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Abstract: In this study, a thorough and definitive evaluation of Predictive Optimal Energy Manage-
ment Strategy (POEMS) applications in connected vehicles using 10 to 20 s predicted velocity is
conducted for a Hybrid Electric Vehicle (HEV). The presented methodology includes synchronous
datasets gathered in Fort Collins, Colorado using a test vehicle equipped with sensors to measure ego
vehicle position and motion and that of surrounding objects as well as receive Infrastructure to Vehicle
(I2V) information. These datasets are utilized to compare the effect of different signal categories on
prediction fidelity for different prediction horizons within a POEMS framework. Multiple artificial
intelligence (AI) and machine learning (ML) algorithms use the collected data to output future vehicle
velocity prediction models. The effects of different combinations of signals and different models
on prediction fidelity in various prediction windows are explored. All of these combinations are
ultimately addressed where the rubber meets the road: fuel economy (FE) enabled from POEMS. FE
optimization is performed using Model Predictive Control (MPC) with a Dynamic Programming (DP)
optimizer. FE improvements from MPC control at various prediction time horizons are compared to
that of full-cycle DP. All FE results are determined using high-fidelity simulations of an Autonomie
2010 Toyota Prius model. The full-cycle DP POEMS provides the theoretical upper limit on fuel
economy (FE) improvement achievable with POEMS but is not currently practical for real-world
implementation. Perfect prediction MPC (PP-MPC) represents the upper limit of FE improvement
practically achievable with POEMS. Real-Prediction MPC (RP-MPC) can provide nearly equivalent
FE improvement when used with high-fidelity predictions. Constant-Velocity MPC (CV-MPC) uses
a constant speed prediction and serves as a “null” POEMS. Results showed that RP-MPC, enabled
by high-fidelity ego future speed prediction, led to significant FE improvement over baseline nearly
matching that of PP-MPC.

Keywords: HEV; V2X; fuel economy; Dynamic Programming; MPC; ANN; LSTM; systems engineering

1. Introduction

Improving FE is a critical goal to reducing climate change and air pollution. The trans-
portation sector is responsible for 27% of all greenhouse gas emissions produced globally
and more than 50% of nitrogen oxide emissions [1]. Recent studies show that greenhouse
gas emissions are a significant contributor to global climate change [2] and lowered life
expectancy in many countries [3]. Greenhouse gas emission levels are directly related to
the FE of vehicles; reducing total miles driven is a difficult-to-implement and politically
controversial goal, thus much research into methods to improve vehicle fuel economy (FE)
has been performed [4].
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A critical component of improving FE is vehicle electrification. Recently, Hybrid
Electric Vehicles (HEV) and Plug-in Hybrid Electric Vehicles (PHEV) have been widely re-
searched because of their greater potential to increase fuel economy (FE) and emissions over
that of conventional Internal Combustion Engine (ICE) vehicles [5]. However, currently
available HEVs do not operate optimally [6].

In addition to advancements in powertrain technology, recent developments in the
automotive industry have led to huge advancements in Intelligent and Connected Vehicle
(ICV) technology. Advanced Driver Assistance System (ADAS) technology has seen rapid
market penetration due to its potential to bring safety and convenience benefits to cus-
tomers [7–9]. Automation (i.e., ADAS) and connectivity (i.e., ICV) technology are critical
technologies not only for safety and commercialization of autonomous vehicles but also
for energy efficiency through implementation of Predictive Optimal Energy Management
Strategies (POEMSs) on HEVs and PHEVs which can increase their FE and reduce their
emissions [10–14].

POEMSs use predicted vehicle velocity (enabled through ADAS [15] and connectivity)
as an input to optimal control. The optimal solution output is then used as an input to
the vehicle plant, ideally an HEV or PHEV due to the additional operational degrees of
freedom [16]. This process has been the subject of active research since the first publi-
cation in 2001 [10]. Note that in the current transportation environment, perfect future
velocity prediction is not possible. To address this issue, researchers have used Model
Predictive Control (MPC) which, in this context, is the application of DP optimization to
fixed length prediction windows. Research in this space has demonstrated that perfect
velocity prediction is not required [17], and that even heuristic approaches which rely on
acceleration event prediction can be used [12,18] to achieve improvements in FE. However,
it is worth noting that these FE improvements are modest compared to those theoretically
achievable with prefect prediction of vehicle velocity. High-fidelity prediction of future
vehicle velocity is presently achievable through the employment of machine learning (ML)
and Artificial Neural Network (ANN) methods and ICV technology [19–26]. Despite all
of this research, a thorough investigation of the datasets and prediction models’ effect on
vehicle FE (the full system) has not been conducted. The latest research has explored the
effect on velocity prediction error metrics rather than resultant vehicle FE [26,27]. In order
to facilitate real-world implementation, certain specific research gaps must be addressed;
these research gaps are defined in [16] as:

1. Performance of Optimal EMS with Actual Velocity Predictions;
2. Performance of Optimal EMS when Subjected to Disturbances;
3. Performance of Optimal EMS in Real Vehicles.

To the author’s knowledge, this paper represents the first comprehensive study fully
addressing Research Gap 1. Previous research in the area of POEMS has focused on
select aspects of Research Gap 1 but no comprehensive study has been performed which
concerns the use of real-world data and real-time prediction methods in POEMS. This
study, being such a comprehensive analysis, allows for research to progress towards other
aspects of implementation namely Research Gaps 2 and 3. Previous research in this area is
summarized as follows. The efficacy of predictive Optimal EMS for improving efficiency in
HEVs was first shown in 2001 in [10] utilizing perfect prediction. In 2008, velocity prediction
was introduced to the literature in [28] which used an analytical traffic based velocity
prediction model. In 2015, the advantages of ANN prediction were shown in [21,22].
In 2017 and 2018, a series of studies [15,17,29,30] experimented with different data streams
to optimize prediction with a shallow ANN. In 2019, more modern machine learning
techniques were introduced into the field in [31] where reinforcement learning was used
along with traffic data to train an ANN to produce optimal controls for a power-split hybrid.
Also in 2019, Refs.[26,32] showed that high-fidelity predictions were possible through the
use of deep Long Short-Term-Memory (LSTM) ANNs. Finally, in 2020, a thorough analysis of
various combinations of real-world data streams and machine learning techniques [26,27,33]
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showed that the highest degree of prediction fidelity could be attained through the use of LSTM
ANNs with the use of signal phase and timing (SPaT) and lead vehicle data.

Thus, in order to close the gap, this paper outlines a comprehensive system-level study
addressing the interactions between groups of available real-world data, velocity prediction
methods, and Optimal EMS methods with respect to the overall system output: FE.

This paper rigorously evaluates the dataset and perception model for POEMS and
evaluates performance using the FE for a validated HEV to enable full system performance
insight, which to-date is missing from the literature. Cutting-edge AI technology is lever-
aged to generate high-fidelity future vehicle velocity predictions in 10 to 20 s windows.
The predictions are fed into an MPC control method in order to determine the optimal
instantaneous torque split for a power-split HEV. The FE achievable with the proposed
POEMS will be compared to that achievable with perfect prediction full-drive-cycle DP
(FCDP), perfect prediction MPC (PP-MPC), constant velocity-prediction MPC (CV-MPC),
and Autonomie baseline control. This paper will further show that the proposed method
is implementable on current vehicles with current technology and has the potential to
provide significant FE improvements within the HEV fleet if implemented.

2. POEMS Methodology
2.1. Overall System

HEV POEMS uses predictions of future vehicle velocity to inform an optimal power-
train control strategy, thus achieving greater energy efficiency. Powertrain controls include
torque split and gear shifting based on powertrain states such as battery State of Charge
(SOC) and current gear in the case of a parallel power-train configuration or only torque
split in the case of a parawhnllel configuration.

As shown in Figure 1, a POEMS consists of three major subsystems. The first is the
perception system which predicts vehicle motion using information about previous and
current vehicle motion, powertrain states, driver inputs,eh ADAS, and V2X data as inputs.
The second is the planning subsystem which computes optimal controls based on the
predicted vehicle velocity. Finally, the third subsystem is the vehicle plant which can be
either the physical vehicle or high-fidelity simulation model of the vehicle. The final system
outputs are the actual vehicle velocity and powertrain states.

Figure 1. POEMS logic flow schematic.

POEMS achieve greater FE by ensuring that the engine is used in regions of maximum
efficiency as often as possible. This concept is shown in Figure 2 which includes a Brake-
Specific Fuel Consumption (BSFC) map for an example engine and different combinations
of engine speed and torque which produce different engine efficiencies. Thus, most engine
controllers attempt to operate the engine along its Ideal Operating Line (IOL) [34] which
contains the most efficient torque for a given engine speed. POEMS use information about
future vehicle velocity to ensure that the engine only operates in the most efficient segment
of the IOL, what can be thought of as an Ideal Operating Line Segment (IOLS).
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As shown in Figure 2, simply operating along the IOL (yellow dots) does not guarantee
efficient operation. POEMSs increase FE by guaranteeing operation within the IOLS
(green dots).

Figure 2. Example BSFC plot with IOL and operating points with and without POEMS.

Although this paper only concerns vehicle motion, the POEMS method can be ex-
tended to account for additional exogenous inputs such as cabin heating and cooling
requirements [35–37] without fundamentally changing the method.

2.2. System Inputs
2.2.1. Dataset Development

The first step in the development of practical and high-fidelity real-world future
vehicle speed prediction was to collect a sample generic dataset which would represent all
data sources potentially available to a given ICV. All data sources selected are currently
available to ICVs or will be available in the near future [38]. In this section, a taxonomy for
such a dataset is defined. This taxonomy defines data both in terms of source form and
processed form and defines the process of transformation.eh

The first step in defining the dataset is to define the sources of the data. Three distinct
source categories are proposed:

1. VEH: Vehicle operational data such as vehicle motion, performance, and driver inputs.
These data only concern the ego vehicle itself and its driver.

2. ADAS: Advanced Driver Assistance System (ADAS) data [39]. This consists of the
data generated by external object sensors on the vehicle and concerns objects within
the vehicle’s line of sight.

3. V2I: Data which the vehicle receives through connectivity to infrastructure and
other vehicles.

In order to be considered an ICV, a vehicle must receive information from all three of
the above sources. Most modern vehicles receive data from the VEH and ADAS sources [40]
and V2I is available in some regions [41]. These signals were obtained from the ego vehicle
CAN bus and the City of Fort Collins, Colorado.

Within these source categories, signals of use in vehicle future velocity prediction are
shown in Table 1.

All VEH signals should be available on all modern vehicle CAN networks while
ADAS-enabled vehicles will produce a lead vehicle track for safety and Autonomous
Cruise Control (ACC) purposes. The information for SPaT and SS comes form the SAE
J2735 SPaT/Map message. Thus, all signals used in this study are available to a generic ICV
while traveling on a connected infrastructure. Most modern vehicles will have access to
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the VEH and ADAS sourced signals. A total of 13 drive cycles worth of data were collected
along the data drive cycle by one driver over two days. Details about data collection and
availability can be found in the team’s previous work [33].

Table 1. Data sources and associated signals.

Data Source Signal Description

VEH General Vehicle
Signals

Signals such as speed, acceleration, throttle
position, and steered angle which can be

found via CAN on any vehicle

VEH Historical Speeds
(HS)

Historical speed data for the vehicle at the
current location

ADAS Lead Vehicle Track
(LV)

Relative location of confirmed lead vehicle
from ADAS system

V2I Signal Phase and
Timing (SPaT) Signal phase and timing of next traffic signal

V2I Segment Speed (SS) Traffic speed through current road segment

2.2.2. Data Drive Cycle Selection

In order to gauge the effects of real-world data-based predictions on the performance
of POEMS, a real-world dataset was required. It was desired to gather data in conditions
which would allow for optimal POEMS performance such that the relative differences
between various POEMS methods would be as great as possible. A secondary consideration
was that, in order to allow for optimal ML and ANN prediction performance, the data
collection should be conducted along a repeating drive cycle and that this cycle should be
short enough that more than 10 cycles could be collected in a single day. The drive cycle
which was selected was a 4 mile long drive cycle along urban arterial roads in downtown
Fort Collins, Colorado which is shown in Figure 3.

Figure 3. Selected data drive cycle; drive order was purple, yellow, blue, then green, red circles
represent traffic signals
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In order to assess the characteristics of the data drive cycle, it was determined that the
data drive cycle and the EPA dynamometer drive cycles should be characterized by their
distributions of speeds and accelerations. These basic statistical measures were chosen in
order to allow for easy comparison between the drive cycles. The drive cycle characteristics
data are shown in Table 2.

Table 2. Drive cycle characteristics for data drive cycle and EPA drive cycles

Drive Cycle Mean Non-Zero
Speed (MNZS)

Standard Deviation
of Non-Zero Speeds

(SNZS)

Mean Absolute
Acceleration (MAA)

Standard Deviation
of Absolute

Accelerations (SAA)

Data 18.6988 8.5699 1.1557 1.1432

UDDS 10.7923 5.5850 0.4723 0.4859

US06 23.1791 9.5014 0.6538 0.7851

HWFET 21.7191 4.1752 0.1713 0.2443

Based on these characteristics, the similarity of the data drive cycle and the EPA dy-
namometer drive cycles was calculated using the multivariate normal distribution. The rela-
tive similarities between the EPA cycles and the data drive cycle are shown in Table 3.

Table 3. Relative similarities between EPA dynamometer drive cycles and the data drive cycle.

UDDS US06 HWFET

0.5885 0.2394 0.1721

It must be stressed that the comparison between a data drive cycle and the EPA
dynamometer drive cycles could only be calculated after data collection was performed
and the data drive cycle was known. Of the candidate data drive cycles tried, the drive
cycle shown in Figure 3 resulted in the most favorable comparison to EPA dynamometer
drive cycles.

The selected data drive cycle was most similar to the UDDS EPA dynamometer drive
cycle because higher numbers imply that the real-world drive cycle from Figure 3 is
more similar.

2.3. Subsystem 1: Perception

Having collected an extensive real-world ICV dataset, a comprehensive study on
prediction methods was conducted. The initial analysis of the prediction study can be
found in [26] and is summarized below:

A wide field of potential prediction algorithms including classical ML and ANN
methods were considered. The candidate methods are listed in Table 4.

All methods were trained, tested, and validated on a 9/2/2 data-split basis, respec-
tively. The training and evaluation metric was Mean Absolute Error (MAE), where X
is the predicted velocity value, Y is the actual velocity value, and n is the total number
of timesteps.

MAE(X, Y) = ∑n
i=1 |Xi −Yi|

n
(1)

An extensive study was conducted on different combinations of the signals in Table 1
as well as different combinations of macro-parameters for the methods. From this general
study, the best results for each method for 10, 15, and 30 s time horizon speed predictions
in terms of MAE are listed in Table 5.

The results of the general study showed that the LSTM had the best performance at
10, 15, and 20 s.
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Based on this collected evidence, it was concluded that an LSTM should be used
within the POEMS system. For further discussions and details, the reader is referred to the
team’s previous publications [26,27].

Table 4. Candidate Prediction Methods.

Method Method Type

Long Short Term Memory (LSTM) Deep Neural Network (DNN) ANN

Convolutional Neural Network (CNN) ANN

CNN-LSTM ANN

Decision Trees ML

Bagged Trees ML

Random Forest ML

Extra Trees ML

Ridge ML

K-Nearest-Neighbors (KNN) ML

Linear Regression without Interactions (LR) Statistical

Linear Regression with Interactions (LRI) Statistical

Table 5. The candidate prediction methods results organized from best performing to worst performing.

Method MAE—10 s MAE—15 s MAE—20 s

LSTM 1.78 2.55 3.09

CNN 1.84 2.77 3.50

CNN-LSTM 1.97 2.7 3.26

Decision Trees 2.69 3.60 4.12

Bagged Trees 2.23 3.09 3.67

Random Forest 2.30 3.15 3.72

Extra Trees 1.99 2.73 3.30

Ridge 2.67 3.84 4.67

KNN 2.67 3.84 4.67

LR 2.65 3.82 4.65

LRI 2.57 3.60 4.28

2.4. Subsystem 2: Planning

HEV POEMS planning subsystems generally fall into two groups: (1) those based
on Pontryagin’s Maximum Principle (PMP) such as ECMS [42], a-ECMS [11], as well as
their derivatives, and (2) those based on DP. The advantages of PMP methods is that these
are “real-time” strategies since they are relatively computationally cheap. However, this
method is typically non-optimal and recent research suggests that the equivalence factor
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prediction is analogous to velocity prediction [43]. The advantages of DP based methods is
that they guarantee discovery of the globally optimal solutions assuming that the vehicle
velocity prediction is accurate. The research team discovered the critical importance of this
aspect through documenting that even if significant and real-world velocity mispredictions
are present, the solution is still near optimal [44] which has lead to new method of real-
world practical implementation [12,18]. Additionally, the rise in the use of AI within the
CAV space has led to deployments of vehicles with high-performance GPUs on-board
the vehicle which potentially enables real-time computation of DP [45], which has been a
common criticism for eventual DP implementation. For these reasons, DP methods were
selected for this study.

DP is a numerical method based on Bellman’s principle of Optimality, which solves
multistage decision-making problems and finds the global optimal solution by operating
recursively backwards through time and storing only the optimal controls at each step [46,47].
DP and its derivative strategies have been applied to the problem of FE optimization for
HEVs previously [6,10,48,49] for full and partial drive cycles as well as for perfect and
real predictions.

DP can be thought of as a recursive equation solver with memory. A recursive solution
to a problem is to evaluate all possible paths by evaluating every possible combination
of decisions independently. While a recursive solution will find a global optimum, it will
require an exponentially increasing number of function evaluations for each additional
time-step. DP solves this run-time problem by iterating backwards through time and
storing the optimal controls for each discreet state value at each time-step then evaluating
the same controls from the same discreet state values until the first time-step. The result
of the backward iteration is an optimal control matrix which can be used to find optimal
controls at each time-step based on the current state values when iterating forwards.
The backwards iteration step is referred to as the optimization step while the forward
iteration step is referred to as the evaluation step. The DP method is shown schematically
in Figure 4.

Figure 4. Schematic of DP method.

The optimization step of the DP method, as shown in Figure 4, creates an optimal
matrix which can be used to compute optimal controls at each step by combining current
and “remembered” costs. The optimization step iterates backwards from the last time-
step (N) to the first which is not shown. The state values (represented by solid-outlined
circles) show discreet state values. At time-step N-1, the model is evaluated for each of
the discreet state values at each discreet control value which results in a series of new
“intermediate” state values (represented by dashed-outlined circles) and associated control
costs. Following this, the lowest cost (optimal) control is selected for each discreet state
value. At time-step N-2 the same process is repeated but in addition to the control cost,
the cost-to-go is calculated and added. The cost-to-go from a given intermediate state
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value is calculated by interpolating from the stored optimal control costs from state N-1.
This process repeats itself until the first time-step is reached. The DP method shown in
Figure 4 is constrained in two ways: (1) a large penalty is applied for distance from the
desired end state value at time-step N which forces the optimal controls for all state values
at time-step N-1 to produce the same state value at time-step N and (2) controls which lead
to intermediate states which are above or below the maximum and minimum value lines
(represented by red dashed-outlined circles), respectively, are not considered. The output
of the optimization step is an optimal control matrix which stores the optimal controls for
each discreet starting state value at each time-step.

The evaluation step of the DP method, also shown in Figure 4, iterates forward from
the first time-step through the last time-step from a given starting state value. At each
time-step, interpolation is performed using the starting state value (represented by blue
solid-outlined circles) and the optimal control matrix values for the current time-step to
determine the optimal control for the current time-step. The optimal control is then applied
and the starting state value for the subsequent time-step is calculated. This process is
repeated until the penultimate time-step is reached.

2.4.1. High-Fidelity DP Solution for the HEV Optimization Problem

The formulation of the DP problem for the 2010 Toyota Prius is as follows:

• The powertrain state x is the battery SOC;
• The powertrain control u is the engine power;
• The exogenous input for the powertrain w is the vehicle speed;
• The time index k denotes the current time-step.

The general form of the dynamic equation is shown below. It uses a high-fidelity
model of the vehicle to generate the SOC at time-step k + 1 based on the SOC at time-step
k, the engine power at time-step k, and the vehicle speed at time-step k as:

x(k + 1) = x(k) + f (x(k), u(k), w(k))∆(t) (2)

where f (x(k), u(k), w(k)) is the charging/discharging rate for the battery dSOC/dt. The charg-
ing/discharging rate function f (x(k), u(k), w(k)) can be written out as:

dSOC
dt

=
Pbattεchg

VocC
=

(Pbatt,mot + Pbatt,gen)εchg

VocC
(3)

where Voc and C are the battery open-circuit voltage and charge capacity, respectively.
The charging/discharging efficiency is defined as:

εchg =

{
Cchg Pbatt ≥ 0
Cdchg Pbatt < 0

(4)

where Cchg and Cdchg are constants reflecting the battery’s efficiency in charging and
discharging, respectively. The powers Pbatt,mot and Pbatt,gen are calculated as follows:

Pbatt,mot =
Tmotωmot

εmot
(5)

Pbatt,gen =
Tgenωgen

εgen
(6)

The efficiencies εmot and εgen are the efficiencies of the motor and generator, respec-
tively. Note that the efficiencies are in the denominator as the terms Pbatt,mot and Pbatt,gen
are the power that the battery must provide to each to produce the required output powers
Pmot = Tmotωmot and Pgen = Tgenωgen The following process is followed:
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Starting with the current vehicle speed w(k) and acceleration ẇ(k) the vehicle power
can be calculated using the road loads power equation.

Pveh = (mẇ(k) + A + Bw(k) + Cw(k)2)w(k) (7)

where m is the vehicle mass and A, B, and C are vehicle-specific constants. For a given
engine power ui, the electric power required is:

Pelec = Pveh − ui (8)

For the given ui, the engine torque and speed can be interpolated from the engine IOL
and the combination of engine speed (ωeng) and torque (Teng) along with electric power can
be used to determine the torques and speeds of the motor and generator from the planetary
gearset dimensions.

The torques are calculated as follows:

Twhl =
PvehRwhl

w(k)
(9)

Tpt =
Twhl
ρ f d

(10)

Tgen =
−ρ

1 + ρ
Teng (11)

Tring = −ρ(Tgen − Teng) (12)

Tmot = Tpt − Tring (13)

where Twhl and Rwhl are the torque applied at and the radius of the driven wheels, respec-
tively, Tpt is the output torque of the power-train (before the differential) and ρ f d is the
final drive ratio, ρ is the gear ratio of the sun gear to the ring gear for the planetary gearset,
Tring is the torque of the ring gear, Tgen is the torque of the generator, Teng is the torque of
the engine, and Tmot is the torque of the motor.

And the speeds are calculated as follows:

ωwhl =
w(k)
Rwhl

(14)

ωmot = ωring = ρ f dωwhl (15)

ωgen =
ρ + 1

ρ
ωeng −

ωring

ρ
(16)

where Rwhl , Rsun, and Rring are the radii of the wheel, sun gear, and ring gear, respectively,
Tpt is the torque produced by the powertrain before the differential, and ρ f d is the final
drive ratio.

The cost function for the DP problem for control ui at time-step k can be formulated
as either a FE maximization or a fuel consumption minimization. Since fuel consumption
minimization is more intuitive and widely used in previous studies, it will be utilized in
this study.

Ji(k) = Jim +

{
Jctg k > N
Jpen = (x f − x(k + 1))2Cpen k = N

(17)

where Jim,i is the cost of fuel consumed to reach the intermediate state value which is
calculated using the engine speed and torque and the engine FC map, Jctg is the cost-
to-go to the next state which is calculated through integration, and Jpen is the manually
assigned penalty function associated with not arriving at the desired final SOC at the final
time-step k = N.
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2.4.2. Model Predictive Control (MPC) Methods

MPC is a framework to implement prediction-based optimal control. It utilizes a
model of the system and a fixed time horizon to generate operational decisions. The DP
model discussed in the previous section can be directly utilized in a fixed-horizon MPC
framework with a few modifications.

The FCDP and a generic MPC methods are shown schematically in Figure 5.

Figure 5. Schematic comparison between the FCDP and MPC methods.

In effect, MPC performs the DP method on a shortened drive cycle at each step of
the actual drive cycle. Naturally, MPC should take significantly longer to run on a per
time-step basis as full drive cycle DP. A more detailed explanation can be found in [26].

2.5. Subsystem 3: Vehicle Plant

This study was conducted using a validated Autonomie model of a 2010 Toyota Prius.
The 2010 Prius is equipped with a Toyota e-CVT gearbox which utilizes two electric motors
(motor and generator) connected to the engine and the differential through a planetary
gearset to create a Continuously Variable Transmission (CVT) [50]. Because of the e-CVT
architecture, the Prius driveline is controlled entirely by torque commands without having
distinct gear states, thus the only powertrain control for the Prius is torque split and the
only powertrain state is battery SOC.

Due to the lack of a publicly available FE model specific to the 2010 Toyota Prius,
the model used was a generic Autonomie power-split HEV model which was modified to
represent a 2010 Toyota Prius by setting the following parameters to the publicly available
values shown in Table 6.

Validation of the Autonomie 2010 Prius model was conducted based on publicly avail-
able test results from Argonne National Laboratory’s (ANL) Downloadable Dynamometer
Database (D3) [51]. The FE results obtained via the model for three EPA dynamometer
drive cycles are compared to those found in D3 in Table 7.
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With all modeled FE values within 2% of those found in the ANL D3 database,
the Autonomie 2010 Toyota Prius model was considered validated for further research.
It should be noted that, in accorance with physical testing procedure, the initial SOC for
the vehicle model was set to fully charged for validation purposes but was set to 50% for
furhter research. Thus, FE results for the same EPA dynamometer drive cycles later in the
paper with baseline control will be slightly lower than those listed in Table 7.

Table 6. Parameters and values for the Autonomie 2010 Toyota Prius Model.

Parameter Value

Overall Vehicle Mass 1530.87 kg

Frontal Area 2.6005 m2

Coefficient of Drag 0.259

Coefficient of Rolling Resistance 0.008

Wheel Radius 0.317 m

Final Drive Ratio 3.267

Sun Gear Number of Teeth 30

Ring Gear Number of Teeth 78

Battery Open-Circuit Voltage 219.7 V

Battery Internal Resistance 0.373 Ω

Battery Charge Capacity 6.5 Ah

Table 7. EPA dynamometer drive cycle FE (km/L) results from the Autonomie 2010 Toyota Prius
model and ANL D3.

Drive Cycle Data Model Percentage Difference

UDDS 32.14 31.79 1.09 %

US06 29.72 30.30 1.95 %

HWFET 19.26 18.98 1.45 %

2.6. System Outputs

In addition to FCDP and PP-MPC, the CV-MPC method was implemented. The CV-
MPC method is functionally identical to PP-MPC except that the prediction vector is
replaced with a speed vector where all speeds are the current vehicle speed. The CV-MPC
method acts as a “null” predictive method which can serve as a point of comparison.
The value of a given level of prediction fidelity can be gauged by its performance relative
to PP-MPC and CV-MPC. A comparison of the DP-derived methods for a sample drive
cycle is shown in Figure 6.
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Figure 6. Comparison of DP-derived methods and Autonomie baseline control on sample drive cycle.

For the sample drive cycle in Figure 6, the FCDP method outperformed the PP-MPC
method which outperformed the CV-MPC method and all outperformed the Autonomie
baseline control method. Because of the double-sided charge-sustaining penalty, all SOC
traces started and ended at exactly 50%, which means that fuel consumption can be
compared directly without electrical equivalence. For the sample drive cycle, FCDP was
able to outperform PP-MPC because it has more freedom to deviate from the start and finish
SOC constraints. Generally, the longer the time horizon, the more effective PP-MPC should
become. A study was conducted on the UDDS, US06, and HWFET EPA dynamometer
drive cycles to demonstrate this. Results for the study are shown in Table 8.

Table 8. Fuel economy km/L for 2010 Toyota Prius model with DP-derived methods and Autonomie
baseline on EPA dynamometer drive cycles (time horizon only effects the PP-MPC and CV-MPC
methods).

Drive Cycle Time Horizon Baseline FCDP PP-MPC CV-MPC

UDDS 10 28.28 40.32 39.11 35.10

UDDS 15 28.28 40.32 39.45 35.13

UDDS 20 28.28 40.32 39.71 35.00

US06 10 17.57 20.05 18.20 17.50

US06 15 17.57 20.05 18.44 17.20

US06 20 17.57 20.05 18.76 17.21

HWFET 10 28.13 28.59 26.30 24.24

HWFET 15 28.13 28.59 26.56 24.90

HWFET 20 28.13 28.59 26.64 24.37
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An immediately noticeable trend is that increases in time horizon resulted in better FE
for PP-MPC which allowed the PP-MPC FE to approach but not reach the FE produced
by the FCDP method. Another noticeable effect is that the relative efficacy of the methods
varied between the drive cycles with the DP-derived methods showing massive improve-
ment over baseline in the stop-and-go UDDS drive cycle, while the PP-MPC and CV-MPC
methods did not result in FE improvements for the relatively static HWFET drive cycle.

That DP-derived methods present the greatest potential for FE improvement in low-
speed stop-and-go conditions is not a surprise. Low-speed stop-and-go conditions are
where traditional control methods perform worst as they are unable to operate the IC engine
in its most efficient areas. DP methods use knowledge of the future speeds of the vehicle
to continue to operate the IC engine efficiently in stop-and-go conditions. An interesting
result is that, even with inaccurate information about future vehicle velocity, the CV-MPC
method significantly outperformed Autonomie baseline by a significant amount on the
UDDS drive cycle.

3. Results
3.1. Direct Analysis of Velocity Prediction Accuracy using MAE

Based on the results of the general study documented in Section 2.3, a second, specific,
study was carried out in order to optimize prediction fidelity from LSTM DNNs.

Long Short-Term Memory (LSTM) ANNs are a special case of Recurrent Neural
Networks (RNNs) developed by Hochreiter and Schmidhuber [52] which utilize LSTM
neurons in hidden layers. While classical recurrent neurons use a single gate to establish
the relationship between inputs and outputs, LSTM neurons contain multiple gates which
determine how much information should be remembered and forgotten within the neuron
as well as the weighting of old and new information. The presence of the remember
and forget gates allows LSTM neurons to utilize information from multiple time steps in
the past [53,54]. For this reason, LSTM networks are ideally suited for problems where
immediate and relayed reactions to inputs are present [55].

Because of its demonstrated feasibility, the LSTM is the prediction model which will
be focused on. The following optimal architecture was arrived at:

The LSTM DNN described in Table 9 was selected for its high performance and
reasonable training time. Adding more complexity to the network past the optimal network
failed to generate significant performance gains. The LSTM DNN was trained on the groups
of signals defined in Table 10.

Table 9. Structure of Optimal LSTM DNN.

Layer Composition

1 Input layer-ninputs fully connected

2 64 LSTM neurons

3 Dropout-10%

4 Batch normalization

5 32 LSTM neurons

6 12 LSTM neurons

7 Output layer-noutputs fully connected
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Table 10. Data Groups for LSTM DNN.

Group Label Composition

A Speed, Acceleration, Engine Speed, Gear, Steered Angle,
Throttle Position, Brake Pressure

B A + HS + LV

C A + HS + LV + SPaT + SS

The data groups were selected to reflect the data available to different categories of
vehicle. A vehicle with neither ADAS nor connectivity only has access to A. Vehicles
with ADAS and GPS navigation but no infrastructure connectivity have access to A and
B. ICVs have access to all data groups. For groups A, B, and C a cross-validation study
was run wherein the LSTM DNN was trained on 9 random laps, validated on 2 random
laps, and tested on 2 random laps 30 times. The average MAEs for the cross-validation
study are shown in Figure 7. The standard deviations of MAEs were all less than 5% of the
mean values.

Figure 7. MAEs for LSTM DNN trained on data groups A, B, and C for 10, 15, and 20 s horizons.

As is evident in Figure 7, the difference in prediction performance between LSTM
DNNs trained on the different data groups was minimal if slightly favoring group B over
A and C. A visual comparison of the predictions for all groups at 10 and 20 s is shown
in Figure 8.

As the prediction window increases, the LSTM DNN predictions are still able to
rougly hold the shape of the velocity trace but produce a greater volume of mis-predictions.
The predictions generated using LSTM DNNs trained on the different groups look slightly
differently and produce slightly different MAEs but the time horizon length has, by far,
the greater impact.
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Figure 8. Predicted (black) vs. actual vehicle velocity (blue) for LSTM DNN trained on all data
groups at 10 and 20 s prediction horizon. (a) is group A at 10 s, (b) is group A at 20 s, (c) is group B at
10 s, (d) is group B at 20 s, (e) is group C at 10 s, (f) is group C at 20 s.

3.2. Overall System FE Output

Using the predictions from the cross validation study mentioned in Section 3.1, FE sim-
ulations were conducted using the DP-derived methods and Autonomie baseline controls.
The mean FE results for this study are listed in Table 11 and percentage improvements over
baseline for the DP-derived methods with all data groups and at 10, 15, and 20 s are shown
in Figure 9.
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Table 11. FE (km/L) simulation results based on cross-validation study predictions.

Group
Label

Prediction
Horizon (s) Baseline FCDP PP-MPC RP-MPC CV-MPC

A 10 18.33 24.10 21.78 20.73 20.07

B 10 18.33 24.10 21.78 20.85 20.07

C 10 18.33 24.10 21.78 20.83 20.07

A 15 18.33 24.10 21.87 21.24 20.01

B 15 18.33 24.10 21.87 20.45 20.01

C 15 18.33 24.10 21.87 20.15 20.01

A 20 18.33 24.10 22.22 20.80 20.00

B 20 18.33 24.10 22.22 20.75 20.00

C 20 18.33 24.10 22.22 21.05 20.00

Figure 9. Percentage FE improvements for DP-derived methods for all data groups and time horizons.

3.3. Results Summary

The FE results for the DP-derived methods, when taken in conjunction with the results
of the LSTM prediction illustrate several trends:

1. With perfect predictions MPC methods will produce better FE results for longer
prediction horizons.

2. A greater volume of mis-predictions will result in worse FE results for MPC methods.
3. The small differences in prediction MAE observed between the data groups at all

three time horizons are insufficient to explain the large differences observed in FE
percentage improvement over baseline for the RP-MPC method between the data
groups for the 15 and 20 s horizons.

It is illustrative that, for all cases, the average performance of the RP-MPC method
came in between that of the CV-MPC and PP-MPC methods. The PP-MPC method, by defi-
nition, produces no mis-predictions while the CV-MPC method, by definition, produces
only mis-predictions when the vehicle is moving. It would be logical for the RP-MPC
method which produces some degree of mis-prediction to produce FE improvements
which are somewhere between those produced by the CV-MPC and RP-MPC methods.
The differences in vehicle future velocity prediction MAE between the data groups shown
in Figure 7 were relatively small where the differences in FE improvement performance
based on those predictions shown in Figure 9 were significant. Furthermore, no consistent
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trend links the prediction MAE with the percentage FE improvement which leads to the
conclusion that MAE is an insufficient metric to describe mis-prediction levels with respect
to the RP-MPC method. Further research should be conducted to investigate whether other
metrics serve better in this role.

The robustness of DP to velcity prediction error is directly demonstrated in the CV-
MPC method which uses a “null” prediction of constant current speed over the entire
prediction horizon. It showed significant improvements over baseline while the RP-MPC
method showed significant improvements over CV-MPC. An examination of the data trace
for all methods using predictions based on group A data for a 10 s prediction horizon are
shown in Figure 10.

Figure 10. FE simulation data trace for all methods.

It can be clearly seen that the MPC methods discover similar local optima, and produce
similar optimal state trajectories while the FCDP method, with much more freedom to
deviate from the final SOC constraint, takes a substantially different path and ends up
using less fuel.

4. Conclusions

In order to to demonstrate the function of various implementations, the data available
to different types of vehicle were classified, an extensive real-world driving dataset was
collected which incorporated said data, ML and ANN methods were used to predict
the ego vehicle future speed using different groups of data, and the best predictions
were used in FE simulation to determine the effectiveness of practically implementable
POEMS. The results of the velocity prediction study showed that when using a LSTM
DNN, high-fidelity velocity prediction was possible using only data which are available to
conventional vehicles without ADAS or V2X connectivity and that the addition of ADAS
and V2X connectivity resulted in modest fidelity gains. The results of the FE study showed
the following:

• FE improvement achievable with RP-MPC approaches and with PP-MPC.
• RP-MPC consistently outperformed CV-MPC.
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• Predictions made with ADAS and V2X resulted in greater FE improvement in the 20 s
window.

An unavoidable conclusion is that the relationship between prediction fidelity and
FE improvement using DP-derived methods cannot be explained by differences in predic-
tion MAE.

This study shows that POEMS implementation on HEVs and PHEVs is feasible
with causal and implementable prediction and control technologies and would lead to
significant improvements in HEV and PHEV fleet efficiency if implemented. The same
system architecture as autonomous vehicles (perception, planning, control, plant) can be
applied to energy efficiency through the deployment of POEMS-enabled vehicles. The FE
improvement which would result is significant and the technology can be implemented
currently. The results of this study thus serve as a step towards real-world implementation
and commercialization.
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