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Abstract: Energy system modeling is essential in analyzing present and future system configurations
motivated by the energy transition. Energy models need various input data sets at different scales,
including detailed information about energy generation and transport infrastructure. However,
accessing such data sets is not straightforward and often restricted, especially for energy infrastructure
data. We present a detection model for the automatic recognition of pipeline pathways using a
Convolutional Neural Network (CNN) to address this lack of energy infrastructure data sets. The
model was trained with historical low-resolution satellite images of the construction phase of British
gas transport pipelines, made with the Landsat 5 Thematic Mapper instrument. The satellite images
have been automatically labeled with the help of high-resolution pipeline route data provided by the
respective Transmission System Operator (TSO). We have used data augmentation on the training
data and trained our model with four different initial learning rates. The models trained with the
different learning rates have been validated with 5-fold cross-validation using the Intersection over
Union (IoU) metric. We show that our model can reliably identify pipeline pathways despite the
comparably low resolution of the used satellite images. Further, we have successfully tested the
model’s capability in other geographic regions by deploying satellite images of the NEL pipeline in
Northern Germany.

Keywords: pipeline detection; CNN; Landsat 5; U-Net; gas transport network

1. Introduction

Integrating renewable energy sources (RES) into the existing energy infrastructure
is an important research topic in energy system modeling. Recent studies investigate the
synergies offered by sector-coupling technologies [1] and how they can contribute to the
integration of higher shares of RES in the energy system. Especially, the coupling between
gas and power grids [2,3] is of major interest, where, for example, modern power-to-gas
(P2G) technology could be used to store electricity in the gas network [4]. With the rising
importance of the different energy grids, energy system modelers face the central problem
of insufficient data. Transmission Systems Operators (TSOs) of transport grids are generally
reserved when it comes to publishing their infrastructural data sets. Thus, a lot of effort
has been undertaken to create such open-source data for energy networks.

The OpenStreetMap project has already proven to be a legitimate source for data
mining projects regarding the European power grid, e.g., [5,6]. However, equal efforts
for collecting gas transport pipelines in OpenStreetMap currently seem less promising,
as the respective data is still very sparse [7]. Since gas transport pipelines are buried
underground and thus are not identifiable with the naked eye, they are hard to map
without additional efforts. Therefore, it comes without surprise that current open-source
data models of the gas transport grid [8,9] have issues, limiting the available level of detail
and geographic coverage.

This work shows that modern remote sensing using satellite images is a well-suited
option to gather infrastructural data of the gas transport network with very high geographic
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accuracy. Even though remote sensing has already been frequently applied to pipelines,
such applications leaned more towards monitoring purposes like leakage detection [10]
or environmental change detection [11]. For such undertakings, the underlying pipeline
network data is usually provided by the respective pipeline operators. From a machine
learning standpoint, detecting pipeline routes is an entirely different challenge that requires
the segmentation of line-like infrastructure objects in images. Recently, Convolutional
Neural Networks (CNN) were successful in edge-detection [12] and in pixel-wise line
detection in a fully convolutional setting [13].

Our paper is structured as follows: In Section 2, we describe our methodology in
detail before the training and validation results are documented in Section 3. Conclusions are
drawn in Section 4. The paper is based in part on the work done for this master’s thesis [14].

2. Methods

In the following, we describe our methodology, which includes the model architecture
of our deep learning network, the extraction of suitable images and training data, the
satellite image preparation, and the training and validation process. Finally, we also show
the results of applying our model to a new geographic region.

2.1. Model

Deep learning describes a set of algorithms that allows computational models to learn
data representations with multiple levels of abstraction [15]. Its applications range from
the improvement of industrial processes [16,17] to the support in medical diagnostics [18]
to remote sensing [19,20] and computer vision [21]. In computer vision, problems like
the detection of pipeline-like objects can be solved by classifying each pixel of an image
to a respective object class, a process known as semantic image segmentation [22]. Using
Convolutional Neural Networks (CNN) has shown success in addressing the challenges
posed by semantic image segmentation [23,24]. One particular CNN architecture is U-Net, ini-
tially developed for multi-class image segmentation of biomedical images with little training
data [25]. The U-Net has gained a lot of popularity in recent years [26–31], mainly due to its
success in benchmark tests as well as its simplicity, efficiency, and robustness. Furthermore,
the U-Net achieves a pixel-wise segmentation through the model architecture avoiding
computational expensive and less accurate sliding-window approaches for localizing the
target classes in the images [25].

A schematic illustration of the model used in this work can be seen in Figure 1. The
architecture takes 64 × 64 px images with five channels as input and yields a map of the
same dimensions with one channel. It contains a total number of 23 convolutional layers
and can be divided into 2 parts: a contracting part (left) and an expansive part (right). The
left part is the downsampling part, also called the encoder. It is a convolutional network
for the increase of feature information and the reduction of spatial information. This is
achieved by consecutive sets of two 3 × 3 convolutions, followed by a ReLU layer and a
2 × 2 max-pooling operation. Therefore, the encoder reduces the spatial resolution from
64 × 64 px to 2 × 2 px. At the same time, the number of feature layers increases from 5 to
512. The right part is the up-sampling part, also called the decoder. Its goal is to combine
spatial and feature information through consecutive sets of two 3 × 3 convolutions with
intermediate batch normalization layers, followed by a 2 × 2 up-sampling layer. The
decoder reduces the number of feature layers from 512 to 1 while increasing the spatial
resolution back to 64 × 64 px. Additionally, skip connections perform a concatenation
between distant layers. Implemented symmetrically between encoder and decoder, skip
connections help to share fine-grained feature information to reconstruct the image from
the learned features better.

The model was implemented using the Python library Segmentation Models [32] which
is based on the machine learning and neural network libraries Tensorflow and Keras.
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Figure 1. Schematic illustration of the U-net-based model used in this work. The left part shows the encoder reducing the
input image size from 64 × 64 px to 2 × 2 px. The right part shows the decoder increasing the image size again to 64 × 64 px.

2.2. Data Source

In our approach, we rely on historical satellite images of pipelines during their con-
struction phase. A broad collection of construction dates for European gas transport
pipelines is provided in the open-source database of the non-governmental organization
Global Energy Monitor [33]. To identify a single consistent image source, we cross-checked
construction dates with the operation time of a variety of suitable satellite missions. We
then chose the Landsat 5 satellite mission as it provides open-access imagery spanning
from 1984 to 2013. The Landsat program is operated by the United States Geological Survey
(USGS) and the National Aeronautics and Space Administration (NASA). The onboard
mounted whisk broom scanner, named Thematic Mapper (TM), supplies suitable satellite
imagery for our purposes. The image scenes cover an area of 185 km × 172 km with a
resolution of 120 m px−1 for its thermal band and 30 m px−1 for the remaining bands. The
instrument’s resolution is not sufficient to detect gas transport pipelines, which commonly
have only diameters of up to 1 m. It is, however, possible to detect construction pathways,
so-called right of ways (ROWs). During the construction phase, ROWs are cleared from any
vegetation alongside a width of 16 to 28 m [34]. We have used satellite imagery depicting
ROWs to create a training data set for Great Britain. We did not necessarily choose images
with the lowest cloud coverage index, but we have always considered images with the
clearest view of the pipeline pathway. The data set was labeled with geo-referenced data
for the British gas transmission grid (see Figure 2). This data is openly provided by the gas
network operator National Grid on their web page [35]. The data we will use for testing was
created from images of the NEL (Nordeuropäische Erdgasleitung) pipeline in Northern
Germany (see Figure 3) to check how well the model generalizes to an unknown data set.
The geo-referenced data of the NEL pipeline was obtained from OpenStreetMap (OSM)
using the esy-osmfilter [7] Python package.
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Figure 2. Gas pipeline routes for model training and validation: Gas Transport Network Great Britain [35].

Figure 3. Gas pipeline routes for model testing: NEL Pipeline in Northern Germany [36].

2.3. Image Data Processing

In the following, we discuss the technical details of the image labeling process with
which we have classified pixels as pipelines or as background. First, we have created ground
truth data with the data of the British pipelines with the help of the Python package
Shapely [37]. In this process, all 6 visual bands of the satellite imagery were normalized to a
range between 0 and 1 using the normalization factor 10−4 as suggested by the USGS [38].
Pixels with invalid values were replaced with the value 0. Finally, the preprocessed
satellite images and corresponding ground truths were cropped into image-mask pairs
of the dimensions 64 × 64 px (see Figure 4). It was hard to visually confirm the pipeline’s
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construction on images with few pixels tagged as pipeline. Thus, only image-mask pairs
were kept for training and testing if they contained more than 50 px tagged as pipeline.

Figure 4. Schematic illustration of the cropping process used to create image-mask pairs. The left
side shows the satellite image, and the right side shows the corresponding mask.

During an additional visual inspection of the image-mask pairs, special care was
taken to ensure that no significant mislabeling of the images occurred, that the pipelines
were already entirely constructed at that time, and that the ROW was clearly visible. This
process obtained 324 image-mask pairs for the model training and 33 image-mask pairs
for model testing. Due to the limited data on pipeline pathways and construction dates,
the overall number of training images is considered small. Therefore, data augmentation
by horizontal flip, vertical flip, rotation of 90°, transpose, and 3 × 3 grid shuffle was used
on the image-mask pairs during each training cycle to increase the number of available
training data (see Figure 5). Each augmentation was applied with a probability of 50 %.
The application of multiple augmentations was possible, and the original resolution of
64 × 64 px is always preserved.

2.4. Training and Validation Process

Like mentioned before, the U-Net architecture is well suited for problems like the
detection of pipeline-like objects. However, to make sure it realizes its full potential, the
so-called hyperparameters need to be tuned. The most crucial hyperparameter according
to [39,40] is the learning rate. The learning rate defines the step size the optimizer takes
towards the minimum of the loss function [41,42]. Our model was trained with initial
learning rates of 10−3, 10−4, 10−5, and 10−6 using Dice loss (DL) as a loss function [43,44].
Dice loss is based on the Dice coefficient (DC), which calculates the similarity between two
images, in this case, between the model’s prediction and the ground truth (see Figure 6).
It ranges between 0 and 1, where 0 indicates no overlap between prediction and ground
truth and 1 indicates a complete overlap. Loss functions need to be minimizable; hence, the
Dice loss is defined as DL = 1 − DC. Further, we applied the Adam optimizer [45] for the
gradient-based optimization of the weights using adaptive learning rates. The authors of
the Adam optimizer recommend an initial learning rate of 10−3. The remaining parameters
of the optimizer were set to the recommended values given in [45].
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Figure 5. Overview of five augmentations used on the image-mask pairs during the training process.
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Figure 6. Schematic illustration of the calculation of the Dice coefficient.

We have chosen Intersection over Union (IoU) as a scoring metric, which is common
for evaluating the performance of image segmentation methods for imbalanced classes.
The IoU is a number between 0 and 1, and the higher the number, the better the prediction
agrees with the ground truth [46]. Predictions with an IoU score of greater than 0.5 are
generally considered as “good” [47]. As we only have a small amount of image-mask data,
the validation will result in a relatively noisy estimate of predictive performance. This
can be partially compensated by using k-fold cross-validation [41]. Thus, we split our data
into five folds, where one fold is left out for validation, and the other four are used for
model training. This procedure is repeated five times such that each sub-sample is used
once for the model validation. This allowed us to train our model for each learning rate
with five different validation and training data sets combinations. A complete training
process consists of a maximum of up to 200 epochs. An epoch is defined as a complete
cycle of the training data set through the entire training process. Like mentioned before,
an augmentation was applied to each image during every training cycle with a certain
probability. No augmentations were applied to the validation data. The training process
consists of assessing the model output by the loss function after each image and updating
the model parameters by the optimizer. After each epoch, the model was validated on the
validation fold using the IoU metric. The learning rate is reduced by a factor of 0.1 if the
validation IoU does not change for 15 epochs. This increases the chance of convergence
towards a local optimum at the cost of more iteration steps. The training is stopped if the
validation IoU does not improve for 20 epochs.
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3. Results and Discussion

In this chapter, we cover the training and testing and the overall performance of our
model by discussing the IoU scores, the quality of the ground truths, the visual inspection
of the prediction, and the generalization capabilities of the model.

3.1. Training and Validation

The validation IoU and the loss calculated on the validation set are common metrics to
guide the training process and measure the overfitting degree. The maximal validation IoU
and minimal validation loss of all epochs for each split were averaged for each learning
rate. The mean maximal validation IoUs and minimal validation losses for each learning rate
can be seen in Figure 7. The training and validation IoU scores of each training epoch of
one of the five cross-validation splits are plotted over the number of epochs alongside the
mean maximal validation IoU score of the corresponding learning rate in Figure 8a–d. For
the learning rates 10−3, 10−4, and 10−5, the mean maximal validation IoU scores and
minimal validation losses are very consistent. For the 10−6 learning rate, the very low
mean maximum validation IoU score and the very high mean minimum validation loss
suggest the non-convergence for all splits.

Figure 8a–c confirms this assumption. Further, we notice high fluctuations of the vali-
dation IoU score between each training epoch. These fluctuations can be explained by the
relatively low number of training samples of 324 image-mask pairs compared to, e.g., the
Massachusetts Roads data set containing more than 1000 image-mask pairs 1000 × 1500 px
each [48]. Figure 8d shows more minor fluctuations but no trend of convergence.

1×10−3 1×10−4 1×10−5 1×10−6
Learning rate

0.0

0.2

0.4

0.6

0.8

Io
U 
/ L

os
s

Mean max. val. IoU score
Mean min. val. loss

Figure 7. Minimum loss and maximum IoU score averaged over all training splits for each learning
rate with standard deviation.

3.2. Testing

We test the ability of our fully or nearly converging models to generalize to another
geographic region with the data set of the NEL pipeline in Northern Germany consisting of
33 images. The IoU scores and the losses were averaged for each learning rate (see Figure 9).
The highest mean IoU of 0.56 ± 0.04 was measured for the learning rate of 10−4 with a
mean loss of 0.31 ± 0.03. The lowest IoU of 0.52 ± 0.03 and highest loss of 0.34 ± 0.02 were
obtained for the learning rate of 10−5. The best performing split of the learning rate of 10−4

was found to be split 5 with an IoU score of 0.58 and a loss of 0.28. This means it is still
performing 0.13 worse in terms of IoU score than the mean maximum validation IoU score
during training. To get a better picture of a possible cause, the performance of the trained
model for the best performing split (5th split of learning rate of 10−4) was further visually
analyzed (see Figure 10).
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Figure 9. Mean loss and IoU score of trained models applied to the test data set of the NEL pipeline
for each learning rate plotted with the standard deviation.
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Figure 10. A selection of original satellite images of the NEL pipeline, ground truths, and predictions
from the trained model. The orange boxes on the left indicate false negatives, in the middle are
the labeling errors, and on the right the false negatives. (a) shows an accurately predicted pipeline,
(b,c) show prediction mistakes, and (d) depicts a case of an incorrectly labeled ground truth.

We state that our model can reliably predict pipeline pathways. Figure 10a shows
an input image that contains a high number of pixels belonging to infrastructure visually
similar to the pipeline pathway. The model is still able to accurately predict the path of the
pipeline without any incorrect labeling. However, in Figure 10b, parts of the image that are
visually close to the pipeline, e.g., streets, are incorrectly labeled as a pipeline (which are
false positives), and parts of the pipeline with low contrast to the background are falsely
labeled as background (which are false negatives). It is not conclusive why only this small
part is labeled as pipeline and not similar areas like in Figure 10a or c. Again, Figure 10c
shows the case of false negatives due to visual similarities between the pipeline pathway
and the background. However, our model could still correctly predict the proper course of
the pipeline even for inaccurately labeled ground truth images (see Figure 10d).

Overall, the visual inspection of the prediction indicates the reliability of the model.
The lower IoU score for the test data set can be attributed to multiple factors. The georef-
erenced data originated from OpenStreetMap and not directly from the responsible TSO.
This could have led to additional errors in the labeling process, resulting in more inaccurate
ground truths, as those are the basis for assessing the model’s performance. Another factor
could be the differences in the geographical regions between the training data set and the
validation data set. The course of a pipeline appears visually similar throughout Europe.
The background, however, is sometimes subject to dramatic changes due to, e.g., the change
of the observed vegetation, infrastructure, or soil and crops type. Geographically, Great
Britain is located in the “boreal” region, whereas Germany is in the “continental” region.
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However, there are even more significant geographical differences between European
countries, as is the case, for example, in the “Mediterranean” region, which we have not
investigated yet. The model was not trained on the test data set and was therefore unable
to learn those features. This may have resulted in more false-positive labels and ultimately
in a lower IoU score.

Generally, the quality of the labeling could only be confirmed visually, and the authors
had to trust the accuracy of the data provided by OpenStreetMap or the TSO. Occasional
labeling errors could be detected visually for the training and testing data set (e.g., Figure 10d).
Further, a constant temporal difference between the construction of the pipeline and the
recording of the satellite image could not be achieved due to the cloud coverage. Finally,
due to the resolution of the images, the pipeline labels were set to a width of 2 pixels.
However, the ROW varies, like mentioned above, between 16–28 m which corresponds to
instead 1–2 pixels. All the described effects mentioned above may significantly decrease
ground truth quality, thus diminishing the overall IoUs.

In summary, Figure 10 indicates the strengths and weaknesses of the model’s ability
to predict pipeline pathways on a small scale. In Figure 11 a pipeline section of the NEL
pipeline of 22 sub-images (64 × 64 px) shall demonstrate that the small scale prediction
errors play a minor role when it comes to detecting pipelines on a larger scale. The
continuous pathway can easily be reconstructed from the prediction depicted in Figure 12.
The model performs well on Landsat 5 images of regions with vegetation similar to the
areas it was trained with. To extend the model’s geographic limitations, more training data
of areas with different vegetation is needed. Additionally, the model is limited to Landsat
5 data. To detect pipelines on images of various sources, the model needs to be retrained
with these images. Thus, the current model can only detect pipelines build during the
service time of Landsat 5 between 1984 and 2013.

Figure 11. Section of the NEL pipeline composed of 22 sub-images (64 × 64 px).

Figure 12. Model’s prediction using the 22 sub-images depicted in Figure 11.
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4. Summary

We have shown that historic open-source satellite images are suited to detect pipeline
pathways automatically. We used satellite images of the Landsat 5 satellite created between
1984 and 2013 to train a deep learning algorithm to provide pixel-level identification of
pipeline pathways during their construction phase. The model was trained with imagery
of the gas pipeline transport network of Great Britain. We have successfully used training
data augmentation and k-fold cross-validation to compensate for the limited amount of
available training data of only 324 64 × 64 px images. The best results for our model
were obtained with a learning rate of 10−3 converging at a mean max. val. IoU score
of 0.71 ± 0.02. IoU scores of greater than 0.5 are generally considered “good”, and we,
therefore, state that the used model can confidently identify pipeline courses. In this work,
we have also shown that our model can detect a major pipeline in the geographic region
of Northern Germany. The best mean IoU score of 0.56 ± 0.04 was obtained using the
model trained with a learning rate of 10−4. This indicates that the model can generalize to
other geographic regions outside of the training data set. In general, we can state that the
training of a deep learning network to identify the pixel-wise detection of pipeline courses
is possible despite low-resolution satellite imagery of only 30 m px−1.
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