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Abstract: Bubble flow can be simulated by the two-fluid model and the multi-fluid model based
on the Eulerian method. In this paper, the gas phase was further divided into several groups of
dispersed phases according to the diameter by using the Eulerian-Eulerian (E-E) multi-fluid model.
The diameters of bubbles in each group were considered to be the same, and their distributions were
reorganized according to a specific probability density function. The experimental data of two kinds
of bubble flow with different characteristics were used to verify the model. With the help of the
open-source CFD software, OpenFOAM-7.x (OpenFOAM-7.0, produced by OpenFOAM foundation,
Reading, England), the influences of the group number, the probability distribution function, and
the parameters of different bubble diameters on the calculation results were studied. Meanwhile,
the numerical simulation results were compared with the two-fluid model and the experimental
data. The results show that for the bubble flow with the unimodal distribution, both the multi-fluid
model and the two-fluid model can obtain the distribution of gas volume fraction along the pipe
radius. The calculation results of the multi-fluid model agree with the experimental data, while
those of the two-fluid model differ greatly from the experimental data, which verifies the advantage
of the multi-fluid model in calculating the distribution of gas volume fraction in the polydisperse
bubble flow. Meanwhile, the multi-fluid model can be used to accurately predict the distribution of
the parameters of each phase of the bubble flow if the reasonable bubble diameter distribution is
provided and the appropriate interphase force calculation model is determined.

Keywords: bubble flow; E-E method; multi-fluid model; polydisperse bubble flows

1. Introduction

The gas-liquid two-phase flow is a kind of fluid flow that exists widely in different
industries such as energy, water conservancy, and chemical industry. The classical E-E
two-fluid model is commonly used to describe the movement of bubble flow. This model
treats the gas phase as a single phase and takes the average bubble diameter as that of
the whole [1,2]. This method is effective only when the gas volume fraction is low, the
turbulence effect is small, and the bubble diameter is uniform [3–5]. However, many
experimental studies on bubble flows have shown that, when polydispersity is significant,
bubbles tend to migrate at different velocities depending on their size [6,7]. So, it is not
appropriate to use the two-fluid model to describe the bubble flow in this condition, simply
because the movement of bubbles with polydispersity and the forces on them are different.
The research of Hibiki T. et al. [8] and Rzehak R. et al. [9] suggested that the lift force a
bubble receives is directly related to its diameter. Therefore, the distribution of gas volume
fraction of bubbles with significant polydispersity has different characteristics: bubbles
with large diameters converge toward the center, while those with small diameter converge
toward the wall.
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In engineering practice, the bubble flow in a mono-dispersed system is rare, but the
bubble flow in a polydisperse system is quite common. Therefore, it is important to study
the latter. The adoption of the classical E-E two-fluid model has an obvious limitation.
It requires the reorganization of the bubble diameters into several groups according to a
specific probability density function, and the movement of bubbles in each group has to be
described. While the E-E multi-fluid model can be used to calculate the flow field of the
polydisperse bubble flow, the accurate distribution of the radial gas volume fraction along
a section in the flow direction can be obtained.

Researchers have studied the calculation of polydisperse turbulent bubbles, such as
Lopez de ertodano et al. [10], Kataoka et al. [11], and Sato and Sekoguchi [12], but the
numerical method for the polydisperse turbulent bubble flow is not yet mature. Due to the
lack of complete and effective experimental data, the applicability of the currently estab-
lished models, such as the multiphase flow model used to track the bubble interface [13–15],
and the tracking method of single bubble trajectory [16], still needs to be verified.

With the development of computer technology, the computational fluid dynamics
(CFD) method has been used as a conventional method to study the polydisperse gas-
liquid two-phase flow. In the polydisperse systems with the particle size distribution to be
considered, an additional balance equation is needed to describe the particle balance in
addition to the conservations of momentum, mass, and energy. This balance equation is
usually called the Population Balance Model (PBM), and the coupling of CFD and PBM is
known as the CFD-PBM model. The quantitative density function is introduced into PBM
to represent the probability distribution of the particle swarm, and different particles in
PBM can be distinguished by their properties (such as particle diameter and particle-phase
volume fraction). In the CFD-PBM coupling process, PBM is used to calculate the mean
value of the Sauter diameter, which is then input into the momentum interphase exchange
term. The common methods for solving the CFD-PBM model are as follows: Quadrature
Method of Moments [17], Multiple-Size Group Method, Least-Square Method, and Fixed-
Pivot Method [18], and CQMOM [19]. To predict the polydisperse multiphase flows, the
CFD-PBM model extended other multiphase flow models based on the E-E method, such
as the Non-Uniform Multi-Size Group Model [20–23], and the particles or bubbles in the
flow field are grouped according to their diameters and are treated respectively. The
application of CFD-PBM to multiphase flows are reported extensively in the past [24–27].
These solutions work well in the case of small Stokes flows because particles or bubbles of
different properties in the dispersed phase are assumed to have the same velocity.

In recent years, Li D. et al. [28] combined the E-E two-fluid model and the generalized
population balance equation (GPBE) and used the Navier-Stokes equation to describe
the continuous phase, the GPBE to describe the dispersed phase, and the finite volume
method to solve the model. This method is called the “Eulerian QBMM” (E-QBMM), where
Eulerian represents using the Eulerian method, and QBMM represents the quadrature-
based moment method. The calculated results of this method are in good agreement with
the experimental data for the bubble plume and bubble flows as reported in the published
literature [29].

To simulate the gas-liquid two-phase flow in polydisperse systems, a multi-fluid
model based on the E-E framework was deduced and constructed in this study, with the
help of OpenFoam. This model was used to simulate the two-phase upward bubble flow in
two different vertical pipes in the open-source software OpenFoam-7.x. The experimental
data in published literature were used to verify the computational accuracy of the model.
Among the two kinds of upward bubble flows, one can be seen as the homogeneous flow
since the bubble diameter distribution is very narrow, while the other one can be seen as the
inhomogeneous flow since the distribution is wide. The effect on the distribution function
of the bubble diameters by the multi-fluid method as well as the momentum interfacial
exchange terms was studied. The probability density function for predicting the bubble
distribution was determined to be lognormal distribution. By comparing the experimental
data in published literature, it was verified that the computational accuracy of this multi-



Energies 2021, 14, 5776 3 of 21

fluid model is higher than that of the classical two-fluid model. The comparison between
the numerical simulation results and the experimental data shows that the multi-fluid
model established can accurately predict the distribution of gas volume fraction along the
pipe radius in the flow field with polydisperse bubbles.

2. Model Description and Numerical Dispersion
2.1. Governing Equation of the Two-Fluid Model

Ishii M [30] proposed a multi-phase mixed CFD two-fluid model based on the E-E
method, which can be used to calculate the gas volume fraction of the high dispersed phase.
The momentum equation, continuity equation, and energy equation were used together
to describe the two continuums simultaneously. At present, this model is widely used
to calculate the flow field of the gas-liquid two-phase flow because of its low calculation
cost. Drew D A, Jackson R, and Ishii M and Mishima further studied the interphase
forces [31–33]. Due to the interaction among phases, it is necessary to add the term of
interphase force to the momentum equation of each phase to close the whole equation.
The governing equation system described by the E-E method is the E-E two-fluid model.
Panicker N et al. [5] studied the factors affecting the calculation accuracy of the two-fluid
model applied to the incompressible gas-liquid two-phase flow and proposed a method to
optimize the calculation accuracy. In the two-fluid model, the momentum equations of the
dispersed phase and the continuous phase can be expressed as:

∂(αdρdUd)

∂t
+∇ · (αdρdUdUd)−∇ · (αdρdτd) = −αd∇pd + αdρdg + M (1)

∂(αcρcUc)

∂t
+∇ · (αcρcUcUc)−∇ · (αcρcτc) = −αc∇pc + αcρcg−M (2)

where subscripts d and c are the dispersed phase variable and the continuous phase
variable, α is the phase fraction, ρ is the density, U is the velocity, p is the pressure, τ is the
effective stress, g is the gravity vector, and M is the interfacial exchange force under the
Eulerian framework, which represents the transfer of momentum between the two phases
per unit volume. The continuity equation of each phase can be expressed as:

∂(αcρc)

∂t
+∇ · (αcρcUc) = 0 (3)

∂(αdρd)

∂t
+∇ · (αdρdUd) = 0 (4)

Considering the Newtonian fluid, the effective stress τ can be expressed as:

τd = −vd,eff

(
∇Ud +∇TUd

)
+

2
3

vd,eff∇ · (Ud·I) (5)

τc = −νc,eff(∇Uc +∇TUc) +
2
3

νc,eff∇ · (Uc · I) (6)

where νd,e f f is the effective viscosity, which needs to be closed with different turbulence
models, such as k-Epsilon model or k-Omega model; and M is usually broken down into
different combination of forces, including the axial drag force Mdrag, the radial force Mlift,
and the turbulence dispersion force Mturb.

2.2. Governing Equation of the Multi-Fluid Model

The following assumptions are made before using the multi-fluid model:

(1) The fluid phase is an incompressible fluid, the gas phase (dispersed phase) is a
continuous fluid, and the physical properties of each phase are constant;

(2) The coalescence and fragmentation of bubbles are not considered;
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(3) The flow field is isothermal and adiabatic, there is no heat exchange with the external
environment, and the phase transition and heat transfer are not considered.

By extending the two-fluid model, the multi-fluid model can be established for the
multi-fluid system with the polydisperse two-phase flow if each phase is described by the
Eulerian method. Taking the gas-liquid bubble flow as an example, the bubbles can be
divided into several groups according to their diameter, and each group is considered as
a phase, thus the multi-fluid model of several phases can be established. The multi-fluid
model is an average motion equation of phases obtained from the time averaging of the
transient and local motion equations of phases. It can be subdivided into the incompressible
model and the compressible model. The gas-liquid polydisperse system studied in this
paper adopts the incompressible model because of its low velocity and the acceptable error
for the pressure-induced bubble changes.

Without the heat and mass transfer, the mass conservation equation and the mo-
mentum conservation equation can be used to describe the motion of each phase. The
basic equations describing the motion of bubble flow are established based on the time
averaging of the transient and local motion equations of phases. In the process, the bubbles
are divided into k phases according to their diameters, and each phase is considered as
a continuous phase, which is described by the Eulerian method. Thus, the continuity
equation of the multi-fluid model can be written as

Dispersed phase
∂(αkρk)

∂t
+∇ · (αkρkUk) = 0 (7)

Continuous phase
∂(αcρc)

∂t
+∇ · (αcρcUc) = 0 (8)

where αk is the phase fraction of the dispersed phase k, ρk is the density of the dispersed
phase k, Uk is the velocity of the dispersed phase k, αc is the phase fraction of the continuous
phase c, ρc is the density of the continuous phase c, and Uc is the velocity of the continuous
phase c.

Without considering the heat and mass transfer, the momentum equation of the
dispersed phase in the multi-fluid model is as follows:

∂(αkρkUk)

∂t
+∇ · (αkρkUkUk)−∇ · (αkρkτk) = −αk∇pk + αkρkg + ∑ Mij (9)

where pk is the pressure, g is the gravitational acceleration, and τk is the turbulent item,
which is expressed as:

τk = −νd,eff(∇Uk +∇TUk) +
2
3

νk,eff∇ · (Uk · I) (10)

where Mij is the momentum exchange item between phase i and phase j, and νk,eff is the
effective viscosity.

The continuous phase momentum equation for the multi-fluid model is:

∂(αcρcUc)

∂t
+∇ · (αcρcUcUc)−∇ · (αcρcτc) = −αc∇pc + αcρcg−∑ Mij (11)

where pc is the pressure, and τc is the turbulent item, which is expressed as:

τc = −νc,eff(∇Uc +∇TUc) +
2
3

νc,eff∇ · (Uc · I) (12)

In this paper, the drag force, lift force, wall lubrication force, and turbulent dissipation
force are considered. In order to close the equation, the momentum exchange term is
further modeled, and other details of these tests are listed in Table 1.
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Table 1. Momentum closure models and the test case details.

Momentum Closure Models References and Other Parameters Are Cited

Drag model Tomiyama et al. [33]

Lift model Tomiyama et al. [34]

Wall model Hosokawa et al. [35]

Turbulent dispersion model Biesheuvel et al. [36]

Geometry Cylindrical pipe

Measurements available α distribution, liquid velocity

It is worth emphasizing that the multi-fluid model in this paper regards bubbles as
dispersed phases and ignores the interactions between them. This is because the gas-liquid
two-phase flow studied in this paper has a low gas volume fraction, and the physical
properties of bubbles in each dispersed phase are very similar, forming a very weak
coupling effect.

2.3. Coupling and Numerical Dispersion

The discrete solution of the multi-fluid model follows the steps of solving the N-S
equation under the incompressible Eulerian framework. That is, by solving the momentum
equation of each phase, the velocity can be predicted, but it does not meet the assumption
of the continuity equation. To solve this problem, the Poisson equation of pressure is
constructed to calculate the pressure through the continuity equation. And then, the
velocity is modified by the pressure, so the convergent velocity field and pressure field can
be obtained. The discretization procedure was reported in other works [37,38].

2.4. Turbulent Model

The Reynolds stress is the result of the averaging process in the momentum equation.
The turbulent models can be used to calculate the Reynolds stress, such as the k-εmodel,
the k-ω model, or the k-ω SST model. Some other works show that the k-ε model can
still yield good results in bubble flows [39,40]. In this study, a two-phase k-ε model was
employed. The equations are omitted for brevity and readers can refer to other works for
more details [41].

For the steady-state bubble flow in a vertical circular tube with low gas volume
fraction, incompressible and low Reynold number, the liquid phase can be simulated by
the turbulent model, while the gas phase can be simulated by the laminar model because
the effect of bubbles on liquid turbulence is small and can be ignored in the low gas volume
fraction flow field. The results were verified by the experimental results [42,43].

It should be noted that, in general, the bubble-induced turbulence (BIT) plays an
important role. The presence of bubbles changes the structure of the turbulence field
and produces shear-induced turbulence, which in turn alters the bubble distribution and
the break-up and coalescence processes. These bubbles act as a source of the BIT and
generate turbulence in flows that would otherwise be laminar. In general, a source term
is included in the turbulence transport equations in the BIT model to account for the
turbulence generated by the bubbles, and different models have been developed [44–46].
However, because BIT may not play a major role in the flows considered in this study, it
is neglected.

3. Numerical Configurations and Grid Independence Test
3.1. Numerical Configurations

In this paper, the algorithm of the multi-fluid model was implemented in the open-
source CFD software OpenFoam-7.x. This algorithm was based on the finite volume method
of the mesh center. The solver was called Multi-fluid Foam, which uses a pressure-based
solution algorithm. The coupling of the shared pressure and the continuous phase velocity
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was solved by the PISO procedure [47–50]. The adiabatic solver reacting TwoPhaseEuler-
Foam was used as a baseline solver in which the E-E two-fluid was implemented. The
advantages and disadvantages of the multi-fluid and two-fluid models are compared in
Table 2.

Table 2. Comparison of two numerical methods.

Comparison of the Content
The Model Name

E-E Multi-Fluid E-E Two-Fluid

Continuous phase Navier–Stokes equation Navier–Stokes equation
Dispersed phase Navier–Stokes equation Navier–Stokes equation

Advantages

Bubbles of different diameters
have different speeds

The gas volume fraction
distribution of bubbles with

different diameters can
be calculated

Bubbles in the flow field are
all considered to have the

same velocity and the
same diameter

Disadvantages High demand on
computing resources

Low demand on
computing resources

3.2. Computational Domain and Grid Independence Test

The first test case (Test 1) simulated in this paper was a circular bubble column studied
by Lucas et al. [51]. The second test case (Test 2) was a circular bubble column studied
by Banowski et al. [52]. Both test cases used the circular bubble columns with different
diameters and heights. The column was filled with water (i.e., continuous liquid phase) at
room temperature and atmospheric pressure, while water and gas flow was fed from the
bottom of the column along the Z-axis. A sketch of the setup is shown in Figure 1.

Figure 1. Bubble column geometry studied by (a) The computational domain of Test 1 Lucas et al. [51]
and (b) The computational domain of Test 2 Banowski et al. [52].

According to the computing domain shown in Figure 1a, four sets of structural grids
were selected and generated by ICEMCFD, which are All-grid-1, All-grid-2, All-grid-3, and
All-grid-4, as listed in Table 3.

Table 3. Grid schemes of the total flow field computing domain.

Grid Name All-Grid-1 All-Grid-2 All-Grid-3 All-Grid-4

Number of mesh nodes
along the flow direction 40 105 360 450

Number of section grids 1548 1548 2052 2052

Total number of grids 61,920 162,540 738,720 923,400
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The different grid partitioning schemes are shown in Figure 2. The number of grids
for All-grid-3 and All-grid-4 was increased along the flow direction and the cross-section.
The aspect ratio of the grid was optimized by increasing the number of grids in the flow
direction. The E-E two-fluid model was used to calculate the gas phase velocity of Test
Case 1 in four schemes, and the appropriate number of grids was selected by comparison
with the experimental data.

Figure 2. Grids of the all computational domain. (a) All-grid-1, (b) All-grid-2, (c) All-grid-3, (d) All-grid-4.

Boundary Condition Setting

Test 1 conditions: the apparent velocity of the gas phase was Ug = 0.0096 m/s, the
water flow velocity was UL = 1.0167 m/s, and the gas volume fraction was αG = 1%. The
inlet velocity of the gas phase can be calculated from the apparent velocity of the gas phase
by using the following expression:

Vinlet =
Vsuper ·OutletArea

InletArea · αInlet
(13)

where Vsuper is the apparent velocity of the gas phase, 0.0096 m/s, and the gas volume
fraction at the inlet is αG = 1%, thus the inlet velocity of the gas phase is Vinlet = 0.96 m/s.
Other parameters are listed in Table 4.

Table 4. Boundary condition parameters in OpenFoam.

Variable Value of Inlet Property of Inlet Value of Outlet Property of Outlet

Gas phase volume fraction αG 0.01 Fixed Value zeroGradient Zero Gradient
Liquid volume fraction 1-αG 0.99 Fixed Value zeroGradient Zero Gradient
Gas phase velocity Ud (m/s) 0.96 Fixed Value $internalField No slip

Liquid phase velocity Uc (m/s) 1.0167 Fixed Value $internalField No slip
Pressure P (pa) 101,325 Zero Gradient $internalField Fixed Value

Liquid turbulent kinetic energy k 0.0041 Fixed Value $internalField Standard wall function
Kinetic energy dissipation rate of

liquid phase turbulence ε 0.188 Fixed Value $internalField Standard wall function

The calculated gas velocities at different partitioning schemes are shown in Figure 3.
Due to the increase in the number of grids along the cross-section and the flow directions,
the calculated values of the gas phase velocity in the central region of the column in the
schemes of All-grid-3 and All-grid-4 conformed to the experimental values, and more wall
velocity values were obtained. The velocity of the gas phase near the column wall should
approach 0, but the experimental data were incomplete due to the limitation of conditions.
All-grid-3 and All-grid-4 were the partitioning schemes that can meet the requirements
of this study. On the premise of satisfying the calculation accuracy requirements and
shortening the calculation time, the partitioning scheme of All-grid-3 was the best one,
shown as the red solid line in Figure 3.
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Figure 3. Calculation results of different partitioning schemes.

The compute domain is shown in Figure 4, which the full flow field is shown in
Figure 4a. The calculated flow field was considered as steady and the calculation domain
as axisymmetric. To further save the calculation resources, a wedge was taken as the
computational domain, which was extended along the Z-axis from a sector cut from the
flow field with an angle of 5◦ and a radius of r = 0.0256 m. In other words, only 1/72 of the
total flow field was calculated, as shown in Figure 4b,c.

Figure 4. Schematic diagram of the computational domain. (a) Whole flow field of the experiment
section. (b) The 5◦ sector in the computation domain. (c) Computational domain used in this paper.

The wedge grids in the following test cases were generated by the BlockMesh accord-
ing to the All-grid-3 partitioning scheme, as shown in Figure 5, Axial mesh, as shown
in Figure 5a, Section mesh is Figure 5b, Wedge 3D mesh is Figure 5c. In the process of
calculating the wedge area with OpenFoam, the axisymmetric plane was set as the Wedge.
The fully orthogonal grids with 28 (width) × 360 (height) were generated.
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Figure 5. Wedge grid. (a) Axial mesh; (b) Section mesh; (c) Wedge 3D mesh.

The calculation results of the Wedge-grid and All-grid-3 are shown in Figure 6. It
can be seen that the partitioning scheme of the wedge grid can meet the calculation
requirements.

Figure 6. Simulation results by All-grid-3 and Wedge-grid.

3.3. Comparison of Different Drag Models

The drag force is the most important force among the inter-phase momentum forces.
It defines the maximum velocity of a bubble in a continuous fluid driven by buoyancy [36].
The drag force mainly depends on the bubble shape, the relative velocity between dispersed
and continuous phases, and the viscosity. Based on Test 1, different drag models were used
to calculate the gas velocity. The SchiillerNaumann model [48] and Tomiyama model [49,50]
were compared in this section, as shown in Figure 7. The gas velocity calculated by the
former is significantly higher than latter and much higher than the experimental value, as
the blue dotted line shown in Figure 7. The gas phase velocity calculated by the Tomiyama
mode is in good agreement with the experimental results, as the red solid line shown in
Figure 7.
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Figure 7. Gas phase velocity calculated by different drag forces.

Due to the application of EO in the Tomiyama model, the increase in resistance in the
flow field caused by bubble deformation and the decrease in gas phase velocity was taken
into account, while it was not in the Schiiller–Naumann model.

4. Results and Discussion
4.1. Experimental Verification Case 1 (Unimodal Distribution)

The experimental data were obtained from the literature [51]. The experiment was
conducted on the MTLOOP device. The experimental data of the gas volume fraction were
captured by a metal grid sensor equipped with an electrode, which has been widely used
in the study of the flow pattern of gas–liquid bubble flow and of the distribution of gas
volume fraction in vertical pipes.

In the experimental device for the gas-liquid two-phase flow, the diameter of the pipe
in the experimental section was D = 0.0512 m and the height was L = 3.5 m. The test section
was located at L/D = 59.6, that is, the distance from the entrance section was L1 = 3.05 m,
as shown in Figure 4. The experimental data are shown in Figure 8.

Figure 8. Experimental data [51]. (a) Histogram of bubble diameter distribution (left). (b) Distribution of gas volume
fraction along the pipe radius (right).
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4.1.1. Influence of Group Number of the Dispersed Phase on the Calculation Results

In order to calculate the distribution of gas volume fraction of the bubble flow in pipes
using the multi-fluid model, it is necessary to determine the bubble diameter distribution.
The commonly used distribution function is the normal distribution. Some scholars believe
that the bubble distribution in the gas-liquid two-phase flow in a pipe is more inclined
to be lognormal distribution [53]. In this section, the bubble diameter distribution is
reconstructed by using the lognormal distribution function according to the average bubble
diameter and the gas volume fraction provided in the experiment, as well as the gas volume
fraction along the radius of the tested pipe section.

To obtain accurate details of the flow field of the polydisperse bubble flow, the more
groups of the dispersed phase, the closer it is to the real flow field. But the number of
groups is restricted by the actual test conditions in the laboratory. Therefore, it is necessary
to determine an appropriate grouping scheme, where bubbles with both small and large
diameters should exist, and the gas volume fraction of each diameter shall conform to the
correct probability distribution function.

The distribution of bubbles along the radius of the pipe can be roughly divided
into three regions. When the bubble diameter dB is greater than 5.8 mm, the lift force
changes direction and points to the pipe center, pushing the bubble toward the center;
when 0.4 < dB < 5 mm, bubbles will move toward the pipe wall forming a peak of gas
volume fraction on the wall; when 5 < dB < 5.8 mm, the bubble movement is affected by
turbulence and bubble response, forming an intermediate transition region. According
to the test data (see Figure 8a), the bubble diameters vary from 3 mm to 7 mm, so the
grouping scheme of four was used. In this paper, bubbles with different diameters were
divided into 4 groups, 8 groups, 12 groups, and 16 groups, hereinafter referred to as 4 airs,
8 airs, 12 airs, and 16 airs. The multi-fluid model is used to calculate the distribution of
gas volume fraction along the pipe radius in each scheme. The calculation results were
compared with experimental data (see Figure 8b for black rectangular blocks) to analyze
the influence of group numbers on the calculated values. Although the gas volume fraction
of each group varies with the bubble diameter distribution, the average diameter of the
bubbles in each group is 4.8 mm, the total gas volume fraction is 0.01, and the bubble
injection speed is 0.96 m/s. The bubble diameter distributions are shown in Figure 9a–d,
and the calculated results are shown in Figure 10.

When the bubbles are grouped into four, and the bubble diameters are divided at the
same interval from 3 mm to 7 mm, there is a small component with the bubble diameter of
dB > 5.8 mm in the dispersed phase, as shown in Figure 9a. Although the calculated values
of the gas volume fraction are consistent with the experimental values (see Figure 8b for
black rectangular blocks) in the wall area (0.02 < r < 0.025 m), they are still lower than the
experimental values in the central area (0 < r < 0.015 m). The reason is that in this scheme,
the proportion of large bubbles of dB > 5.8 mm is lower, and the proportion of large bubbles
with different diameters in the total gas volume fraction is small, as the green solid line
shown in Figure 10.

When the bubbles are grouped into eight, the proportion of bubbles of dB > 5.8 mm
increases, so the calculated value is closer to the experimental value in the central area
(0 < r < 0.015 m), as the blue solid line shown in Figure 10. It is worth noting that the
calculated value in the wall area is quite different from the experimental value due to the
neglecting of the small diameter bubbles in the grouping scheme. Therefore, the number
of bubble groups is an important factor affecting the experimental results. To obtain a
more accurate calculation result along the pipe radius, the equal interval grouping schemes
of 12 airs and 16 airs are simulated. With the increasing of groups, the calculated values
gradually approach the experimental value at the pipe wall, and the deviation becomes
smaller in the central area, as the 12 airs (black solid line) and 16 airs (red solid line) shown
in Figure 10.
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Figure 9. Bubble diameter distributions in different grouping schemes. (a) 4 airs (top left). (b) 8 airs
(top right). (c) 12 airs (bottom left). (d) 16 airs (bottom right).

Figure 10. Distributions of gas volume fraction along the pipe radius in different groups.

It is obvious that the results of the 16 airs (red solid line in Figure 10) are closer to
the experimental values than others both in the wall area and the central area. As the
number of groups decreases from 16 airs to 4 airs, the distribution of gas volume fraction
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also decreases due to the weakening of the multi-dispersion characteristic of the gas–liquid
two-phase flow field in this experimental case. Therefore, 16airs of bubble diameters are
proposed in this paper as the scheme of grouping.

In fact, according to the analysis of the test data, as shown in Figure 8a, if dividing
the bubbles with the interval of ∆dB = 0.25 mm in the range from 3 mm to 7 mm [51],
the number of bubble groups is 16. This indicates that the bubble diameter interval has
a significant impact on the measuring accuracy of the gas volume fraction during the
experiment. At the same time, the accuracy of the multi-fluid model in calculating the gas
volume fraction of the polydisperse gas–liquid two-phase flow is verified.

4.1.2. Influence of Parameter σ on the Calculation Results

The average diameter and total gas volume fraction can be calculated from the test
data (Figure 8a) by a lognormal distribution. The histogram of bubble diameter distribution
with different standard deviations is shown in Figure 11.

Figure 11. Histogram of bubble diameter distribution with different standard deviations.(a) σ = 0.05;
(b) σ = 0.1; (c) σ = 0.15; (d) σ = 0.2.

The standard deviation of Figure 11a is 0.05. It can be seen that the bubbles with a
diameter of 5.1 mm have the largest proportion, 0.42%; while those smaller than 4.5 mm
or larger than 6 mm have a small proportion. By comparing the calculated results (the
red solid line in Figure 12) with the experimental data (the black rectangular blocks in
Figure 8b), it can be seen that the calculated gas volume fractions at the wall area are
higher than the experimental value, while those at the central area are lower. The reason
is that when σ = 0.05, the proportion of bubbles smaller than 5.8 mm is lower than the
experimental value, which leads to a high proportion of bubbles smaller than 5.8 mm in
the flow field.

The standard deviation of Figure 11b is 0.1. Although bubbles with a diameter of
5.1 mm accounted for the highest proportion, which is 0.24%, the proportion of bubbles
larger than 5.8 mm is increased. Therefore, the gas volume fraction calculated by the
multi-fluid model is consistent with the experimental value in the central area, as the blue
solid line shown in Figure 12, but it is still lower in the wall area.
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Figure 12. Distribution of gas volume fractions corresponding to different standard deviations.

The standard deviation of Figure 11c is 0.15. The bubble diameter distribution range is
further expanded, that is, the proportions of bubbles smaller than 4.5 mm and larger than
6 mm are greatly increased, and the polydisperse phase characteristics of the bubble flow
are significant, leading to the higher calculated gas volume fraction higher in the central
area and lower in the wall area when compared with the experimental value, as the black
solid line shown in Figure 12.

The standard deviation of Figure 11d is 0.2. The bubble diameter distribution range
completely covers the range of 3 mm to 7 mm, and there is little difference between bubbles
of different diameters. The polydisperse phase characteristics are more significant, leading
to the calculated gas volume fraction higher in the central area and slightly lower in the
wall area when compared with the experimental value, as the green solid line shown
in Figure 12. The comparison shows that with the increasing of the standard deviation,
the multi-dispersion characteristics of the bubble flow gradually manifest, which has
a significant impact on the distribution of gas volume fraction calculated by the multi-
fluid model, leading to its increasing in the central area from lower to higher than the
experimental value.

4.1.3. Influence of Different Distribution Functions on the Calculation Results

The bubbles are divided into 16 groups with an interval of 0.25 mm from 3 mm to
7 mm. The distribution of gas volume fraction of bubbles with different diameters, which
is calculated according to the histogram of bubble diameter distribution (Figure 8a), is
shown in Figure 13a. The average bubble diameter is 4.8 mm, as shown in Figure 13b. The
histogram of the distribution of the gas volume fraction fitted with the normal distribution
function with σ = 0.55 is shown in Figure 13c. The histogram fitted with the lognormal
distribution function with σ = 0.11 is shown in Figure 13d.

Figure 13a shows the histogram of bubble diameter distribution obtained from the
experiment when d = 4.8 mm and αG = 1%. The distribution of gas volume fraction along
the pipe radius calculated by the multi-fluid model is the blue solid line in Figure 14.
Although the calculated gas volume fraction in the wall area is lower than the experimental
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value, the calculated value in the central area agrees with the experimental value. This
indicates that the distribution of bubble diameter affects the distribution of gas volume
fraction along the radius in the multi-phase bubble flow.

Figure 13. Histogram of the distribution of the gas volume fraction with different diameters. (a) Ex-
perimental data [51] (top, left). (b) Uniform distribution function (top, right). (c) Normal distribution,
σ = 0.55 (bottom, left). (d) Lognormal distribution, σ = 0.11 (bottom, right).

Figure 14. Distribution of calculated gas volume fraction of bubbles along the pipe radius under
different distribution functions.

It is assumed that the bubble flow measured in this experiment is monodisperse.
According to the properties of monodisperse bubble flow, the diameter of each bubble in
the flow field is treated as the same, d = 4.8 mm and αG = 1%. The histogram of bubble
diameter distribution is reconstructed with the uniform distribution function, as shown
in Figure 13b, and the E-E two-fluid model is used to calculate the distribution of gas
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volume fraction. When using the average bubble diameter to represent the bubble diameter
distribution of the entire flow field, the distribution of gas volume fraction along the pipe
radius calculated by the two-fluid model is the green solid line shown in Figure 14. There
is a peak value near the pipe wall, slightly higher than the experimental value [51], as
the black rectangular blocks that are shown in Figure 8b. However, the calculated values
are significantly lower than the experimental values in the central area. This is caused
by the treating of the flow field as the single dispersed bubble flow, the using of average
diameter as the diameter of bubbles in the polydisperse system, and the neglecting of the
multi-dispersion characteristics of bubbles with different diameters.

The bubble diameter distribution in the flow field is reconstructed by the normal
distribution function, as shown in Figure 13c. The distribution of gas volume fraction along
the pipe radius is calculated by the multi-fluid model, as the black solid line shown in
Figure 14. The black solid line and the blue solid line are similar, slightly lower than the
experimental value at the wall area, and consistent in the central area. This indicates that
the proportion of bubbles smaller than 5.8 mm is low.

The distribution of bubble diameters in the flow field is reconstructed by the lognormal
distribution function, as shown in Figure 13d. The distribution of gas volume fraction along
the pipe radius is calculated by using the multi-fluid model, as the red solid line shown in
Figure 14. The calculated value is consistent with the experimental value (black rectangular
blocks in Figure 14) both in the wall area and the central area. It is shown that the bubble
diameter distribution function is more consistent with the lognormal distribution if the
average bubble diameter and the gas volume fraction are the same in the polydisperse
bubble flow.

4.2. Experimental Verification Case 2 (Bimodal Distribution)

To further verify the accuracy and adaptability of the multi-fluid model in calculating
the gas volume fraction in the polydisperse gas-liquid two-phase flow, a second exam-
ple [52] is introduced. Compared with case 1, the apparent velocity of bubbles in case 2
was increased to UG = 0.0151 m/s. The diameter of the pipe used was D = 54.8 mm, the
length of the pipe was L = 6 m, the test section was located at L/D = 59.7, that is, L = 3.27 m,
the gas injection rate was 1.51 m/s, the total gas volume fraction of bubbles in the pipe
was αG = 0.01, and the liquid flow velocity was UL = 1.017 m/s. In case 2, the proportion
of large bubbles increases significantly with the increase in the bubble apparent veloc-
ity, and the bubble diameter distribution presents a bimodal characteristic, as shown in
Figure 15a. Figure 15b is a histogram of bubble diameter distribution calculated according
to Figure 15a. The flow field is mainly occupied by bubbles with diameters of 4.5 mm and
5.6 mm. The test results show that there is one peak value at the pipe center and another
one on the pipe wall. The distribution of gas volume fraction has a bimodal characteristic
along the radius. Bubbles with dB ≤ 5.8 mm are converged at the wall area, while bubbles
with dB > 5.8 mm are converged at the central area, as shown in Figure 15c.

Figure 15. Distribution of gas volume fraction of bubbles with different diameters (Exp. Dat [52])
(a) Distribution of bubble diameters (left). (b) Histogram of bubble diameter distribution (middle).
(c) Distribution of gas volume fraction along the radius (right).
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4.2.1. Calculation Results of E-E Two-Fluid Model

To compare the advantages and disadvantages of the multi-fluid model and the two-
fluid model in simulating the polydisperse phase flow field, the average bubble diameter
can be calculated as 4.8 mm according to the test results in Figure 15b, and the calculation
results using the two-fluid model are shown in Figure 16. Most of the bubbles are converged
near the wall leading to a peak value slightly higher than the experimental value, while the
gas volume fraction in the center is close to zero, which is far away from the experimental
value. The results show that the two-fluid model cannot be used to accurately predict the
distribution of the gas volume fraction along the radius in the polydisperse bubble flow.

Figure 16. Calculation results of the two-fluid model.

The reason is that there is only one single average bubble diameter when using the
two-fluid model., which in this case is 4.8 mm. However, the calculated results show
that bubbles smaller than 5.8 mm are converged in the wall area presenting an obvious
unimodal distribution, as the red solid line shown in Figure 16; while those larger than
5.8 mm have not been calculated, resulting in a large deviation with the experimental value
in the central area. Erasing the characteristics of the polydisperse flow field has limited
the use of the two-fluid model in calculating the bubble flow with the polydisperse phase,
which can also be seen in Table 2.

4.2.2. Calculation Results of Multi-Fluid Model with Unimodal and Bimodal Lognormal
Distribution of Bubbles Diameters

The bubble diameter distribution is reconstructed into 16 groups with different di-
ameters and fitted with the unimodal lognormal distribution. The unimodal distribution
functions with different standard deviations (σ = 0.05, 0.1, 0.15, and 0.2) are fitted, as
shown in Figure 17. The corresponding calculation results are shown in Figure 18a–d.
The proportion of large bubble phase in the central area fitted by the unimodal lognormal
distribution is far lower than the experimental value, as the blue dotted line shown in
Figure 18a. The results show that the gas volume fraction of the bubbles larger than 5.8 mm
is almost zero, while the bubbles smaller than 5.8 mm are concentrated. The calculated
value of the total gas volume fraction in the flow field (purple solid line) and that of bubbles
less than 5.8 mm (green solid line) coincide together, forming a peak on the pipe wall,
and this calculation result corresponds to the histogram of bubble diameter distribution
in Figure 17a. The results show that the gas volume fraction at the wall area is basically
consistent with the experimental data, but there is an obvious deviation in the central
area ((r = 0 m to r = 0.018 m). This indicates that the distribution of bubbles with different
diameters fitted by the unimodal lognormal distribution function does not fit the actual
distribution pattern in this case.
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Figure 17. Unimodal distribution function with different standard deviations. (a) histogram of bubble
diameter distribution (σ = 0.05), (b) histogram of bubble diameter distribution (σ = 0.1), (c) histogram
of bubble diameter distribution (σ = 0.15), (d) histogram of bubble diameter distribution (σ = 0.2).

Figure 18. Calculation results of the multi–fluid model with unimodal distribution function with different standard
deviations. (a) σ = 0.05; (b) σ = 0.1; (c) σ = 0.15; (d) σ = 0.2.
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The bubble distribution of case 2 cannot be described by using the unimodal lognormal
distribution, which is also proved by the corresponding results of other different standard
deviations in Figures 17b–d and 18b–d.

According to the experimental data (Figure 15b), the bimodal lognormal distribution
function is used to reconstruct the bubble diameter distribution, as shown in Figure 19.
In accordance with the distribution (the red rectangle bar in Figure 19a), the multi-fluid
model is used to calculate the distribution of gas volume fraction along the pipe radius.
The calculation results are shown in Figure 19b.

Figure 19. Calculation results of bimodal distribution by the multi-fluid model. (a) Histogram of bubble diameter
distribution, (b) Distribution of gas volume fraction along the pipe radius.

The results show that the calculated values of bubbles with different diameters along
the radius are in agreement with the experimental values. Case 2 has a higher gas volume
fraction than case 1, and the bubble diameter distribution is consistent with the bimodal
lognormal distribution.

5. Conclusions

The two-fluid model and the multi-fluid model were used to simulate the upward
bubble flows. The simulation results were compared with the experimental data as reported
in the published literature. Based on the verification, it is concluded that:

(1) The E-E multi-fluid model can accurately predict the distribution of gas volume
fraction along the pipe radius in both the polydisperse bubble flow and the monodisperse
flow. For small superficial gas velocity, it shows a monodisperse flow pattern. Both the two-
fluid model and the multi-fluid model can be used to obtain the unimodal distribution of
the gas volume fraction along the pipe radius, while the calculated results of the multi-fluid
model are more consistent with the experimental data.

(2) When the superficial gas velocity increases to UG = 0.0151 m/s and the flow
velocity is UL = 1.0167 m/s, more large bubbles (dB > 5.8 mm) will appear. The bubble
diameter distribution is bimodal, and the distribution of the gas volume fraction is also
bimodal along the pipe radius. In this case, the multi-fluid model can accurately predict
the distribution trend, while there will be a large error if using the two-fluid model.

(3) The distribution function of bubble diameters in the polydisperse bubble flow field
is studied and it is verified that the diameter distribution of bubble flow in a pipe conforms
to the lognormal distribution, and the parameters of different distribution functions have a
significant influence on the calculation results.
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44. Mohseni, K.; Shkoller, S.; Kosović, B.; Marsden, J.E. Numerical simulations of the lagrangian averaged navier-stokes (lans-α)

equations for forced homogeneous isotropic turbulence. American institute of aeronautics & astronautics. Phys. Fluids 2003,
15, 524. [CrossRef]

45. Lahey, R.T.; Drew, D.A. The analysis of two-phase flow and heat transfer using a multidimensional, four field, two-fluid model.
Nucl. Eng. Des. 2001, 204, 29–44. [CrossRef]

46. Ma, T.; Santarelli, C.; Ziegenhein, T.; Lucas, D.; Fröhlich, J. Direct numerical simulation–based Reynolds-averaged closure for
bubble-induced turbulence. Phys. Rev. Fluids 2017, 2, 034301. [CrossRef]

47. Issa, R.I.; Gosman, A.D.; Watkins, A.P. The computation of compressible and incompressible recirculating flows by a non-iterative
implicit scheme. J. Comput. Phys. 1986, 62, 66–82. [CrossRef]

48. Ishii, M.; Mishima, K. Two-fluid model and hydrodynamic constitutive relations. Nucl. Eng. Des. 1984, 82, 107–126. [CrossRef]
49. Ahmadi-Befrui, B.; Gosman, A.D.; Issa, R.I.; Watkins, A.P. EPISO—An implicit non-iterative solution procedure for the calculation

of flows in reciprocating engine chambers. Comput. Methods Appl. Mech. Eng. 1990, 79, 249–279. [CrossRef]
50. Tomiyama, A. Struggle with computational bubble dynamics. Multiph. Sci. Technol. 1998, 10, 369–405.
51. Lucas, D.; Krepper, E.; Prasser, H.-M. Use of models for lift, wall and turbulent dispersion forces acting on bubbles for poly-

disperse flows. Chem. Eng. Sci. 2007, 62, 4146–4157. [CrossRef]
52. Banowski, M.; Hampel, U.; Krepper, E.; Beyer, M.; Lucas, D. Experimental investigation of two-phase pipe flow with ultrafast

X-ray tomography and comparison with state-of-the-art CFD simulations. Nucl. Eng. Des. 2017, 336, 90–104. [CrossRef]
53. Prasser, H.-M.; Beyer, M.; Böttger, A.; Carl, H.; Lucas, D.; Schaffrath, A.; Schütz, P.; Weiß, F.-P.; Zschau, J. Influence of the pipe

diameter on the structure of the gas-liquid interface in a vertical two-phase pipe flow. Nucl. Technol. 2005, 152, 3–22. [CrossRef]

http://doi.org/10.1016/j.cjche.2018.04.032
http://doi.org/10.1016/j.cjche.2017.01.014
http://doi.org/10.1016/j.ces.2020.115853
http://doi.org/10.1016/j.ces.2020.115743
http://doi.org/10.1002/aic.16732
http://doi.org/10.1016/j.cpc.2019.107036
http://doi.org/10.1016/S0009-2509(97)00065-1
http://doi.org/10.1299/jsmeb.41.472
http://doi.org/10.1016/S0009-2509(02)00085-4
http://doi.org/10.1016/0301-9322(90)90055-N
http://doi.org/10.1016/j.ces.2017.08.030
http://doi.org/10.1016/j.nucengdes.2016.08.032
http://doi.org/10.1016/j.cej.2017.01.128
http://doi.org/10.1016/j.nucengdes.2005.02.020
http://doi.org/10.1016/S0301-9322(00)00025-2
http://doi.org/10.1007/s003480050293
http://doi.org/10.1063/1.1533069
http://doi.org/10.1016/S0029-5493(00)00337-X
http://doi.org/10.1103/PhysRevFluids.2.034301
http://doi.org/10.1016/0021-9991(86)90100-2
http://doi.org/10.1016/0029-5493(84)90207-3
http://doi.org/10.1016/0045-7825(90)90064-S
http://doi.org/10.1016/j.ces.2007.04.035
http://doi.org/10.1016/j.nucengdes.2017.06.035
http://doi.org/10.13182/NT05-A3657

	Introduction 
	Model Description and Numerical Dispersion 
	Governing Equation of the Two-Fluid Model 
	Governing Equation of the Multi-Fluid Model 
	Coupling and Numerical Dispersion 
	Turbulent Model 

	Numerical Configurations and Grid Independence Test 
	Numerical Configurations 
	Computational Domain and Grid Independence Test 
	Comparison of Different Drag Models 

	Results and Discussion 
	Experimental Verification Case 1 (Unimodal Distribution) 
	Influence of Group Number of the Dispersed Phase on the Calculation Results 
	Influence of Parameter  on the Calculation Results 
	Influence of Different Distribution Functions on the Calculation Results 

	Experimental Verification Case 2 (Bimodal Distribution) 
	Calculation Results of E-E Two-Fluid Model 
	Calculation Results of Multi-Fluid Model with Unimodal and Bimodal Lognormal Distribution of Bubbles Diameters 


	Conclusions 
	References

