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Abstract: The global increase in energy demand and the decreasing number of newly discovered
hydrocarbon reservoirs caused by the relatively low oil price means that it is crucial to exploit existing
reservoirs as efficiently as possible. Optimization of the reservoir control may increase the technical
and economic efficiency of the production. In this paper, a novel algorithm that automatically
determines the intelligent control maximizing the NPV of a given production process was developed.
The idea is to build an auto-adaptive parameterized decision tree that replaces the arbitrarily selected
limit values for the selected attributes of the decision tree with parameters. To select the optimal
values of the decision tree parameters, an AI-based optimization tool called SMAC (Sequential
Model-based Algorithm Configuration) was used. In each iteration, the generated control sequence is
introduced into the reservoir simulator to compute the NVP, which is then utilized by the SMAC tool
to vary the limit values to generate a better control sequence, which leads to an improved NPV. A new
tool connecting the parameterized decision tree with the reservoir simulator and the optimization
tool was developed. Its application on a simulation model of a real reservoir for which the CCS-EOR
process was considered allowed oil production to be increased by 3.5% during the CO2-EOR phase,
reducing the amount of carbon dioxide injected at that time by 16%. Hence, the created tool allowed
revenue to be increased by 49%.

Keywords: production optimization; auto-adaptive decision tree; artificial intelligence; machine
learning; sequential model-based algorithm configuration; CCS-EOR

1. Introduction

Due to the reduction of hydrocarbon resources caused by increasing consumption as
well as difficulties in discovering new hydrocarbon reservoirs, more and more research is
focused on the effective exploitation of existing reservoirs. For this purpose, the location
and construction of new production and injection wells are optimized. The number of
open perforations, the degree of opening of downhole valves, or the working mode of
already existing wells are also optimized. This paper focuses on the optimization of the
reservoir control to achieve a higher recovery factor and an additional income without any
expenditures, as only the control scheme changes.

Optimization is to find a solution to a specific problem that is the best in terms of a
specific quality indicator [1]. The decision space Z includes a set of feasible solutions Zd
constituting the set of all vectors of decision variables z ∈ Z that satisfy given constraints.
The quality indicator J : Zd → R assigns a numerical value to a feasible solution z ∈ Zd,
making it possible to compare the quality of solutions. In the case of single-criteria optimiza-
tion, an ordering relation can be defined. The problem of the single-criteria optimization is
to find the optimal solution, i.e., such a feasible solution ẑ ∈ Zd that:

∀z ∈ Zd J(ẑ) ≤ J(z) (1)
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The formulation of the optimization problem presented in Equation (1) also allows
the maximization problem to be solved, as it can be reduced to the presented minimization
problem [1]:

max
z

J(z) = −min
z

[−J(z)] (2)

Depending on the type of solution and the properties of the quality indicator, the
optimization problem can be divided into static and dynamic optimization. In the case
of static optimization, the quality indicator is a function. Static optimization aims to find
the optimal operating point, i.e., the operating point for which the objective function is
extreme [1]. The dynamic optimization aims to find the optimal control û ∈ U belonging to
the set of feasible controls Ud = {u : [0, T]→ U}, where U ⊂ Rl is a set of feasible control
values [2]. Such optimal control minimizes the quality indicator defined as a functional (its
argument is a function and a result is a number) [1]:

J(û) = min
u

J(u) (3)

with constraints resulting from the system state equations:

dx
dt

= f (x, u, t) (4)

and state constraints x ∈ Rn, time t ∈ [0, T], and control constraints u ∈ U ⊂ Rl .
To determine the optimal production control, it is necessary to define the optimal

control problem, which is generally based on the following dynamics model:

dx(t)
dt

= f (x(t), u(t), t) ∧ x(0) = x0 (5)

where x(t) is a vector of state variables, u(t) represents control belonging to the set of
feasible control values U, and time belongs to the interval [0, T]. The typical optimal
control problem is to select control u(t), which minimizes the following functional [3,4]:

J(u(t)) = Φ[x(tk), tk] +

tk∫
t0

Ψ[x(t), u(t), t]dt (6)

treated as the cost of evolution, where Φ is a cost function related to the final state of
evolution x(tk), and the integral represents the cost resulting from the selected control u
and the state trajectory generated by this control [4].

The hydrocarbon reservoir is a complicated structure with complex geometry and
spatial heterogeneity of geological parameters. It is filled with water, numerous hydro-
carbon components, and other substances. Therefore, the description of the dynamics
of the oil and gas reservoir is complex. Reservoir simulations are used for mathematical
modelling of the processes taking place in the reservoir. To optimize production from the
reservoir it is needed to predict the future behavior of the reservoir. Hence, it is necessary
to build a simulation model that maps the reservoir geometry, the reservoir fluids, and the
phenomena taking place in the reservoir [5]. For the analysis of multiphase flow in oil and
gas reservoirs, two main types of mathematical models are currently used: the “black oil”
model and the compositional model [6]. The dynamics of the hydrocarbon reservoir are
given by the equation [7]:

dx
dt

= f
(

x,∇x, ∇2x, u
)

(7)

where the exact form of the state vector x and the function f depend on the mathematical
model used to describe the reservoir.

The “black oil” model assumes the presence of three homogeneous phases with a
constant chemical composition. The properties of phases depend only on pressure due to
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the assumed temperature consistency [8]. The model takes into account water and two
pseudo hydrocarbon components: oil and gas, which are immiscible with water [9]. The
advantage of the “black oil” model is its ease of use and relatively short computation time.
Therefore, the “black oil” model is widely used in industrial practice, as it is applicable to
most oil and gas fields. It is mainly used to describe the primary production of oil and gas
reservoirs. It is also used to model water and gas injection, as long as the injected fluids do
not differ significantly from the fluids originally present in the reservoir.

The compositional model also assumes the presence of water and two hydrocarbon
phases, but their chemical composition is determined by the mole fractions of individual
components [9]. The most common are from 6 to 12 components, including hydrocarbon
components (C1, C2, etc.) and N2, H2S, CO2 [9]. The compositional model assumes that
the composition of the phases changes according to the state equations depending on the
pressure and temperature [9]. Hence, the compositional model realistically models the
behavior of the fluids. However, it requires a large computational effort. The compositional
model is applicable to gas-condensate reservoirs, problems of mixing of reservoir fluids,
and other complex problems that cannot be described with the “black oil” model [6]. An
example of an advanced problem requiring the use of the compositional model is the
CCS-EOR process, considered in this paper. Due to the injection of CO2 into the reservoir,
it is impossible to use the “black-oil” model. Moreover, to model the mixing of carbon
dioxide with oil, it is necessary to take into account the molar fractions of the individual
components of the reservoir fluids.

The main goal of optimal reservoir control is to define a production strategy that
maximizes or minimizes a specific criterion, subject to the constraints imposed by the
physical nature of the problem in the form of differential equations describing the dynamics
of the system [7]. For most production processes, the quality indicator used to solve the
optimization problem is the economic efficiency of the investment, i.e., the net present value
(NPV). For well control optimization, the functional based on the NPV can be expressed
as [10–12]:

J(u) =
tk∫

t0

[
qz(t)cz − qk(t)ck

(1 + d)τ

]
dt (8)

where d is the annual discount rate [/], and τ is the duration of the investment in years.
The numerator stores the profits and costs associated with the production or injection of
fluids. Their exact form depends on the production process under consideration. The
flow rates of the fluids included in the profit are always positive, and the flow rates of the
fluids generating costs are negative. The well control variable u can be the flow rate of a
particular reservoir fluid or the well bottom hole pressure. In practice, the integral form of
a functional (8) is approximated by the sum of the following form [10,12]:

J(u) =
M

∑
i=1

qzicz − qkick

(1 + d)τi
∆ti (9)

where M corresponds to the total number of time steps and τi is the period from the
beginning of the investment to step i. In the discretized form of the NPV, each period ∆t
has a corresponding discrete fluids performance. Thus, the problem of optimal control
of the oil and gas reservoir is to determine the control u, which maximizes the return on
investment in the form of a functional described by Equation (9).

Classical optimization methods used in the optimal control theory are related to the
calculus of variations dealing with the search for functional extremes [1]. Optimum control
can be determined by the Pontryagin maximum principle describing the necessary condi-
tions of optimality [2]. In line with this principle, the Hamilton function was introduced
to solve the problem of optimal control for a dynamical system. The Hamilton function
combines the state equations and the objective function. The Pontryagin maximum prin-
ciple states that it is necessary for any optimal control and the optimal state trajectory
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to solve the Hamiltonian system and select the control and the corresponding trajectory
that maximize the Hamiltonian. After solving a properly defined system of equations, the
optimal process control can be determined as a function of time. Another possibility is to
use dynamic programming. In this case, the optimal control is determined in an N-stage
decision-making process that can be reduced to a series of N one-stage decision-making
processes [1].

In most practical problems, the use of analytical methods to find the optimal control
is impossible due to the non-linear nature of the problem or computational difficulties.
Hence, numerical methods are used to solve such problems. In the case of optimal control,
numerical methods can be divided into direct and indirect. In the indirect methods, the
boundary conditions of the optimization problem are replaced with the necessary opti-
mality conditions resulting from the maximum principle [2]. The disadvantage of indirect
methods is the large amount of analytical work required to prepare for the calculations. On
the other hand, direct methods approximate the control problem by the problem obtained
by discretization of control and system dynamics equations [2]. These methods do not use
the maximum principle and their advantage is versatility and simplicity. The overview
of some important prior work presenting numerical methods used to solve the optimal
control problem is given in [13].

One of the direct methods used to determine the optimal control of practical cases is
the parameterization of the control function [4]. In this method, control is represented by a
parameterized time function [14]:

u = u(t, p) (10)

This method aims to select the optimal values of the parameters contained in the p
vector, i.e., values that minimize the quality indicator [3]. Another approach is a stepped
approximation where the control time is divided by Nd discretization points [2]:

0 = t1 < t2 < . . . < tNd = tk (11)

This method assumes that the continuous control function can be approximated by
functions that are constant in the assumed intervals [2]:

u(t) = ui for t ∈ [ti, ti+1] (12)

Then, the decision variables are values of ui, the optimal values of which form a vector
û = [û1, û2, . . . , ûNd ].

Most of the methods used for solving the problem of optimal control are impractical
for optimizing the production of hydrocarbon reservoirs. In this case, it is impossible
to functionally link the optimized quality indicator and decision variables. Optimizing
reservoir production for a given vector of decision variables, a reservoir simulation is run.
Quality indicator values are determined based on the simulation results. The use of the
reservoir simulator to describe the dynamics of a reservoir limits the use of commonly
known optimization methods.

The ECLIPSE reservoir simulator (Schlumberger Limited, Houston, TX, USA) has a
built-in tool that allows a given problem to be optimized using gradient methods. However,
in most cases, this tool gives unsatisfactory results due to numerical errors. Currently, there
is a lot of research on the use of artificial intelligence methods to optimize various processes
related to the production of hydrocarbon reservoirs. Intelligent control using artificial
intelligence to determine system control [2] is an alternative to traditional optimization
methods. Intelligent control methods include algorithms that learn from experience [2].
In the initial learning phase, the output depends on the randomly assigned control. Then,
further control actions are generated based on the gained knowledge about the system.
The learning process allows the quality of the solution to be improved and as a result, the
best decision for a given criterion can be made [2]. In practice, there are many different
approaches to intelligent control resulting from the variety of artificial intelligence methods
and various possibilities of the learning process. A serious disadvantage of the solutions
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most commonly used in the literature, such as genetic algorithms or artificial neural
networks, is the fact that they require thousands of simulations. Moreover, most of the
research is carried out on synthetic, significantly simplified reservoir models. However,
a real hydrocarbon reservoir model has a high degree of complexity resulting from the
complex geological structure and heterogeneity of the reservoir. For such models, a single
simulation takes from a few to several hours. Hence, these methods are no longer applicable
due to their duration.

One such production process that needs to be modelled by the complex simulation
model is the CCS-EOR process. In the CCS-EOR method, two successive processes are
distinguished: CO2-EOR and CCS [15]. The CO2-EOR method is one of the enhanced oil
recovery methods and it allows the total oil production from the reservoir to be increased
by an additional 15–20% [16]. Carbon dioxide, after injection into the reservoir, chemically
and physically interacts with rock and oil, allowing oil to be displaced from the pores and
production to be increased [17]. The phenomena occurring at that time cause a decrease in
oil density and viscosity, an increase in permeability, a reduction in the surface tension at
the CO2–oil and water–oil interface, and the evaporation of some of the oil components [17].
Hence, in the first phase of the CCS-EOR process, oil flowing into production wells due
to injected carbon dioxide is produced (CO2-EOR). When the oil production ceases to be
profitable, production wells are closed and carbon dioxide is injected until the total storage
capacity is reached for its geological sequestration (CCS). The technology known as Carbon
Capture and Storage consists of capturing and long-term underground storage of CO2 in
geological structures. The process involves the separation of CO2 from the exhaust gases
from fossil fuel combustion processes, the transport of the separated carbon dioxide, and
its injection into the geological structure for long-term storage [18]. The advantage of the
CCS-EOR method is that it makes it possible to increase oil production as well as reduce
carbon dioxide emissions. It allows a synergistic effect of environmental protection and
increase of the oil recovery factor to be obtained [19]. In the CCS-EOR process, the costs
of capturing and storing CO2 can be compensated through revenues obtained during the
EOR process [20]. Hence, the optimal control of such a process can increase revenue from
the overall project. However, when storing carbon dioxide in geological structures, an
important issue is the isolation of CO2 to prevent it from escaping into undesirable rock
formations. To model such a process, application of a complex simulation model that
considers the process of mixing carbon dioxide with oil and allows the CO2 flow to be
monitored is required. Optimal control of such a process is not a trivial problem.

The aim of the work reported here was to develop a novel tool that automatically de-
termines intelligent control of real hydrocarbon reservoirs maximizing the NPV of a given
production process. The idea is to build an auto-adaptive parameterized decision tree that
replaces the arbitrarily selected limit values for the selected attributes of the decision tree
with parameters. To select the optimal values of the decision tree parameters, an AI-based
optimization tool was used. A new procedure connecting the parameterized decision tree
with the reservoir simulator and the optimization tool has been created. This work consists
of five parts. The first part contains theoretical foundations and mathematical formulations
of the optimization problem and control theory. The second part describes the dynamics
model of a hydrocarbon reservoir, introduces the problem of hydrocarbon reservoir control,
and presents the developed tool for automatic determination of the optimal control of
the hydrocarbon reservoir. The next part contains an exemplary implementation of the
developed methodology on the example of the CCS-EOR process. The fourth part contains
the results obtained for the exemplary implementation of the created tool. The last part
contains the conclusions resulting from this work.
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2. Proposed Intelligent Reservoir Control Approach
2.1. Model of the Analyzed Problem

In this study, it was assumed that the problem of hydrocarbon reservoirs is to deter-
mine the control that maximizes the NPV value of a given production process. The control
function of a well adopted in this paper is its flow rate:

u(t) = q(t) (13)

and the limitation is its bottom hole pressure. Due to the practical limitations of production
processes conducted in a real reservoir, the control cannot be changed in the continuous-
time domain. Thus, control is constant over assumed intervals. Hence, the optimization
aims to determine such a control vector that includes controls in the successive periods:

û = [û1, û2, . . . , ûM ] (14)

where M is the number of time steps [21].
Control of a given process, in a global aspect, can be considered as a strategy that

depends on the control at each time step of an assumed length. Therefore, the problem
of production process control can be decomposed into sub-problems. To solve them, it is
enough to model the control scheme that determines the decision to be made in a single
time step.

Such a problem may be modelled by a decision tree (Figure 1). Tree nodes represent
attributes characterizing the analyzed process; for example, the average reservoir pressure
or the reservoir performance. The branches connecting the nodes represent the limit values
corresponding to individual attributes. The leaves (nodes that have no additional nodes
coming off them) determine the reservoir control indicating actions that should be taken in
a given time step. The path from the root (the top of the first/upper level) to a given leaf is
a conjunction of the conditions that must be met for a given decision to be selected. The
knowledge of reservoir dynamics related to the conducted experiments and engineering
knowledge are used to formulate the conditional rules for reservoir control.
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The problem with this approach is that the limit values for the decision tree attributes
are most often selected arbitrarily based on experience. It does not guarantee an opti-
mal decision. The original solution proposed in this paper is to build an auto-adaptive
parameterized decision tree that replaces the arbitrarily selected values with parameters
determined in the optimization process using artificial intelligence methods. Such a pa-
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rameterized decision tree can be modified and adjusted to a specific production process.
Engineering knowledge is needed to design a tree structure suitable for a particular prob-
lem. Then, artificial intelligence is applied to select the best limit values of attributes. The
combination of engineering knowledge with artificial intelligence allows the quality of
decisions made to be improved and the economic efficiency of the considered processes to
be increased.

2.2. Applied Optimization Tool

Having a mathematical model of the analyzed decision problem, it is possible to
use machine learning. It is a field of artificial intelligence considering algorithms that
improve their operation along with experience gained. The purpose of machine learning
is to determine the parameters of an appropriate model. Thanks to the use of machine
learning, it is possible to automatically improve the control quality.

Due to the limitations of artificial intelligence methods used in the literature to op-
timize the reservoirs control, in this paper an innovative optimization tool in the field
of machine learning, which is intended for problems with a high computational cost, is
used. The SMAC (Sequential Model-based Algorithm Configuration) tool enables the
selection of optimal values of the parameters of complex algorithms treated as a “black
box” after performing only twice as many iterations as the number of unknowns [22].
Such high-efficiency results from the fact that the tool learns from previous results which
parameter values bring more favorable results. First, the tool collects data from the initial
realizations, and then iteratively performs the following three steps within the learning
process [23]:

• Based on the data collected so far, it builds a search space model,
• It uses the determined model to select parameter values that allow the greatest im-

provement in solution quality described by a so-called expected improvement criterion.
It is high for those parameters that are expected to be good and those that are located
in the area that has not been tested so far,

• It calculates the value of the quality indicator using the target algorithm, creating a
new instance that is then added to the dataset.

Before running the SMAC tool, it is necessary to specify the parameter domains and
their initial values, as they are decision variables. Then, for the next sets of parameter values
determined with the procedure presented above, the configured target algorithm is run
to solve subsequent instances of the problem. These instances are cases of the considered
problem with specific values of the input data. The target algorithm is a procedure solving
the considered problem and the parameters of this target algorithm are optimized. With the
use of this target algorithm, the quality indicator, which is used to determine subsequent
parameter values, is calculated. As a result of the SMAC tool application, such values of
the parameters of a given algorithm are determined, which minimize the specified quality
indicator [23]. The principle of the SMAC optimization tool is presented in Figure 2.
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2.3. Principle of the Proposed Solution Operation

The proposed solution of intelligent reservoir control relies on determining reservoir
control (at each time step of the simulation) based on an auto-adaptive parameterized
decision tree. Its parameters values are determined using the SMAC tool, which optimizes
the quality indicator in the form of NPV of the project. The SMAC tool matches perfectly
with the considered problem of reservoir control due to the low computational cost of this
tool. The originality of the proposed solution is confirmed by the fact that the SMAC tool
has not been widely used in the oil and gas industry so far. Therefore, it was necessary to
develop a new procedure enabling the connection of a parameterized decision tree with
the ECLIPSE reservoir simulator (Schlumberger Limited, Houston, TX, USA) and with the
SMAC optimization tool.

Internal programming in the ECLIPSE reservoir simulator (Schlumberger Limited,
Houston, TX, USA) made it possible to directly declare a parameterized decision tree
within the simulation. It also made it possible to implement the function calculating the
quality indicator value that is used to compare the obtained solutions. The combination
of the reservoir simulator and the optimization tool has been implemented in the Python
programming language. Hence, the developed tool enables full automation of the optimal
reservoir control determination.

In practice, the use of the developed tool consists of running the SMAC tool, which at
each iteration calls the program written in the Python programming language. This pro-
gram downloads successive parameter values from the SMAC tool pi = [p1i, p2i, . . . , pNi].
Then, it automatically replaces a part of the simulation input file where the parameters are
stored and runs the reservoir simulation for the updated simulation input file using the sys-
tem commands. The simulation is controlled by an auto-adaptive parameterized decision
tree developed individually for a particular production process. At each time step j, the
values of the tree attributes are determined by the simulator ai,j =

[
a1i,j, a2i,j, . . . , aRi,j

]
.

Based on the configured decision tree (directly declared within the simulation input file),
the reservoir control prevailing in the next time step ui, j+1 = u(t, pi) is determined. This
decision-making process is repeated in each of the M simulation time steps. Hence, for
given parameters values, the control vector contained in the vector ui = [ui,1, ui,2, . . . , ui,M]
is defined. In addition, as a result of the simulation, the value of the quality indicator is
also calculated. The considered quality indicator is the NPV value of the project obtained
at the end of the whole process, i.e., after performing M time steps: Ji(ui) = NPVi(M, ui).
The NPV value is directly calculated by the reservoir simulator. Then, it is read from
the simulation output file by the program written in the Python programming language.
It also passes the NPV value (with the opposite sign) to the SMAC tool. In the SMAC
tool, the considered quality indicator is used to determine subsequent parameter values
contained in the vector pi+1. The selection of the subsequent parameters values is based on
a so-called expected improvement criterion, which describes how individual parameters
values can improve the quality of the solution. This criterion is high for those parameter
values that are expected to improve NPV (based on the search space model), and for
those that are located in the areas that have not been tested so far to improve the quality
of the search space model and consequently be more precise in the next iterations. In
each iteration, such parameter values are selected by the SMAC tool that maximizes this
criterion. Hence, the NPV value calculated by the reservoir simulator is used by the SMAC
tool to optimize parameter values. After performing a certain number of iterations, the
proposed procedure results in process control that maximizes revenue from investment:
û = [û1, û2, . . . , ûM] ∧ NPV(M, û) = max[NPVi(M, ui)]. Both the optimal parameters
values and the maximized value of the NPV are returned by the developed tool written in
the Python programming language. The diagram of the created tool discussed above is
presented in Figure 3.
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3. Case Study–CCS-EOR Process

To illustrate the effectiveness of the developed tool, an example of its use was carried
out on a simulation model of a real gas-condensate reservoir. The production process
considered for the analyzed reservoir is the CCS-EOR process. Its control was optimized
with the use of the developed tool.

3.1. Reservoir Characteristics

The analyzed reservoir has been in operation since 1993. Basic parameters charac-
terizing the reservoir are included in Table 1. The reservoir has a complicated geological
structure and the shape of an approximately semicircular elevation. There are three wells
located on the reservoir, but production is currently carried out with two of them. The
reservoir structure and location of the wells are presented in Figure 4.

Table 1. Basic parameters of the reservoir.

Reservoir Parameter Value

Area 158.1 ha
Reservoir rock Zechstein Main Dolomite (Upper Permian, Ca2)

Depth 3143–3224 m
Effective thickness 13.6 m
Average porosity 5.8%

Average permeability 3.4 mD
Initial reservoir pressure 670 bar
Reservoir temperature 114 ◦C

Oil resources remaining in the reservoir 27%
Oil density 794 kg/m3

The reservoir has a complex structure, as it is characterized by a double porosity
system, which consists of a porous rock matrix and a fracture system. The matrix has
negligible permeability, but considerable storage capacity, while the fractures have sig-
nificant permeability and the dominant flow takes place in them [24]. Production from
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the analyzed reservoir is difficult also because it is a gas-condensate field. Thus, a drop
in the formation pressure below the dew point pressure is accompanied by the release of
condensate and the formation of a two-phase system in the reservoir, which complicates
the production process [25]. The rock matrix is evenly filled with a mixture of gas and
water, while condensate has condensed in the fractures.
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The simulation model of the reservoir was made with the use of a compositional
simulator ECLIPSE 300 (Schlumberger Limited, Houston, TX, USA). It includes a fifteen-
component reservoir fluid containing hydrocarbon components from C1 to C10, C11+
(grouped C11 to C20) and C21+, and also N2, H2S, CO2. Water was considered as a
separate phase that participates in the flow and affects the flow of hydrocarbons. Within
the model, three fluids deposited in the reservoir was taken into account: oil, gas, and
water. The reservoir simulation model consists of 8800 blocks defined by the coordinates of
their vertices. Due to the presence of the double porosity system, the simulation model is
divided into two identical regions. One of them reflects the properties of the rock matrix
and the other of the fracture system. The model was created based on data collected from
all three wells located on the reservoir and seismic records, and then calibrated.

The reservoir production is carried out using primary methods dependent on the
natural energy of the reservoir. The recovery factor of the analyzed reservoir is very
high considering production under primary mechanisms only, and it equals 70%. It is
possible as the analyzed reservoir is a small volumetric gas-condensate reservoir with a
very high initial pressure and relatively good filtration properties (Table 1). In the initial
conditions and for most of the production history, hydrocarbons were in the gas phase,
which facilitated their extraction. The condensate released later as the pressure dropped.
Therefore, so much of the hydrocarbons could be extracted. Although the reservoir is in
the final stage of production, almost 30% of the initial oil resources are still there. Hence,
in the case of the analyzed reservoir, the implementation of the CCS-EOR method was
considered. Three wells located in the reservoir (two in production) are not equipped
appropriately for the CCS-EOR method implementation for now, as it is currently in the
conceptual phase. These wells are old (they were drilled almost 30 years ago), but their
current technical condition is good and it is constantly monitored for the content of H2S. If
needed, wells equipment can be easily adopted for CO2 injection/production.
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3.2. CCS-EOR Process Implementation

For the implementation of the CCS-EOR process on the analyzed reservoir, two active
wells located on the reservoir were applied. It is related to the very high cost of drilling
new wells, which would significantly reduce the economic efficiency of the process. As the
reservoir is characterized by a double porosity system, the simultaneous injection of carbon
dioxide and the production of reservoir fluids would cause instantaneous breakthrough of
carbon dioxide through the fracture system into the production well [26]. In the case of
dual-porosity reservoirs, a more efficient realization of the CO2-EOR method is the CO2
huff-n-puff process consisting of the cyclic injection of carbon dioxide directly into the
production well [26]. A single cycle (Figure 5) of the CO2 huff-n-puff process includes three
phases: the injection phase, the soaking phase, and the production phase [27]. During the
injection stage, CO2 is injected into the production well. In the soaking phase, the well is
closed for a while. The soaking period aims to allow carbon dioxide to interact with the
reservoir fluids [28]. In the production stage, oil is produced from the well. Such a cycle
is repeated several times until a certain minimum flow rate is reached. The CO2 huff-n-
puff variant of the CO2-EOR method allows the oil recoverability from the reservoir to be
increased, especially in the case of the dual-porosity reservoirs [26]. Therefore, the CO2 huff-
n-puff process implemented in both existing wells was selected for the analyzed reservoir.
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3.3. Developed CCS-EOR Process Control Scheme

To determine the scheme of the CO2 huff-n-puff method suitable for the considered
reservoir, the effect of the soaking time on the process effectiveness was firstly analyzed.
The impact of the soaking stage on the CO2 huff-n-puff process effectiveness applied on the
dual-porosity reservoir has been studied in [26]. It was discovered that it depends on the
factor affecting the conductivity between the matrix and fractures. The lower the factor, the
higher increase in the recovery factor can be obtained thanks to the soaking stage. It was
also discovered that for large factor values the soaking phase can negatively affect the oil
volume that could be produced during the huff-n-puff process. For the analyzed reservoir
the coefficient determining the conductivity between the matrix and fractures equals 0.95.
For this value, the estimated duration of the soaking stage calculated based on the equation
determined in [26] equals 2 months. Based on [26], it was also calculated that comparing to
the huff-n-puff variant with the soaking stage skipped, the difference between cumulative
oil production equals −45 m3. As in the case of the analyzed reservoir, the soaking phase
reduces the effectiveness of the huff-n-puff process and should be skipped. In this case,
the soaking phase has the opposite effect to the intended one. Hence, the CO2 huff-n-puff
method with the omitted soaking period was selected as an effective method of carbon
dioxide injection into the analyzed reservoir.

During the injection phase, a constant carbon dioxide injection flow rate (90,000 m3/day)
was assumed due to practical aspects related to its transmission and collection as well as the
amount of CO2 generated by the emitter selected for the analyzed reservoir. Production is
carried out at a constant bottom hole pressure of 50 bar, taking into account the limitations of
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the surface installation. Theoretically, the carbon dioxide injection flow rate and the bottom
hole pressure (during production) can be optimized with the SMAC tool. However, from a
practical point of view, it is not necessary, as operating conditions other than those assumed
would be impractical. Optimization of the operating conditions could be considered in a large
project where there is no installation yet.

For the CO2-EOR method configured in the way described above, followed by carbon
dioxide storage in the reservoir (CCS-EOR), a parameterized decision tree was developed,
as shown in Figure 6. The design of the developed decision tree was based on simula-
tion tests and engineering knowledge. This is in line with the proposed concept of the
auto-adaptive parameterized decision tree. In the methodology proposed in this paper, en-
gineering knowledge is utilized to design a tree structure suitable for a particular problem,
and artificial intelligence is used to select the best limit values of attributes. The auto-
adaptive decision tree presented in Figure 6 is a visualization of the proposed methodology.
It presents the decision tree proposed by the authors for the considered production process.
However, in the proposed methodology, a decision tree can be modified and adjusted to a
specific production process. Hence, the selected attributes can be replaced by any other
attributes. These attributes can be selected by domain knowledge or the selection process
can be automated with the use of, e.g., feature selection algorithm. Hence, the proposed
methodology is general and as a result, it applies also to more complex systems.
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In the proposed decision scheme of the CCS-EOR process, as only two stages of the
huff-n-puff process were taken into account, the well control function takes the following form:

u(t, p)=
{

q1(t) > 0 for t : Υ(t) < 0
q2(t) < 0 for t : Υ(t) > 0

(15)

where Y is the control function, which is determined by the proposed decision tree. Thus,
this tree describes the decision-making process to be carried out at each time step of the
simulation j to determine the control uj+1 = u(t, p) for the next step.

Following the proposed decision tree, in the case of the EOR process, first, the value
of the average reservoir pressure is checked. If it reaches the initial pressure level, it
is necessary to stop the injection and start the production period due to the possible
destruction of the reservoir structure. For lower pressures, the oil flow rate is checked.
A value of zero means that CO2 injection is currently in progress and it is continued
until the reservoir pressure limit value (which has been optimized) is reached. When it is
exceeded, the production period is automatically started. The oil flow rate greater than
zero means that there is a production period. If the oil flow rate exceeds the economic limit,
the production continues until the minimum performance for the cycle, which has also
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been parameterized, is reached. For the performance lower than the assumed level, the
injection period is started to rebuild the reservoir pressure. This scheme is repeated until
the moment when, although the production period lasts, the oil flow rate does not exceed
the profitability threshold imposed on the oil performance. For the analyzed reservoir, the
threshold was set at 0.25 m3/day. Due to the inability to continue oil production from the
reservoir, the CCS process is automatically started. As part of this phase of the CCS-EOR
process, carbon dioxide is injected into the reservoir until the initial reservoir pressure
is reached. Then, the injection is stopped and the entire analyzed CCS-EOR process is
completed. Thus, the developed decision scheme can determine both the process control
and the duration of the investment.

The limits of the average reservoir pressure to which injection should be continued and
the oil flow rate to which production should be carried out in each cycle of the CO2 huff-n-
puff process have been parameterized to optimize the CCS-EOR process. The proposed
decision tree was directly implemented in the ECLIPSE reservoir simulator (Schlumberger
Limited, Houston, TX, USA).

3.4. Intelligent Process Control Determination with the Use of the Created Tool

To use the created tool to determine the optimal control of the CCS-EOR process, it was
necessary to define a quality indicator (describing the effectiveness of the CCS-EOR process)
and the domains of decision variables (two parameters of the proposed decision tree).

In this work, a quality indicator that enables the evaluation of the obtained results is
the NPV of the project. For the CO2-EOR process carried out using the CO2 huff-n-puff
method followed by carbon dioxide storage in the reservoir (CCS), the NPV takes the
following form:

J(u) = NPV(M, u) =→


M
∑

i=1

qricr−qCO2 ikCO2
(1+d)τi ∆ti for EOR

M
∑

i=1

qricr−qCO2 ikCO2+qCO2 icCO2
(1+d)τi ∆ti for CCS

(16)

where qr is the oil flow rate [m3/day], qCO2 is the carbon dioxide flow rate [m3/day], cr is
the oil price, cCO2 is the price for carbon dioxide storage (revenue from selling the storage
capacity for CO2), kCO2 is the cost of CO2 injection [USD/m3], d [/] is the annual discount
rate and τ is the investment time [year]. For the CCS-EOR process, it can be assumed that
the emitter pays for the disposal of carbon dioxide. In this paper, it is assumed for the
considered CCS process. However, in the case of the assumed cyclic injection of carbon
dioxide into the reservoir, during the CO2-EOR process, carbon dioxide cannot constitute a
profit as the emitter is not able to continuously utilize the produced gas. This assumption
is in line with the goal of the CO2-EOR process, which is to maximize the oil recovery
factor while minimizing the amount of carbon dioxide used [17]. Therefore, the NPV is
defined by two different formulas depending on the process being carried out. In addition,
in both cases, the income from oil production and the cost of CO2 injection were also
taken into account. Due to the practical lack of water production (negligible water flow
rate), the related costs were omitted [29,30]. In this analysis, it was not necessary to take
into account the costs related to the implementation of the CCS-EOR method, such as
the construction of a pipeline transporting carbon dioxide, as these costs are fixed and
do not depend on the control. Moreover, it was assumed that the gas containing carbon
dioxide produced in the huff-n-puff process would be injected into the reservoir located
in the vicinity of the analyzed reservoir. Therefore, it is also not an additional cost for the
analyzed reservoir. The presented form of the NPV function has been implemented directly
in the ECLIPSE reservoir simulator (Schlumberger Limited, Houston, TX, USA). Hence,
the NPV value is directly calculated by the reservoir simulator and then it is used by the
SMAC tool to optimize parameters values. Finally, both the maximized value of the NPV
and the optimal process control are determined by the created tool written in the Python
programming language.
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Due to the practical limitations, the domains of the oil flow rate and the average
reservoir pressure were defined by finite sets of numbers from a technologically justified
range. The assumed domain of the oil flow rate contains values changing every 1 m3/day,
while for the average reservoir pressure every 10 bars. Parameters domains defined in this
way allowed for a significant reduction of the search space. As a result, it was possible
to reduce the number of iterations performed in the optimization process with the use
of the SMAC tool. It translated into a significant reduction in the calculation time, as
the duration of a single simulation ranged from a few to several hours depending on the
selected process control.

To assess the effectiveness of the proposed solution, the developed tool was used to
automatically determine the optimal control of the CCS-EOR process implemented on
the analyzed reservoir. The scenario assuming an arbitrary selection of the decision tree
parameter values was also considered. This scenario reflects a more traditional way of
selecting the process control. In the analyzed case, the limit values were set at 300 bar and
4 m3/day based on tests and analyses performed. These values also served as a starting
point for the calculations performed by the SMAC tool. The base variant that assumes the
continuation of the current production scheme is also considered. Production is carried
out at constant bottom pressure until the economic limit imposed on the oil flow rate is
reached. This scenario makes it possible to determine the impact of the implementation of
the CCS-EOR process on reservoir production.

4. Results

As a result of intelligent reservoir control determined with the use of the developed
tool, the parameters of the CCS-EOR process were set at 210 bar and 9 m3/day. To
illustrate the feasibility of using the developed tool to control production processes, a
comparative analysis of the considered scenarios was made. The most important reservoir
and production parameters, such as the average reservoir pressure and cumulative oil
production were compared. To finally compare the analyzed scenarios, the NPV indicator
was also compared.

The comparison of the average reservoir pressure is presented in Figure 7. In the
base scenario, the reservoir energy is quickly depleted, which results in the reservoir
abandonment after less than two years. The implementation of the CO2-EOR method
results in a partial reconstruction of the reservoir pressure at the initial process phase as in
the proposed decision scheme it starts with the CO2 injection. An increase in the reservoir
pressure enables it to produce more oil during the production period. As in the scenario
optimized with the developed procedure, the pressure limit is reduced from 300 bars
(assumed in the arbitrary scenario) to 210 bars, and the first production period starts earlier.
Hence, the costs of the initial CO2 injection can be covered quicker by the revenue from the
produced oil. The lower value of the pressure limit and higher value of the oil flow rate
limit (9 instead of 4 m3/day) also increase the number of huff-n-puff cycles, and therefore
the number of production periods. It allows oil to be produced and carbon dioxide to be
injected in different market states, reducing the risk of producing oil with low oil prices
and injecting CO2 when its cost is high. The second production period is shorter due to
the quicker decrease of the oil flow rate comparing to the first cycle. In addition, the CCS
process in the optimized scenario starts earlier as thanks to the reduction of the length of
the huff-n-puff cycles the inability to produce oil above the critical oil flow rate could be
detected faster. The whole CCS-EOR process ends a bit later as the additional production
period causes the final part of the pressure curve to be shifted in time compared to the
arbitrary scenario. It brings a positive economic effect as, during the CO2-EOR process, the
injected carbon dioxide is a cost, while during the CCS phase it is a profit. The application
of the CCS process results also in the extension of the reservoir’s life. In the optimized
scenario, the CO2-EOR period lasts 16 years. During this process, 586 million m3 of CO2 is
injected into the reservoir, and 336 million m3 of CO2 is recovered to the surface. Thus, in
the optimized scenario, 250 million m3 of carbon dioxide is stored during the EOR process
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and 405 million m3 of CO2 is injected and stored during the CCS process. In the variant
based just on engineering knowledge, only 270 million m3 is injected in the CCS period. It
is 111 million m3 less than in the optimized option, which is as much as 16 %. The increase
in the amount of carbon dioxide injected during the CCS period (obtained thanks to the
use of the created tool) translates directly into the additional income that can be obtained
when the proposed intelligent process control is applied.

Energies 2021, 14, x FOR PEER REVIEW 16 of 21 
 

 

remaining in the reservoir is condensate, i.e., relatively light hydrocarbons that are easy 
to extract. Moreover, such a high result assumes another 16 years of production. The 
additional oil production in the optimized scenario during this period is obtained at no 
cost, as only the process control is changed. As the pressure limit value is lowered and the 
oil flow rate limit value is increased, the duration of a single cycle of the CO2 huff-n-puff 
method is shortened. It results in the production of most of the additional oil earlier than 
in the unoptimized variant. It allows the revenue from the implementation of the CCS-
EOR process to be achieved faster. 

 
Figure 7. Comparison of the average reservoir pressure. 

 
Figure 8. Comparison of cumulative oil production. 

The NPV comparison for the considered scenarios of further exploitation of the 
analyzed reservoir is presented in Figure 9. The present values for each year of the 
analyzed scenarios are summarized in Table 2. The production continuation with the 
current production scheme enables a continuous increase in NPV, but it is small and 
translates into the revenue of USD 1,540,000. Since the implementation of the CCS-EOR 
method begins with the injection of carbon dioxide into the reservoir (no oil production), 
the NPV value drops below zero in the initial stage of the process. The production period 
causes compensation for the costs incurred and significant revenues. In the optimized 
variant, the compensation is obtained earlier, as stages of the huff-n-puff process are 
shorter. In the first production stage of the optimized scenario, the oil production is 
smaller than in the production stage of the unoptimized option. However, as this 

Figure 7. Comparison of the average reservoir pressure.

The summary of changes in the cumulative oil production obtained during the ana-
lyzed process is presented in Figure 8. If the current production scheme is continued only
2550 m3 of oil can be produced as the critical oil flow rate is quickly reached due to the
lack of reservoir energy. However, during the CCS-EOR process designed without the use
of optimization 52,000 m3 of additional oil is produced. It confirms the potential of the
CCS-EOR method. In this case, the whole oil volume is produced during one production
period. Constant parts of the curve relate to the CO2 injection periods when there is no
oil production. Application of the proposed intelligent control of the process makes it
possible to perform two production stages and increase the additional oil volume that
can be produced by 3.5%. It gives the cumulative oil production equal to 54,000 m3. This
value, with the geological resources of 308,000 m3 for 1997, translates into an increase in
the recovery factor by 17.5%. The result obtained is so high as it is a small volumetric
gas-condensate reservoir with relatively good filtration properties (Table 1). As production
under primary mechanisms enabled to achieve a very high recovery factor (70%), the oil
remaining in the reservoir is condensate, i.e., relatively light hydrocarbons that are easy
to extract. Moreover, such a high result assumes another 16 years of production. The
additional oil production in the optimized scenario during this period is obtained at no
cost, as only the process control is changed. As the pressure limit value is lowered and the
oil flow rate limit value is increased, the duration of a single cycle of the CO2 huff-n-puff
method is shortened. It results in the production of most of the additional oil earlier than in
the unoptimized variant. It allows the revenue from the implementation of the CCS-EOR
process to be achieved faster.

The NPV comparison for the considered scenarios of further exploitation of the
analyzed reservoir is presented in Figure 9. The present values for each year of the
analyzed scenarios are summarized in Table 2. The production continuation with the
current production scheme enables a continuous increase in NPV, but it is small and
translates into the revenue of USD 1,540,000. Since the implementation of the CCS-EOR
method begins with the injection of carbon dioxide into the reservoir (no oil production),
the NPV value drops below zero in the initial stage of the process. The production period
causes compensation for the costs incurred and significant revenues. In the optimized
variant, the compensation is obtained earlier, as stages of the huff-n-puff process are shorter.
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In the first production stage of the optimized scenario, the oil production is smaller than
in the production stage of the unoptimized option. However, as this production occurs
earlier, the NPV at the end of this stage is greater than in the case of the unoptimized
variant. Then, the decrease in the curve is related to the CO2 injection stage. As it is
shorter in the optimized variant, this stage generates a smaller decrease in NPV comparing
to the unoptimized scenario. In the optimized variant, there is one more period when
NPV increases and then decreases as the number of huff-n-puff cycles is increased. The
CCS process, in which the injection of carbon dioxide brings a profit, causes an additional
increase in NPV in the last period of the whole CCS-EOR process. As this period lasts
longer for the optimized scenario, it generates higher income. In the case of an unoptimized
scenario, it is possible to obtain total revenues of USD 3,725,000. The process control
determined by the developed tool enables the increase of revenues to USD 5,325,000. Thus,
process control according to the proposed intelligent strategy can increase revenue by
49% comparing to the unoptimized variant. It results from the fact that thanks to the
application of the created tool, the oil production can be increased by 3.5% during the
CO2-EOR phase while reducing the amount of carbon dioxide injected at that time by 16%.
Hence, application of the process control determined with the use of the developed tool
can quickly and effectively allow the recovery factor to be increased, and the costs of the
process to be reduced, and thus the profit on the project to be increased. In addition, such
an intelligent process control application allows an ecological effect to be achieved, thanks
to the more efficient use of the geological resources of the reservoir.
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Table 2. Comparison of present values.

Time
[years]

CCS-EOR
Optimized Values

[USD]

CCS-EOR Arbitrary
Values
[USD]

Production Only
[USD]

0 0 0 0
1 −929,409.08 −929,409.08 1,347,989.00
2 −929,437.93 −929,437.93 193,039.00
3 −792,685.00 −792,685.00 -
4 1,330,283.75 −734,742.00 -
5 2,965,430.13 −522,804.00 -
6 1,702,562.88 2,336,160.13 -
7 935,204.75 2,038,083.35 -
8 806,034.50 1,846,598.03 -
9 −365,077.00 1,338,357.75 -
10 −463,012.00 652,428.50 -
11 −429,167.00 459,756.25 -
12 −94,643.00 17,617.00 -
13 679,379.50 −366,393.50 -
14 491,052.50 −339,610.75 -
15 −260,780.50 −314,786.00 -
16 −279,301.50 −291,776.25 -
17 188,176.00 −219,436.00 -
18 176,719.50 167,172.25 -
19 154,903.00 154,903.50 -
20 155,060.50 155,060.50 -
21 132,246.00 - -
22 151,797.00 - -

5. Conclusions

In this work, a novel tool that enables the determination of intelligent reservoir control
for a given production process, which brings the highest possible profit, was created. The
developed tool is based on a combination of artificial intelligence, control theory, and
computer simulation of hydrocarbon reservoirs. It determines the control in each time step
of the simulation based on an auto-adaptive parameterized decision tree implemented
in the ECLIPSE reservoir simulator (Schlumberger Limited, Houston, TX, USA). The
optimal values of the parameters are selected with the use of the AI-based optimization
tool called SMAC. The combination of a reservoir simulator and an optimization tool has
been implemented in the Python programming language. The developed tool enables
self-improving automatic control of a given production process. The structure of the
developed procedure and its high computational efficiency make it possible to apply it to
simulation models of real hydrocarbon reservoirs with a high degree of complexity and a
long simulation time.

The main advantage of the method proposed in this paper is that with the use of
the created tool, the optimal process control can be determined automatically. As in the
proposed methodology, the control scheme is presented in the form of the decision tree,
and the optimized scheme can be easily used by the operator to control the real production
process. The disadvantage is that to determine this optimal control scheme, the reservoir
model is needed.

An example of the application of the created tool for the automatic determination of
the CCS-EOR process control on a real gas-condensate reservoir confirmed the effectiveness
of the developed tool. In the optimized variant of the CCS-EOR process, the CO2-EOR
period lasts 16 years. During this time, 250 million m3 of carbon dioxide can be stored
and 54,000 m3 of additional oil can be produced. During 5 years of the CCS process,
405 million m3 of CO2 is injected and stored. Process control according to the proposed
intelligent strategy can increase revenue by 49% compared to the unoptimized variant. It
results from the fact that thanks to the application of the created tool oil production can
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be increased by 3.5% during the CO2-EOR phase while reducing the amount of carbon
dioxide injected at that time by 16%. Application of the proposed intelligent control of
the process determined with the use of the developed tool makes it possible to increase
the recovery factor and also to reduce the costs of the process, and thus increase the profit
on the project without incurring additional financial outlays. The effect of more rational
management of resources can be also obtained as the efficiency of hydrocarbon reservoir
production can be increased.
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Nomenclature

a vector of decision tree attributes
cz unit price of fluid generating profits [USD/m3]
ck unit price of fluid generating costs [USD/m3]
cr oil price [USD/m3]
cCO2 price for carbon dioxide storage [USD/m3]
d annual discount rate [/]
El oil flow rate economic limit [m3/day]
f (x, u, t), f (x(t), u(t), t) system state function
FOPRb field oil flow rate (without CO2) [m3/day]
FPR average reservoir pressure [bar]
j time step of the reservoir simulation
J, J(u), J(x, u, t), J(z), J(ẑ) quality indicator
kCO2 cost of CO2 injection [USD/m3]
K number of iterations of the SMAC tool [/]
l number of control variables
M total number of time steps [/]
n number of state variables
NPV Net Present Value
Nd number of control time discretization points [/]
p vector of decision tree parameters
PI initial average reservoir pressure [bar]
R set of real numbers
q(t) well performance as a function of time [m3/day]
qk well performance of fluid generating costs [m3/day]
qz well performance of fluid generating profits [m3/day]
qr oil flow rate [m3/ day]
qCO2 carbon dioxide flow rate [m3/day]
t time [days]
ti i-th time step [days]
t0 initial time step [s]
tk final time step [s]
T maximum time value [s]
u, u(t), u(t, p) control
ti control in i-th time step
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û(t) optimal control
û optimal control vector
ûi optimal control in i-th time step
U set of feasible control values
Ud set of feasible controls
x vector of state variables
x0 initial state of the system
z vector of decision variables
ẑ optimal vector of decision variables
Z decision space
Zd set of feasible solutions
τi period from the beginning of the investment to the step i [year]
Y(t) time-dependent control switching function
Φ cost function related to the final state
Ψ cost function related to the current state
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