicinity of the examined
building unit under the impact of the forecasted climate change (i.e., USWD_41-60).

3.2. Energy Performance Simulations

The following step involves the energy performance analysis using the generated
hourly weather datasets for the current (i.e., Meteonorm 2000, RegCM_81-00 and USWD_81-
00) and the future climatic conditions (i.e., Meteonorm 2050, RegCM_41-60 and USWD_41-
60). In this study, the energy performance analysis was conducted with the EnergyPlus
model [64], a tool that has been widely validated and applied in numerous scientific
studies worldwide [65,66]. In EnergyPlus, the calculation of the thermal loads of buildings
is based on the heat balance method, while accounting for the heat fluxes on outdoor and
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indoor surfaces, and the transient heat conduction through the building elements [64].
The plan of the investigated building unit has a total surface of 80 m2. The 3D model
of the zone in the EnergyPlus model along with its surrounding obstacles are shown in
Figure 7a–c, respectively. It is assumed that the floor, the ceiling and all vertical surfaces of
the building unit, except for the main façade, are regarded as adiabatic, due to the same
operational schedules between the apartments. The exposed façades are facing South.
All simulations were conducted for the existing building envelope, in which there is no
thermal insulation. In fact, the building containing the investigated building unit was
constructed prior of 1979, in a period when there were no specific requirements for the
thermal protection of the building. Up to the present time, the highest part of the Hellenic
building stock was built during this period and thus, the envelope components are poorly
insulated or not insulated at all. Regarding the examined building, the opaque external
building wall towards the external air consists of brick masonry with U = 1.64 W/m2K.
The bearing vertical components, consisting of reinforced concrete, presented U values
between 2.53 W/m2K and 3.17 W/m2K, depending on their width. Similarly, the brick wall
and the reinforced concrete components, facing towards the non-conditioned staircase area,
presented U values of 1.43 W/m2K and 2.06 W/m2K–2.46 W/m2K, respectively. Regarding
the openings, the thermal transmittance of the PVC frame was Uf = 2.8 W/m2/K, the
double-glazed glass conductance was equal to Ug = 2.8 W/m2/K.
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Figure 7. (a) Plan of the investigated building unit, (b) the 3D model of the zone in the EnergyPlus model along with (c) its
surrounding obstacles.

In parallel, the operational profile of the generic building unit, which includes the
schedules for occupancy, lighting, equipment, ventilation, infiltration, as well as the heating
and cooling setpoints, was defined in accordance with the national regulatory framework
for the building energy performance [67].

The heating season covers the period of the 15 October to the 30 April, whereas
the cooling season starts 1 June and ends 31 August. Moreover, different heating and
cooling setpoints were considered to examine the potential energy savings that can be
achieved due to the thermostat adjustment. The base case setpoint range proposed by the
national building energy performance regulation for residential buildings and building
units is 20–26 ◦C. In this study, the heating setpoint was initially fixed at 20 ◦C, while the
cooling setpoint was considered as 26 ◦C and 27 ◦C. In the next step, the heating setpoint
was fixed at 19 ◦C, while the cooling setpoint was considered at 26 ◦C and 27 ◦C. The
infiltration rate was 1.0 ACH. Finally, in the summer period, a night ventilation rate of
3ACH was considered, provided that the indoor air temperature is higher than the outdoor
air temperature by 1.0 ◦C.
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4. Results and Discussion
4.1. Weather File Analysis

The analysis of the air temperature between the present day and the future weather
datasets on a daily basis throughout the year showed that in all the examined cases, the
generated datasets follow a similar inter-annual profile, with the future ones presenting
higher Tair values, depicting the impact of climate change on the created weather files.
Regarding the datasets generated with statistical downscaling methods, the range of
the daily Tair varies between −3.3 ◦C to 30.7 ◦C and −2.1 ◦C to 33.9 ◦C for the reference
(i.e., Meteonorm 2000) and the future period (i.e., Meteonorm 2050), respectively (Figure 8a).
In terms of the annual weather files generated using the RegCM4 output, the range of
the daily air temperature fluctuates between 2.7 ◦C to 25.62 ◦C and 2.83 ◦C to 27.9 ◦C for
the reference (i.e., RegCM_81-00) and the future period (i.e., RegCM_41-60), respectively
(Figure 8b). With the urban heat island effect compounding the warming due to climate
change, the maximum future daily Tair value was estimated at 31.6 ◦C (i.e., USWD 41-
60), which is higher by 3.7◦C when compared to the scenario where the site-specific
microclimatic parameters are not accounted for. Aiming for a more thorough analysis of
the results, the mean monthly values of all future and present-day datasets were calculated;
as can be seen in Figure 9, the future weather file generated with Meteonorm forecasts
a mean monthly temperature increase between 1.3–1.8 ◦C and 2.2–3.3 ◦C during the
heating and cooling period, respectively. Peak maximum values, surpassing 3.0 ◦C, are
estimated for the months of July and September. The same tendency is also reported for the
future projections with the RegCM4, estimating an increase in the mean monthly Tair by
2.1–2.8 ◦C during the summer months of the year and an average increase of 1.4 ◦C during
winter months.
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ated (a) with Meteonorm weather generator, (b) with the output of the RegCM model and (c) with
the proposed computational method that considers both climate change and local microclimate.
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Figure 9. Estimated mean monthly Tair values for the present day (reference), the future period
2041–2060 and the respective Tair increase for (a) the Meteonorm-generated weather datasets, (b) the
datasets created from the RegCM4 output and (c) the USWDs, based on the RegCM4 output and the
ENVI-met microclimate simulations.

To continue, Figure 10 shows the projected mean monthly Tair values for the period
2041–2060, with and without the consideration of the site-specific microclimatic conditions
and the compounding impact of the urban warming. As it can be seen, with the heat island
effect intensifying the warming from climate change, higher mean monthly Tair values are
to be expected in the future period 2041–2060. The air temperature values of USWD_41-60
are generally higher than the RegCM_41-60 ones, with the largest differences detected in
summer; in fact, the mean future monthly Tair values inside the urban district will reach
28.1 ◦C and 27.9 ◦C in July and August, i.e., 1.1 ◦C and 1.7 ◦C higher compared to the
scenario where only the climate change is accounted and not the local microclimate of
the dense urban area. The lowest differences were noticed in the intermediate seasons
(i.e., autumn and spring) ranging between 0.2 ◦C and 0.6 ◦C. The reported discrepancies



Energies 2021, 14, 5799 16 of 23

between the two weather datasets are the result of complex microclimatic conditions,
which are reproduced by the ENVI-met model and are mainly attributed to (i) the increased
building density of the study area which lowers the longwave radiation losses, (ii) the
thermal properties of the construction materials, which contribute to the storage and
emittance of sensible heat to the air, and (iii) to the reduced green areas, which lead to
lower amounts of latent heat.
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Figure 10. Estimated mean monthly Tair for the future weather datasets RegCM_41-60 and USWD_41-60.

Finally, the boxplots of the outdoor Tair for all generated weather datasets show a clear
increase in the future temperatures (Figure 11). However, as also previously mentioned,
the projections for the future climate change are considerably higher for the weather file
developed with Meteonorm generator using statistical downscaling methods compared to
the RegCM_41-60 and the USWD_41-60, the generation of which is based on dynamical
downscaling approaches. The lower dispersion of data in cases where future weather files
have been generated with dynamical downscaling methods compared to datasets derived
from statistical downscaling methods has also been mentioned in previous scientific studies
of Tootkaboni et al. [27] and Berardi et al. [23].
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Figure 11. Boxplots of outdoor dry bulb temperature of all created weather datasets.

The higher differences produced by the statistical downscaling methods compared
to the dynamical approaches are strongly associated with the different algorithms and
spatial representativeness followed at each case. More precisely, the RegCM4 numerically
solves the governing equations of the atmosphere in a limited spatial domain, driven
by the input boundary conditions of a General Circulation Model, while on the other
hand, statistical downscaling models develop statistical relationships between observed
climatic variables at a specific point station (i.e., historical records at a meteorological
station) and model variables. In other words, there are considerable differences on the
spatial representativeness of the two approaches, with the RegCM4 providing results at
an area that corresponds to the model grids, while the statistical downscaling models
provide results at point stations driven by the historical observations [68,69]. Apart from
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the different spatial representativeness, another important parameter that contributes to the
variability of the projected climatic data is associated with the different emission scenarios;
RegCM4 used the RCP4.5 scenario, introduced in the Fifth IPCC Assessment Report,
whereas Meteonorm, the statistical downscaling model, uses the fourth IPCC assessment
report (AR4) scenarios and more precisely, the A1B, an intermediate scenario. Despite the
close analogues between the SERS scenarios and the RCP scenarios, their creation follows
a different approach, thus leading to diverse climatic projections. Relevant comparisons
have been already performed in the literature, such as the work of Farag et al. [70] who
comparatively assessed the SRES and RCP scenarios for temperature forecasting under
different climatic regions in Egypt. As the next step, the generated present-day and future
weather datasets are used as input boundary condition for the dynamic energy performance
simulations of the investigated building unit.

4.2. Building Energy Performance Simulation Results

Figure 12 presents the annual heating and cooling energy needs of the examined
building unit in Thessaloniki estimated for all the generated weather datasets, according to
the current and future climate conditions and for different heating and cooling setpoints.
As it can be seen, in all cases the heating energy demand dominates over the cooling energy
needs, which is expected due to the geographical position and the climate of the region. Yet,
there is an increasing trend in cooling energy requirements and a reduction in the heating
needs for the future, with the projected changes varying according to the technique used
for the generation of the weather dataset and the corresponding magnitude of temperature
increases in summer and winter.
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Figure 12. Current and future heating and cooling loads of the examined building unit for all the generated weather datasets and
for the examined heating/cooling setpoints of (a.1) 20 ◦C/26 ◦C, (a.2) 20 ◦C /27 ◦C, (b.1) 19 ◦C /26 ◦C and (b.2) 19 ◦C /27 ◦C.

The first run of EnergyPlus simulations was performed for the heating and cooling
setpoints of 20 ◦C and 26 ◦C, respectively, following the Provisions of the National Building
Energy Performance Regulation. As depicted in Figure 12a.1, an increase of 6.5% on the
total heating and cooling energy needs is forecasted for the Meteonorm weather files, while
the respective change is marginal for the RegCM4 future weather files and did not exceed 2%.
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Moreover, the annual heating energy demand for the future period 2050 is projected
to decrease by 18.5% (−10.6 KWh/m2), whereas the cooling energy demand is expected
to be doubled (+15.64 KWh/m2) for the Meteonorm weather files. On the other hand,
lower changes on the future cooling energy needs (i.e., an increase by 9.70 KWh/m2) are
forecasted for the RegCM4 future weather file, mainly due to the smaller projected Tair
increase and the lower dispersion of temperature values compared to the Meteonorm files.
Regarding the heating energy demand for the future period 2041–2060 for the RegCM4
dataset, a decrease by 10.70 KWh/m2 (i.e., 21.0%) was projected, a value that is close to the
one forecasted with the Meteonorm weather dataset.

To evaluate the intensifying combined effect of climate change and urban microclimate
on the urban warming and the building’s energy demand, EnergyPlus dynamic simula-
tions were conducted using the generated USWDs (i.e., USWD_81-00 and USWD_41-60).
According to the obtained simulation results, the consideration of the local microclimate
in the dynamic energy performance simulations resulted in an overall future heating and
cooling energy demand of 48.45 kWh/m2, which is 8% compared to the respective value
obtained for the RegCM4 dataset (i.e., when only the climate change impact is accounted
for). In parallel, the simulation results indicated that when the local microclimate was
not considered and only the climate change was taken into account, the annual heating
energy demand for the present-day and the future conditions was overestimated by 7.5%
and 21%, respectively. Similarly, the cooling energy demand, both for the current and the
future climatic conditions, was considerably underestimated when the higher urban air
temperatures were not accounted for. In fact, when the combined effect of climate change
and urban warming was considered in the energy performance simulations (i.e., simulation
run with the USWD_41-60), the annual cooling energy needs of the building unit were
estimated to be 17.8 KWh/m2 or 22.4% higher compared to the results obtained only under
the climate change effect (i.e., simulation run with the RegCM_41-60).

The important increase of future energy needs for cooling purposes is expected to
lead to a substantial increase in electricity use in urban areas of cities such as Thessaloniki,
characterized by rather warm climatic conditions. Given that in residential buildings the
cooling demand constitutes the highest part of the total electricity consumption compared
to lighting and equipment, the high urban air temperatures due to climate change and
urban heat island are expected to exacerbate the peak cooling energy loads, shifting the
peak electricity demand upwards and stressing the electricity infrastructure.

A simple way to reduce the future cooling energy demand, while also assuring the
indoor thermal comfort conditions would be to set a different, higher cooling setpoint,
which in this study can be defined at 27 ◦C. Figure 12a.2 presents the current and future
energy needs for heating/cooling setpoints of 20 ◦C/27 ◦C. As it can be seen, increasing
the cooling setpoint by 1.0 ◦C may contribute to a further reduction of the present-day and
future cooling energy demand by 18% and 17%, respectively, for Meteonorm weather files;
similarly, the cooling setpoint of 27 ◦C rather than 26 ◦C would contribute to a 23% and
20% decrease (i.e., 3.0 KWh/m2 and 3.8 KWh/m2) on the future cooling energy needs for
the RegCM4_41-60 and USWD_41-60 weather datasets, correspondingly.

Regarding the effect of the increase of the cooling setpoint by 1.0 ◦C on the present day,
total annual energy demand (i.e., sum of heating and cooling), a decrease of 4%, 6% and
3.9% has been estimated for the Meteonorm, RegCM4 and USWD weather files. In terms of
the future total annual energy needs, when the cooling setpoint is increased by 1 ◦C while
maintaining the heating setpoint to 20 ◦C, the maximum total energy savings reached 6.7%,
6.0% and 7.5% for the Meteonorm, RegCM4 and USWD future weather files, respectively.

To further evaluate the potential changes on the total annual energy demand, a
lower heating setpoint was also examined (i.e., 19 ◦C). Figure 12 present the future heat-
ing and cooling energy needs for all the examined heating/cooling setpoints and for all
the evaluated weather datasets. The comparison of the obtained simulation results be-
tween the heating/cooling setpoints scenario of 19 ◦C/26 ◦C and the base case scenario
(i.e., 20 ◦C/26 ◦C) has led to the following remarks: Lowering the heating thermostat by
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1.0 ◦C can result in (a) a reduction of future overall energy needs by 8.5%, 14.3% and 14.1%
for the Meteonorm, RegCM4 and USWD future weather files, respectively, (b) a decrease of
the future annual heating energy demand by 14%, 19.7% and 22.5% for the Meteonorm,
RegCM4 and USWD future weather files, correspondingly.

Finally, as anticipated, the largest energy savings compared to the base scenario
(i.e., 20 ◦C/26 ◦C) are achieved when the thermostatic setpoints are set to 19 ◦C/27 ◦C,
resulting in a decrease on the energy demand by 15%, 20.8% and 21.6% for the Meteonorm,
RegCM4 and USWD future weather files. It can thus be said that the reduction of the
heating setpoints would lead to a more considerable energy reduction rather than the
increase of the cooling setpoint, which agrees with the findings of Berardi et al. [23].

5. Conclusions

The present study evaluated the impact of climate change and urban heat island on the
heating and cooling energy demand of a generic building unit in the city of Thessaloniki,
Greece. As a first step, the study focused on the generation of future weather datasets using
statistical and dynamical downscaling methods; regarding the statistical downscaling,
the Meteonorm stochastic weather generator was employed, creating a future weather
dataset for the year 2050 under the A1B scenario of the 4th IPCC report. In parallel, the use
of the RegCM4 model allowed for the projection of future climate conditions under the
RCP4.5 emission scenario for the future period 2041–2060. Given the significant impact
of urban microclimatic parameters and the consequent urban heat island effect on the
buildings’ energy demand, the study proposed a computational method to generate future
weather datasets that account not only for the general climatic conditions but also for
the microclimatic parameters of the examined case study area, in which the investigated
building unit is located. The compounding effect of urban heat island on the warming
due to climate change was explored through the three-dimensional dynamic microclimatic
ENVI-met v.4 model and the input boundary conditions were based on the output of
the RegCM4.

The analysis of the future weather files suggested an increase on the annual Tair for
the city of Thessaloniki by 1.6–2.1 ◦C, with the higher values projected by the Meteonorm
generator using statistical downscaling methods compared to the RegCM4 output, which
employs dynamical downscaling approaches. Interestingly, the consideration of the com-
plementary role of the site-specific microclimatic parameters of the study area resulted in a
further annual Tair increase by 0.3 ◦C (i.e., estimated annual Tair rise of 1.9 ◦C, with the
discrepancies being considerably high in summer).

To continue, the energy performance simulation results revealed that climate change
will lead to a substantial increase of the cooling energy needs, while reducing the heating
energy demand. Still, the magnitude of the modification on heating and cooling energy
demand has been found to be dependent on the technique used for the future weather
file generation. Again, the simulation results highlighted the importance of considering
the intensifying effect of urban heat island on climate change when forecasting the future
buildings’ energy demand, since its neglection may lead to an overestimation of the heating
energy demand by 21% and an underestimation of the cooling energy needs by 22.4%.

To conclude, the results of the study highlight the necessity of following a holistic
approach towards the evaluation of buildings’ future energy demand, accounting both for
the climate change and the urban heat island phenomenon. Given that the buildings’ life
cycle extends to decades, it is essential to accurately evaluate their performance over a series
of years and propose design strategies that will meet the energy performance and occupants’
comfort requirements in the future. Future work should incorporate (a) the impact of the
urban geometry, building orientation and the materials’ optical and thermal properties
on the energy performance simulation results under different climate change scenarios,
and (b) the role of various mitigation and adaptation strategies, such as the addition of
nature-based solutions on the urban landscape or on the building envelope, since efforts to
attenuate the heat island effect also help to address climate change and improve citizens’
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quality of life. Moreover, this study only investigated the energy performance of a single
building unit in Thessaloniki; future work will also incorporate building units at different
levels and positioned inside street canyons with different orientations in various locations
of Greece to further address the compounding role of the urban microclimate and urban
heat island on climate change.
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Nomenclature

IPCC Intergovernmental Panel on Climate Change
RegCM Regional Climate Model
GHG Greenhouse Gas
SRES Special Report on Emissions Scenarios
RCP Representative Concentration Pathways
GCM General Circulation Models
BEPS Building Energy Performance Simulation
HRM Hadley Regional Model
EPW EnergyPlus Weather
ACH Air Changes per Hour
USWD Urban Specific Weather Dataset
Tair Air temperature
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