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Abstract: In the present work, a network model for the numerical resolution of the heat transport
problem in porous media coupled with a water flow is presented. Starting from the governing
equations, both for 1D and 2D geometries, an equivalent electrical circuit is obtained after their
spatial discretization, so that each term or addend of the differential equation is represented by an
electrical device: voltage source, capacitor, resistor or voltage-controlled current source. To make this
possible, it is necessary to establish an analogy between the real physical variables of the problem and
the electrical ones, that is: temperature of the medium and voltage at the nodes of the network model.
The resolution of the electrical circuit, by means of the different circuit resolution codes available
today, provides, in a fast, simple and precise way, the exact solution of the temperature field in the
medium, which is usually represented by abaci with temperature-depth profiles. At the end of the
article, a series of applications allow, on the one hand, to verify the precision of the numerical tool by
comparison with existing analytical solutions and, on the other, to show the power of calculation
and representation of solutions of the network models presented, both for problems in 1D domains,
typical of scenarios with vertical flows, and for 2D scenarios with regional flow.

Keywords: network model; heat transport; groundwater flow

1. Introduction

The topic of heat transport coupled to water flow in porous media has aroused great
interest among researchers in recent decades [1,2], finding in the literature a great variety
of temperature-depth profiles, both for regional [3,4] and exclusively vertical flows [5,6]
and for a wide variety of cases in the soil surface temperature condition [7–11]. The first
advances in this discipline, whose processes are governed by coupled, non-linear PDEs
derived from momentum, mass and energy conservation laws, date from the middle
of the 20th century [12–14]. The patterns of solutions to this complex phenomenon are
fundamental in many fields of engineering, such as the exploitation of geothermal energy
extraction systems [15,16], saltwater intrusion [17], underground spread of pollutants [18]
and petroleum engineering [19], among others.

In this research, the study of the heat transport problem partially coupled to a constant
velocity field (either solved or previously known) corresponds to a linear problem, except
for the surface boundary condition when it is a time-dependent function. The harmonic
temperature conditions on the soil surface (which are the usual ones) give rise to a heat
transport problem that is coupled with the movement of the fluid. These continuously
changing conditions, although seasonally repetitive (day-night cycle; winter-summer
cycle) determine equally changing temperature-depth profiles, with a certain inertia that
is determined by the thermal parameters of the ground (conductivity and specific heat).
Despite the changing conditions on the soil surface, it is possible to speak of stationary
temperature-depth profiles, both on a daily and annual scale.

Within the great variety of numerical techniques that exist for solving these types
of problems, it is worth highlighting the network simulation method [20], a finite vol-
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ume numerical tool that allows studying any process that can be defined by means of a
mathematical model that is composed of a set of differential equations. The method has
two phases: (i) the elaboration of a network model (electrical circuit equivalent to the
process) and (ii) the simulation of the problem (obtaining the results of the network model)
by means of a suitable program that allows the resolution of electrical circuits [21,22].
Recently, this technique has been successfully used in the simulation of a wide variety of
problems in different fields of engineering, such as electrochemistry [23,24], elasticity [25],
heat transfer [26] and tribology [27], providing accurate solutions in all cases. Its versatility
is so high that, provided the appropriate equivalences are established (geometric, of the
model and its variables of interest), it could be applied in other fields of knowledge such as
neural networks [28] or geometric modeling [29–32].

The network method, whose application must follow a series of formal steps that
require simple programming rules, makes use of the powerful calculation algorithms
that reside in the electrical circuit simulation codes, providing the exact solution of the
problem with relatively small grid meshes [33]. It is, therefore, a reliable, easy-to-use and
computationally fast numerical tool which, compared to other traditional finite-differences
or finite-volumes methods, stands out for its simplicity in the design and in the elaboration
of the model, in addition to the fact that its execution can be carried out using free access
software [22].

It is important to highlight that with the network method it would be possible to
model other problems similar to the one presented here and that have been recently studied
by other authors. Thus, Koch et al. [34] present a very similar network model that includes
the possibility of considering different fluid and solid phase temperatures. However, this
situation of thermal non-equilibrium at the local level is typical of phenomena associated
with chemical reactions, evaporation or heat/cold injections (among others) which do not
occur in the groundwater flow scenarios that we address in this work. On the other hand,
Koch et al. [34] use an integral approximation procedure, a different numerical technique
than the one used here. In another recent work, Matias et al. [35] address porous media
that change over time due to swelling and erosion processes. These phenomena end up
modifying the permeability of the soil, which would lead to changes in the fluid velocity in
those scenarios governed by hydraulic potentials (in the scenarios studied here, it is the
fluid velocity itself that governs the problem).

In this article, starting from the governing equations of the heat transport problem par-
tially coupled to a known and constant velocity field (with vertical or horizontal direction),
the design of a network model that will allow the resolution of this type of problem, both
in 1D and 2D rectangular geometries, is presented. Subsequently, and after verifying the
results obtained with our tool with the existing solutions in the reference literature [7–10],
a series of selected applications (both for regional flow and exclusively vertical upflow)
will be simulated in which different functions (dependent on time) will be assumed for
the boundary condition of the soil surface temperature, obtaining the temperature-depth
profiles once the stationary situation has been reached.

2. Mathematical Model

In this section, the equations and boundary conditions that govern different scenarios
that address the problem of heat transport coupled to a water flow will be presented.

The physical model of the problem is that of a 2D rectangular geometry scenario that
represents a fully saturated porous medium in which fluid flow and heat processes take
place in such a way that the latter is coupled to the water flow (for vertical flow it will
be enough to consider a one-dimensional domain). That is, the solution to the thermal
problem depends on and is coupled to the solution of the mechanical problem.

The mechanical problem concerns the velocity field of water, which, for the purposes
of this paper, will be uniform. That is, the water velocity will always be constant both
in modulus, direction and sense, Equation (1). This consideration, although at first it
seems quite strong, in certain groundwater flow scenarios it can be considered without
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committing major errors, as occurs in different real cases such as the discharge of an aquifer
to the bottom of the sea or a lake (where the flow is exclusively vertical and it is usual for
the velocity to be constant for long periods of time) or in regional (horizontal) flows [36],
where it is also common to find large areas of aquifers with constant average velocities.
On the other hand, the fact of knowing the velocity field (since it is imposed) makes the
influence of viscosity (which is affected by temperature) negligible (fluid viscosity would
affect velocities in those scenarios that were governed by hydraulic potential, but this is
not the case with the problems discussed in this paper).

On the other hand, the thermal problem refers to the temperature field at each point
of the porous medium, and is defined by the set of Equations (2)–(6) [1–3].

The mathematical model, according to the nomenclature of Figure 1, is as follows:

v(x, y, t) = q0 (1)

(ρece)
∂T
∂t
− km∇2(T) + ρwcwq0∇(T) = 0 (2)

T(x,y=H,t) = To (3)

T(x=0,y,t) = Tleft and T(x=L,y,t) = Tright (4)

T(x, y=0, t) = Tg (5){
T(x, y=0, t) = T1 (0 ≤ t < t1)

T(x, y=0, t) = T2 (t1 ≤ t2)

}
(6)

T(x, y=0, t) = Tm + Tsin sin
(

2π
P

t
)

(7)

T(x,y,t=0) = Ts (8)

where Equation (2) represents the balance of heat transport in the medium (governing
equation particularized to the case of constant water velocity). Equation (3) represents a
constant temperature condition (or Dirichlet condition) at the bottom of the domain, also
called the first-class condition, while Equation (4) represents the same type of condition but
in the lateral boundaries of the domain. Equations (5)–(7) define the temperature condition
on the ground surface in the form of a constant value, a step function or a sinusoidal,
respectively. L and H are the dimensions of the rectangular domain. Finally, Equation (8)
represents the initial condition defined by the initial temperature in the entire soil domain.
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Regarding the temperature conditions on the soil surface, Equations (5)–(7), it is im-
portant to note that, in principle, the only feasible boundary condition on this contour is the
sinusoidal temperature distribution, Equation (7), equivalent to 24 h temperature variation
for day and night. However, in this work, the conditions of constant (Equation (5)) and
stepped (Equation (6)) temperature have also been included, for various reasons. The first
one is to illustrate that with the network method it is very easy to implement any boundary
condition. In fact, in future research we plan to work with other surface temperature
functions (even with tabulated data) whose implementation in the network model is just
as simple. On the other hand, the constant temperature condition can sometimes serve
as a simplification to consider an average daily temperature, although it could also refer
to a monthly or annual average. For its part, the stepped temperature condition could be
assimilated to a simplification similar to the previous one, but instead of having a single
daily average temperature, there are two (an average maximum temperature for the day
and an average minimum temperature for the night).

2.1. Mathematical Model for Vertical Flow

The exclusively vertical flow of water in porous aquifers is a fairly common situation
to find in practice [37]. Thus, for example, this type of flow occurs in situations such as the
discharge of a river into an aquifer [38], two aquifers separated by an aquitard [39] or in
those cases in which an aquifer discharges directly onto the bottom of the sea or a lake [2].

The governing Equation (2) becomes, for one-dimensional vertical flow of an incom-
pressible fluid through homogeneous porous media, as follows:

ρece
∂T
∂t

= km
∂2T
∂y2 − ρwcwqo,y

∂T
∂y

(9)

On the other hand, depending on the boundary and initial conditions adopted, three
variants of the problem with exclusive vertical flow are defined, governed by Equation (9).

2.1.1. Constant Surface Temperature

It is a scenario where the temperature of the ground surface (Tg) remains constant
throughout the time, being different from the initial temperature of the soil mass (Ts). It is
also necessary to set a temperature at the bottom of the domain as a boundary condition
(To).

Table 1 shows the values that these boundary and initial thermal conditions, Equa-
tions (3), (5) and (8), will take, for this case of vertical water flow and constant temperature
on the ground surface, in the later applications section.

Table 1. Boundary and initial thermal conditions for constant surface temperature and vertical flow
scenario.

Parameter Value Units

Ts 8 ◦C
Tg 22.35 ◦C
To 8 ◦C

2.1.2. Stepped Surface Temperature

In this scenario, the surface temperature varies alternately between two values (sim-
ulating a period with a colder surface temperature, and a warmer one). To do this, it is
necessary to define a stepped temperature function, Figure 2, which will be imposed as a
boundary condition on the ground surface.
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Table 2 summarizes the boundary and initial thermal conditions, Equations (3), (6)
and (8), for the case of vertical flow of water with stepped variation of the temperature on
the ground surface that will be shown in the applications section.

Table 2. Boundary and initial thermal conditions for stepped surface temperature and vertical flow
scenario.

Parameter Value Units

Ts 1 ◦C
T1 0 ◦C
T2 2 ◦C
TD 39,600 s
TR 3600 s
TF 3600 s
PW 39,600 s
P 86,400 s
To (T2+T1)/2 = 1 ◦C

2.1.3. Sinusoidal Surface Temperature

This time, the surface temperature varies following a sinusoidal function (simulating
what can be, in certain situations, the temperature fluctuation throughout a day). On this
occasion, a sinusoidal function will be imposed as a boundary condition on the ground
surface, Figure 3.

Table 3 summarizes the boundary and initial thermal conditions, Equations (3), (7)
and (8), for the case of vertical flow of water with sinusoidal temperature on the ground
surface that will be numerically solved in the applications section.
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Table 3. Boundary and initial thermal conditions for sinusoidal surface temperature and vertical
flow scenario.

Parameter Value Units

Ts 1 ◦C
Tm 1 ◦C
Tsin 1 ◦C

P 86,400 s
To Tm = 1 ◦C

2.2. Mathematical Model for Regional Flow

In hydrogeology, a regional flow is commonly called that whose movement of water
is exclusively horizontal [3,4]. This type of water movement is typically found in under-
ground hydrology, especially in aquifer extensions that are relatively far from the discharge
area [40].

As described in [41], the general equation that describes the simultaneous flow of
fluid and heat in the ground [37] is:

km

(
∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2

)
− ρwcw

(
vx

∂T
∂x

+ vy
∂T
∂y

+ vz
∂T
∂z

)
= ρece

∂T
∂t

(10)

while for isotropic thermal media and two-dimensional rectangular geometry, Equation (10)
reduces to:

ρece
∂T
∂t
− km

(
∂2T
∂x2 +

∂2T
∂y2

)
+ ρwcw

(
vx

∂T
∂x

+ vy
∂T
∂y

)
= 0 (11)

However, the vertical flow is zero, so Equation (11) is further simplified (note that, given
the hypothesis of uniform water flow, vx has been replaced by qo,x):

ρece
∂T
∂t
− km

∂2T
∂x2 − km

∂2T
∂y2 + ρwcwqo,x

∂T
∂x

= 0 (12)

In the applications section, the sinusoidal surface temperature variant of the problem
governed by Equation (12) will be presented.

Sinusoidal Surface Temperature

Again, the surface temperature is described by a sinusoidal function, which will be
imposed as a boundary condition on the ground surface.

Table 4 summarizes the boundary and initial thermal conditions, Equations (3), (4), (7)
and (8), for the application case of regional flow of water with sinusoidal temperature on
the ground surface.
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Table 4. Boundary and initial thermal conditions for sinusoidal surface temperature and regional
flow scenario.

Parameter Value Units

Ts 1 ◦C
Tm 1 ◦C
Tsin 1 ◦C

P 86,400 s
To 1 ◦C

Tleft 1 ◦C
Tright Free condition

3. Network Model Design

In order to design a network model (or circuit) equivalent to a certain process to be
studied, it is necessary, first of all, to establish an analogy between the physical variables
of the problem and the different electrical quantities. For the purposes of this research,
we chose to establish an equivalence between the physical variable (real) temperature of
the fluid (T) and the variable (analogous) electric potential (V). In this way, the spatially
discretized equations of the mathematical model and the equations of the network model
(corresponding to the analogous variables) for a volume element coincide.

The network model development procedure consists of reticulating the space into
volume elements or elementary cells to later define the set of differential equations in
finite differences (leaving time as a continuous variable) to be applied in these elementary
cells. Once the corresponding equivalence between the real variables of the problem
and the electrical variables has been established, each term of the differential equations
in finite spatial differences can be identified with an electrical device (resistor, current
source, voltage source, capacitor, etc.), which is arranged between the different nodes
of the elementary cell and is balanced at the central node. It is important to note that,
since the thermal (and where appropriate, hydraulic) characteristics of the material are
included in the expressions of the electrical devices that make up each elementary cell
(which represents a certain portion of soil), with the network method it would be possible to
model and simulate non-homogenous porous media, since this technique allows designing
circuits with cells of different properties, which would be implemented through simple
programming routines. These types of media could include (i) layered stratified soils,
(ii) changing properties with depth, (iii) soils with local anomalies and (iv) thermal and
hydraulic properties imported from a database, among others.

Once the electrical circuit is designed, its resolution is carried out, which is quick and
easy to obtain thanks to the different circuit resolution software available today [21], some
of them free to access [22]. The precision of the results will be solely at the expense of
the fineness of the chosen mesh: the higher the number of cells, the more accurate the
model will be. In general, the network method requires very few cells to achieve highly
accurate [33] results, with negligible relative errors, below 1%.

3.1. Elementary Cell for Vertical Flow

For the case of vertical flow, Equation (9) can be expressed in spatial finite differences
(retaining time as a continuous variable) and, following the nomenclature of Figure 4,
remains as follows:

ρece
∂T
∂t

= km

[
Ti+∆ − Ti

∆y2

2

− Ti − Ti−∆
∆y2

2

]
− ρwcwqo,y

Ti+∆ − Ti−∆

∆y
(13)
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From the point of view of the network method, each addend of Equation (13) can be
considered an electric current:

Jc,e = ρece
∂T
∂t

, JR+∆ =
Ti+∆ − Ti

(∆y)2

2km

, JR−∆ =
Ti − Ti−∆

(∆y)2

2km

, JG,w = ρwcwqo,y
Ti+∆ − Ti−∆

∆y
(14)

which balance at the central node of the elementary cell, being:

Jc,e = JR+∆ − JR−∆ − JG,w (15)

In the network method, those linear terms such as JR+∆ and JR−∆ can be implemented by
resistive-type devices. For this reason, and following Ohm’s law, I = V/R, the values of
the resistors can be expressed as:

Ri+∆ =
(∆y)2

2km
, Ri−∆ =

(∆y)2

2km
(16)

These elements, as shown in Figure 4, are located between the central node and one of the
ends, which is where the potential fall occurs (in the physical analogy, the temperature).
For its part, the linear term Jc,e, which includes a time derivative, can be implemented as a
capacitor (Ci) of ρece capacitance.
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On the other hand, JG,w represents a non-linear term, which must be implemented in
the circuit as voltage-controlled current source. In this element, the current is specified
directly, by means of the following expressions:

Gw,i = ρwcwqo,y
Ti+∆ − Ti−∆

∆y
(17)

where Ti+∆ and Ti−∆ are directly read at the extreme nodes of the corresponding cell i. This
device, in the same way as the capacitor, must be implemented between the central node
of the cell and the common ground node.
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3.2. Elementary Cell for Regional Flow

For the case of regional flow, Equation (12) is expressed in spatial finite differences
(retaining time as a continuous variable and following the nomenclature of Figure 5) as
follows:

ρece
∂T
∂t − km

[
Ti+∆,j−Ti,j

∆x2
2

− Ti,j−Ti−∆,j
∆x2

2

]
− km

[
Ti,j+∆−Ti,j

∆y2
2

− Ti,j−Ti,j−∆
∆y2

2

]
+ρwcwqo,x

Ti+∆,j−Ti−∆,j
∆x = 0

(18)

Again, each addend of Equation (18) can be considered an electric current:

JR,i+∆ =
Ti+∆,j − Ti,j

(∆x)2

2km

, JR,i−∆ =
Ti,j − Ti−∆,j

(∆x)2

2km

,

JR,j+∆ =
Ti,j+∆ − Ti,j

(∆y)2

2km

, JR,j−∆ =
Ti,j − Ti,j−∆

(∆y)2

2km

, (19)

Jc,e = ρece
∂T
∂t

, JG,w,x = ρwcwqo,x
Ti+∆,j − Ti−∆,j

∆x
which balance at the central node of the elementary cell, being:

Jc,e − JR,i+∆ + JR,i−∆ − JR,j+∆ + JR,j−∆ + JG,w,x = 0 (20)

As seen before, the linear terms JR,i+∆ and JR,i−∆ can be implemented by resistors, whose
values will be specified by:

Ri+∆ =
(∆x)2

2km
, Ri−∆ =

(∆x)2

2km
(21)

and will be placed between the central node and the right and left extreme nodes (Figure 5),
respectively. For their part, the terms JR,j+∆ and JR,j−∆ are also modeled with both resistors,
located between the central node and the upper and lower extreme nodes, respectively.
Their values will come to be specified by:

Rj+∆ =
(∆y)2

2km
, Rj−∆ =

(∆y)2

2km
(22)

As for the case of vertical flow, the linear storage term Jc,e is implemented by means of a
capacitor (Ci,j), whose capacitance value is ρece.

Finally, the non-linear term JG,w will be implemented by the voltage-controlled current
source Gw,i,j, defined by:

Gw,i,j = ρwcwqo,x
Ti+∆,j − Ti−∆,j

∆x
(23)

where Ti+∆,j and Ti−∆,j are directly read at the right and left extreme nodes of the corre-
sponding cell i,j. This device is implemented between the central node of the cell and the
common ground node, in the same way as the capacitor.
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3.3. Boundary and Initial Conditions

Both for the cases of regional flow and exclusively vertical flow, the only initial
condition to implement is that of the initial ground temperature (Ts), Equation (8). In
the network method, this condition is very easy to establish, since it is only necessary to
indicate what is the initial voltage at which the capacitors (Ci or Ci,j) are charged.

Regarding the boundary conditions, in those cases where the temperature of the
contour remains invariant, Equations (3)–(5), it is enough to place a voltage source (Vi or
Vi,j) of constant value, connected from the corresponding contour node to the common
ground node, as can be seen in Figure 6.
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For those cases in which it is desired that the temperature of the soil surface varies in
a stepwise manner, the network method allows the implementation of a stepped function
in a simple way, by means of a function commonly called PULSE [42,43]. In this case, the
value of the voltage source (Vi or Vi,j) will vary with time, as shown in Figure 2, between T1
and T2, depending on the values assigned to the parameters (Table 2) necessary to define
the PULSE function: TD, TR, PW, TF and P.

Finally, for the case of sinusoidal variation of the ground surface temperature (Figure 3),
the specific sinusoidal function [31,32] has been used, which defines the instantaneous
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value of the potential (that is, the temperature) provided by the voltage source. In this case,
the parameters to be specified are: Tm and Tsin (Tables 3 and 4).

4. Verification of the Model and Applications

In this section, a total of four applications will be presented that will serve both to
validate the precision of our models and to illustrate a series of scenarios that can be found
in real practical situations of heat transport in saturated porous media in which exists, at
the same time, a flow of water.

4.1. Verification of the Model. Constant Surface Temperature and Different Vertical Flow Rates

This first application aims to show the high precision that is achieved with the network
method in obtaining the numerical solution to this type of problem. The model addressed
is that of exclusively vertical flow with constant temperature on the ground surface, as
described in Section 2.1.1. For this scenario, Table 5 summarizes the geometric parameters
of the problem, as well as the thermal properties of the porous medium, while Table 1 does
it with the conditions of initial temperature of the soil and in the lower and upper contours.

Table 5. Parameters of the scenario with constant surface temperature. Vertical flow.

Parameter Value Units

km 0.84 J/(sm ◦C)
ρece 4.20 × 106 J/(m3 ◦C)
ρwcw 4.20 × 106 J/(m3 ◦C)

H 1 m
n 100

Cell height (∆y) 0.01 m

In Figure 7, the values of the temperature T are represented as a function of the depth
Y, once the steady state has been reached and for different values and directions of the
vertical velocity vy: upward flow (positive vy), downward flow (negative vy) and non-
existent flow (vy equal to 0). As can be seen, and due to the fact that the temperature of the
bottom edge is lower than that of the ground surface, for the cases of upward flow there is
a cooling of the medium (taking the case of null flow as a reference), the more pronounced,
the higher the velocity vy, while for the cases of downward flow, what is observed is a
warming of the medium.

The results presented here coincide with the analytical solutions presented by Brede-
hoeft and Papaopulos [7] and satisfactorily approximate the data collected in the in situ
study carried out by Duque et al. [2] in the coastal lagoon of Ringkøbing Fjord (Denmark),
as shown in Table 6. As can be seen, the maximum relative error is 7.53% when compared
with the real data of Duque et al. [2], although this is considerably reduced to 4.77% when
compared with their fitted curve. On the other hand, when we compare with the analytical
solution proposed by Bredehoeft and Papaopulos [7], the maximum relative error does
not exceed 0.47%. Without a doubt, these are very low errors for the engineering field,
which shows that the solutions obtained with our tool are highly accurate and valid for the
simulation of real scenarios.

It should be noted that the number of cells into which the medium has been divided is
100 (Table 5), a mesh for which values of the temperature variable have been obtained with
maximum relative errors below 0.5%, in comparison with the temperatures provided by
Bredehoeft and Papaopulos [7], Table 6. A mesh sensitivity analysis is presented in Table 7,
which shows the maximum relative error made by our approximation (taking as reference
the analytical solutions [7]) as a function of the number of cells, as well as calculation times.
As can be seen, the network method achieves very precise solutions with undemanding
grids, since with meshes above 50 cells, the maximum relative error does not exceed 1%.
On the other hand, above 100 cells, more demanding meshes hardly reduce the error, while
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computing times are significantly affected. Therefore, we consider a 100 cell mesh to be
suitable.
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Table 6. Comparative results between the network method solution, the in situ and fitted real data of Duque et al.
(2016) [2] and the analytical solution of Bredehoeft and Papaopulos [7]. Constant surface temperature case and upward flow
(vy = 5·10−7 m/s.

y (m) 0 0.025 0.05 0.075 0.10 0.15 0.20 0.25 0.35 0.50

Network method (NM) T (◦C) 22.35 21.4 20.51 19.67 18.89 17.46 16.19 15.08 13.23 11.19

Duque et al. (2016) in situ
T (◦C) 22.35 22.3 21.35 20.20 19.25 17.90 16.45 14.05 12.6 12.1

NM relative
error (%) 0.00 4.04 3.93 2.61 1.89 2.49 1.57 7.31 4.97 7.53

Fitted Duque et al. (2016)
T (◦C) 22.00 21.30 20.60 19.80 19.00 17.50 16.00 14.50 12.85 11.75

NM relative
error (%) 1.59 0.47 0.44 0.65 0.59 0.26 1.20 3.98 2.93 4.77

Bredehoeft and Papaopulos
(1965) analytical solution

T (◦C) 22.35 21.50 20.55 19.75 18.89 17.45 16.21 15.10 13.25 11.24
NM relative

error (%) 0.00 0.47 0.19 0.39 0.01 0.03 0.09 0.15 0.18 0.44

Table 7. Network method maximum relative errors and calculation times according to the number of
cells.

Cells Number (n) Max. Relative Error (%) Calculation Time (s)

10 23.91 3
20 6.21 7
50 0.96 15

100 0.47 29
200 0.34 114
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4.2. Stepped Surface Temperature and Different Vertical Flow Rates

In this case, the model addressed is the one described in Section 2.1.2, with exclusively
vertical flow and stepped temperature variation on the soil surface. Table 8 shows the
geometric parameters of the problem and the thermal properties of the ground for this
case. On the other hand, Table 2 summarizes the temperature conditions in the lower and
upper contours (with the different parameters necessary to define the stepped temperature
function), as well as the initial temperature of the medium.

Table 8. Parameters of the scenario with stepped surface temperature. Vertical flow.

Parameter Value Units

km 0.84 J/(sm ◦C)
ρece 3.55 × 106 J/(m3 ◦C)
ρwcw 4.18 × 106 J/(m3 ◦C)

H 2 m
n 100

Cell height (∆y) 0.02 m

Figure 8 schematizes how the steady state is reached, at a certain depth yi, after the
start of the problem, for the case of stepped surface temperature. Once this state is reached,
it is observed that the temperature is not constant, but fluctuates between certain values in
wave form, the variable ∆Ty,max being the amplitude of that wave.
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Stepped surface temperature and vertical flow.

Figure 9 represents the amplitude (∆Ty,max) that the temperature steady wave reaches,
as a function of the depth Y, for different values and directions of the vertical velocity
vy: upward flow (positive vy), downward flow (negative vy) and non-existent flow (vy
equal to 0). As can be seen (for the specific values of the initial and boundary conditions of
temperature, Table 2), as in the previous application, a cooling of the medium occurs when
the water flow is upward (taking the vy = 0 case as a reference), of greater magnitude
the greater the velocity vy, while a warming of the medium is manifested when the flow
is downward. The mesh used for this application was also 100 cells, which has proven
sufficient to achieve high precision with the network method in this type of problem.



Energies 2021, 14, 5755 14 of 22

Energies 2021, 14, x FOR PEER REVIEW 14 of 23 
 

 

 
Figure 8. Temperature oscillation on the ground surface and in a given depth of the porous medium. 
Stepped surface temperature and vertical flow. 

Figure 9 represents the amplitude ( ∆T , ) that the temperature steady wave 
reaches, as a function of the depth Y, for different values and directions of the vertical 
velocity v : upward flow (positive v ), downward flow (negative v ) and non-existent 
flow (v  equal to 0). As can be seen (for the specific values of the initial and boundary 
conditions of temperature, Table 2), as in the previous application, a cooling of the me-
dium occurs when the water flow is upward (taking the v = 0 case as a reference), of 
greater magnitude the greater the velocity v , while a warming of the medium is mani-
fested when the flow is downward. The mesh used for this application was also 100 cells, 
which has proven sufficient to achieve high precision with the network method in this 
type of problem. 

 
Figure 9. Temperature steady wave amplitude as a function of depth for the stepped surface tem-
perature case with different vertical flow rates. 

  

Figure 9. Temperature steady wave amplitude as a function of depth for the stepped surface
temperature case with different vertical flow rates.

4.3. Sinusoidal Surface Temperature and Different Vertical Flow Rates

Now, the scenario addressed corresponds to a case of exclusively vertical flow with
sinusoidal temperature variation on the ground surface (as described in Section 2.1.3),
whose geometric parameters and thermal properties of the porous medium are summarized
in Table 9. The initial and boundary temperature conditions are summarized in Table 3.

Table 9. Parameters of the scenario with sinusoidal surface temperature. Vertical flow.

Parameter Value Units

km 0.84 J/(sm ◦C)
ρece 3.55 × 106 J/(m3 ◦C)
ρwcw 4.18 × 106 J/(m3 ◦C)

H 1 m
n 100

Cell height (∆y) 0.01 m

Figure 10 shows schematically how the steady state is reached (at a certain depth
yi) after the start of the problem, for the case of sinusoidal surface temperature. In the
stationary situation, it is observed how the temperature is not constant, but oscillates in the
form of a wave between certain values, the variable ∆Ty,max being the amplitude of such a
wave.

Figure 11 represents the amplitude (∆Ty,max) that the temperature steady wave reaches,
as a function of the depth Y, for different values and directions of the vertical velocity vy.
As in the previous applications (and for the specific values, reflected in Table 3, of the initial
and boundary temperature conditions), upflows induce a cooling of the medium (taking
the vy = 0 case as a reference), of greater magnitude as we increase vy. For downflows,
the effect is the opposite (increased temperatures). The simulations were performed again
with a 100 cell grid.
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4.4. Sinusoidal Surface Temperature and Regional Flow

Finally, we address a scenario where the temperature at the ground surface varies
sinusoidally but where the flow is, on this occasion, horizontal (as described in Section 2.2).
The boundary conditions and the initial soil temperature are summarized in Table 4, while
the medium thermal properties and the geometry of the domain (2D) are collected in
Table 10. In this sense, it should be noted that a scenario with horizontal water flow from
left to right has been chosen, so that the heat existing in the left lateral contour of the
problem is transported by the water flow to the porous medium. Regarding its dimensions,
a length large enough has been chosen so that there are areas of the porous medium that
are not affected by this boundary condition. In this way, we can analyze the effect that
the variation in surface temperature has on the porous medium both in the vicinity of the
lateral heat source and in distant locations. The chosen grid has been 100 cells in the flow
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direction (horizontal) by 20 cells vertically (as there is no flow component in that direction,
the mesh can be much less demanding).

Table 10. Parameters of the scenario with sinusoidal surface temperature. Regional flow.

Parameter Value Units

km 0.84 J/(sm ◦C)
ρece 3.55 × 10−6 J/(m3 ◦C)
ρwcw 4.18 × 10−6 J/(m3 ◦C)

H 1 m
Cell height (∆y) 0.05 m

L 30 m
Cell width (∆x) 0.3 m

vx = qo,x 3 × 10−5 m/s
ny 20
nx 100

Figures 12–14 represent the amplitude (∆Ty,max) that the temperature steady wave
reaches, as a function of the length X of the domain, for different values of the depth (H/4,
H/2 and 3H/4). For this case, with a daily period (P) of the sinusoidal wave of surface
temperature, it is observed as the amplitude (∆Ty,max) that reaches the steady wave of
temperature in the ground; it is not very significant (less than 8% of the amplitude of the
surface temperature sinusoidal wave at a distance of H/4 from the surface), being even
lower at those depths far from the surface.
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Figure 12. Temperature steady wave amplitude as a function of length for the sinusoidal surface temperature case (daily
period) with horizontal flow. Relative depth equal to H/4.
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This is due to the fact that the heat drag component has a great importance compared
to the diffusive one (the regional flow velocity, vx, is quite high while the heat conductivity
of the rock-fluid matrix, km, presents a relatively low value), so that, for the values of lateral
temperature (entry to the domain) and sinusoidal surface function, Table 4, the variation of
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the porous medium temperature due to the effect of the surface temperature is minimized
by the drag effects.

However, when the period (P) of the surface temperature sinusoidal wave is annual,
the amplitude (∆Ty,max) reached by the steady temperature wave in the medium does
become significant (about 75% of the amplitude of the surface temperature sinusoidal wave,
at a distance of H/4 from the surface), descending, logically, as we move away from the
surface, Figure 15. On this occasion, the increase in the period of the surface temperature
wave contributes to the diffusive process, so that the drag and diffusion components are
more balanced in this case.
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5. Conclusions

The network method has been revealed as an optimal tool for the numerical modeling
and simulation of heat transport problems with water flow coupling in porous media. Its
high versatility has made it possible to approach, in a simple way, both one-dimensional
models with exclusively vertical heat transport and water flow and more complex regional
flow models where it is necessary to resort to two-dimensional geometries.

From the analogy established between the temperature of the porous medium and the
electrical potential of the equivalent circuit, the main physical phenomena that occur in
the problem, in the form of terms or addends of the differential governing equation, are
perfectly reproduced in the network model through the different electrical components
that make up the equivalent circuit. Thus, the capacitors have served to implement both
the initial temperature of the porous medium and the heat storage process of the ground
throughout the simulation. For their part, electrical resistors govern the heat diffusion
phenomenon, based on the heat conductivity of the rock-fluid matrix and the size of the
elementary cell. The heat drag effects caused by the coupled water flow have been modeled
using current sources, which collect properties such as density and specific heat, as well
as the velocity of the water flow. Finally, the temperature boundary conditions (constant,
stepped or sinusoidal) are easily implemented by voltage sources, duly placed in the
corresponding contour nodes.

The network model proposed here has been successfully verified through a 1D ap-
plication in which the water flow is exclusively vertical. The temperature-depth profiles
obtained have been compared with the analytical solutions available in the scientific liter-
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ature, verifying that the solutions provided by our tool coincide with these, leaving the
relative errors dependent on the size of the chosen mesh: relative errors below 1% for
meshes above 50 cells, decreasing below 0.5% when the number of cells increases to 100.
For all this, the network method is revealed as a powerful numerical tool, in addition to
being fast and simple, in the simulation of this type of problem.

Finally, and once the precision of our model has been demonstrated, a series of
scenarios, both in 1D (vertical flow) and 2D (horizontal flow) domains and with different
temperature conditions of the ground surface, has been addressed in order to illustrate the
versatility of our tool, obtaining the ranges of values (in the form of maximum amplitudes)
between which the temperature fluctuates at a certain depth and/or position of the porous
medium.

In future research, the model presented here could be extended to problems where
the properties of the porous medium change over time (swelling and erosion processes),
soils with non-homogenous thermal and hydraulic characteristics or other surface temper-
ature functions, different from those presented here, including tabulated data from actual
temperature distributions.
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Nomenclature

ce volumetric heat capacity of the rock-fluid matrix (Jm−3 k−1)
Ci capacitor of cell i (F)
Ci,j capacitor of cell i,j (F)
cw volumetric heat capacity of water (Jm−3 k−1)
Gw,i voltage-controlled current source if cell i (A)
Gw,i,j voltage-controlled current source if cell i,j (A)
H domain height or depth (m)
JE electric current flowing through element E of cell i (A)
km heat conductivity of the rock-fluid matrix (cal/(sm ◦C))
L rectangular domain length (m)
n number of cells (dimensionless)
nx number of cells in spatial x direction (dimensionless)
ny number of cells in spatial y direction (dimensionless)
PW duration of temperature T2 in the stepped temperature function (s)
P period of stepped and sinusoidal temperature functions (s)
qo uniform flow velocity (m/s)
qo,x constant horizontal flow velocity (m/s)
qo,y constant vertical flow velocity (m/s)

Ri−∆
resistor between nodes i and i−∆ in 1D domains or between nodes i,j and i−∆,j in
2D domains (Ω)
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Ri+∆
resistor between nodes i and i+∆ in 1D domains or between nodes i,j and i+∆,j in
2D domains (Ω)

Rj−∆ resistor between nodes i,j and i,j−∆ in 2D domains (Ω)
Rj+∆ resistor between nodes i,j and i,j+∆ in 2D domains (Ω)
T temperature (◦C)
t time since flow started (s)

t1
time from which the temperature changes from the first constant value to the second in
the stepped temperature function (s)

T1 minimum temperature of the stepped temperature function (◦C)

t2
time from which the temperature changes from the second constant value to the first in
the stepped temperature function (s)

T2 maximum temperature of the stepped temperature function (◦C)
Tcontour constant temperature in a given contour (◦C)
TD duration of temperature T1 in the stepped temperature function (s)
TF duration of the gap from T2 to T1 in the stepped temperature function (s)
Tg constant temperature at the ground surface (◦C)
Ti temperature at node i in 1D domains (◦C)
Ti,j temperature at node i,j in 2D domains (◦C)
Tleft temperature at the left edge of the domain (◦C)
Tm mean temperature in sinusoidal function (◦C)
To temperature at the bottom of the domain (◦C)
TR duration of the gap from T1 to T2 in the stepped temperature function (s)
Tright temperature at the right edge of the domain (◦C)
Ts initial temperature of the soil mass (◦C)
Tsin sinusoidal wave amplitude (◦C)
vx, vy, vz flow velocity Cartesian components (m/s)
V electric potential (V)
Vi voltage source of cell i in 1D domains (V)
Vi,j voltage source of cell i,j in 2D domains (V)
x, y, z spatial Cartesian coordinates
∆Ty,max amplitude of temperature steady wave (◦C)
∆x length of the volume element (m)
∆y height of the volume element (m)

δ
phase difference between the temperature periodic function of the ground surface and
the temperature steady wave in the porous medium (s)

ρe density of the rock-fluid matrix (kg m−3)
ρw density of water (kg m−3)
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