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Abstract: Adsorption-based processes using metal-organic frameworks (MOFs) are a promising
option for carbon dioxide (CO2) capture from flue gases and biogas upgrading to biomethane. Here,
the adsorption of CO2, methane (CH4), and nitrogen (N2) on Zn(dcpa) MOF (dcpa (2,6-dichloro-
phenylacetate)) is reported. The characterization of the MOF by powder X-ray diffraction (PXRD),
thermogravimetric analysis (TGA), and N2 physisorption at 77 K shows that it is stable up to
650 K, and confirms previous observations suggesting framework flexibility upon exposure to guest
molecules. The adsorption equilibrium isotherms of the pure components (CO2, CH4, and N2),
measured at 273–323 K, and up to 35 bar, are Langmuirian, except for that of CO2 at 273 K, which
exhibits a stepwise shape with hysteresis. The latter is accurately interpreted in terms of the osmotic
thermodynamic theory, with further refinement by assuming that the free energy difference between
the two metastable structures of Zn(dcpa) is a normally distributed variable due to the existence of
different crystal sizes and defects in a real sample. The ideal selectivities of the equimolar mixtures
of CO2/N2 and CO2/CH4 at 1 bar and 303 K are 12.8 and 2.9, respectively, which are large enough
for Zn(dcpa) to be usable in pressure swing adsorption.

Keywords: Zn(dcpa); MOF; framework flexibility; adsorption; gas storage; biogas; carbon capture

1. Introduction

Metal-organic frameworks (MOFs) are being touted as the next generation materi-
als for several adsorptive separation and purification processes [1,2]. MOFs are porous
crystalline materials consisting of metal centers connected by organic moieties [3]. An
unlimited amount of MOF structures can be envisioned and perhaps synthesized; further-
more, the materials can be tailored for specific applications through pore size tuning and
functionalization [4]. These features place MOFs as a very diverse class of materials with
potential applications in nearly all fields of chemical engineering [5–12].

Among the available portfolio of MOFs, there are several structures that present struc-
tural flexibility, which can be triggered by exposure to specific guest species, changes in tem-
perature or mechanical pressure, or interactions with light or electric fields [13,14]. Frame-
work flexibility generally manifest itself through breathing or gate-opening effects [13]. A
comprehensive review regarding MOF flexibility was published by Schneemann et al. [14],
in which it is stated that, so far, less than a hundred MOFs have shown important breathing
effects. The authors classified the type of flexibility into “breathing”, “swelling”, “linker
rotation”, and “subnetwork displacement”. The most well-known cases of MOF flexibility
are the breathing behavior of MIL-53 [15–17] and the gate-opening of ZIF-8 [18,19].

The MIL-53 family of MOFs consists of trivalent metal (e.g., Al [20], Cr [17], Fe [21],
and Sc [22]) terephthalates, which can switch between large-pore (lp) and narrow-pore
(np) forms [15–17], with unit cell volume variation of up to 40% [23]. The conformational
change can be triggered by different stimuli, for example temperature changes [22,24],
application of mechanical pressure [25,26], and adsorption of guest molecules (such as
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H2O, CO2, and other gases) [20,22,26,27]. Interestingly, the synthesis route and solvents
employed critically impact the breathing properties of MIL-53 [28], and several authors
have observed the absence of the breathing effect in the commercial MIL-53(Al) synthesized
by BASF (Basolite©A100) when exposed to CO2 [29–31].

Another type of MOF flexibility is related to linker rotation [32], of which the most
well-known example occurs in ZIF-8, which presents a gate-opening effect [18,19]. The
linker rotation triggers a window opening that allows for the adsorption of larger molecules
than expected [18].

Recently, MOFs with step-shaped isotherms typical of flexible MOFs have been con-
sidered as potential adsorbents for CO2 capture by temperature swing adsorption (TSA),
as they permit decreasing the energy consumption of the process when compared with
traditional zeolite 13X systems [33].

Zn(dcpa) is a poorly studied microporous MOF that reportedly exhibits dynamic
behavior and stepwise adsorption. Zn(dcpa) is based on paddle-wheel Zn2 units and
unsymmetrical pyridyl dicarboxylate, which give rise to a three-dimensional intersecting
pore network with a pore opening of 6.3 × 12.2 Å2 [34]. The Zn(dcpa) framework structure
is shown in Figure 1. Liu et al. [34] observed the dynamic behavior of Zn(dcpa) upon
exposure to N2 and CO2 at 77 K and 195 K, respectively. However, they did not observe
the MOF’s flexible behavior when adsorbing CO2 at 273 and 293 K and N2 at 293 K, up to
1 bar.
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Data generated from the CIF file reported by Liu et al. [34].

In this work, the potential of Zn(dcpa) for application in the separation/purification
of gaseous streams containing CO2, CH4, and N2, namely post-combustion CO2 capture
and biogas upgrading, is evaluated. For this purpose, the single-component adsorption
equilibria of CO2, CH4, and N2 have been measured at 273−323 K up to 35 bar, and the
isosteric heat of adsorption and ideal CO2/CH4 and CO2/N2 equilibrium selectivities
evaluated. Furthermore, the MOF has been characterized regarding its textural properties
and thermal stability. The uncommon stepwise adsorption and hysteretic desorption
behavior for CO2 at 273 K has been interpreted in terms of the osmotic thermodynamic
theory. The data reported here add important knowledge about the adsorption properties
of Zn(dcpa), as prior studies about this MOF are limited to a few publications [34,35].
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2. Materials and Methods
2.1. Materials

The Zn(dcpa) MOF sample employed was synthesized at the Materials Center at
Technical University Dresden (Germany). After its synthesis, the sample was washed with
DMF and, subsequently, activated at 453 K under vacuum for 24 h. The gases employed in
the measurements were provided by Air Liquide and Praxair (Portugal) with purities of
99.998% (CO2), 99.95% (CH4), 99.99% (N2), and 99.999% (He).

2.2. Zn(dcpa) Characterization

The sample was characterized using powder X-ray diffraction (PXRD), thermogravi-
metric analysis (TGA), N2 physisorption at 77 K, and helium porosimetry. The N2 adsorp-
tion isotherm at 77 K and PXRD were determined by the supplier upon request. TGA
analysis was performed using a LABSYS Evo TGA-DTA/DSC from SETARAM Instrumen-
tation, under an argon flow at a heating rate of 3 K/min (up to 1130 K). Helium picnometry
was performed at 323 K, in a gravimetric apparatus (described in the next section), to
determine the skeletal density of the MOF (ρs).

2.3. Single-Component Adsorption Equilibrium

Single-component adsorption equilibrium isotherms of CO2, CH4, and N2 at 273 K,
303 K, and 323 K, between 0 and 35 bar, were determined using the standard static gravi-
metric method [31,36,37]. The measurements were performed in a high-pressure magnetic-
suspension balance ISOSORP 2000 (Rubotherm GmbH, Germany) using approximately
600 mg of Zn(dcpa) powder. Both the adsorption and desorption data were recorded to
evaluate the hysteretic effects. The sample was received from the supplier already activated
and stored in an argon atmosphere, which is why the pre-treatment performed before
measuring the adsorption equilibrium isotherms was limited to overnight vacuum. The
experimental setup and procedure are detailed elsewhere [31,37].

The excess amount adsorbed, qexc, is determined as follows

qexc =
w−ms −mh + Vhρg

ms
+ vsρg (1)

where w is the apparent mass weighted; ms is the mass of MOF; Vh and mh correspond to
the volume and mass of the measuring cell, respectively, which contribute to the buoyancy
effects; ρg is the density of the bulk gas at the experimental conditions; and vs is the specific
volume of the solid matrix of the MOF (vs = 1/ρs, where ρs is the skeletal density of
the adsorbent). vs was determined by helium pycnometry performed at 323 K in the
gravimetric apparatus. This was determined assuming that He penetrates the MOF pore
volume without being adsorbed.

The absolute amount adsorbed, q, can be determined from the excess amount adsorbed,
using the following

q = qexc

(
ρl

ρl − ρg

)
(2)

assuming that the adsorbed phase density corresponds to the density of the liquid at its
boiling point at 1 atm (ρl) [38].

3. Results and Discussion
3.1. Zn(dcpa) Characterization

The PXRD patterns obtained are displayed in Figure 2, showing that the position of
the reflexes changed during activation. This effect was also observed by Liu et al. [34], who
associated it with framework shrinkage upon removal of the guest molecules. The authors
also observed the reversibility of this phenomenon when readsorbing the solvent.
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Figure 2. PXRD diffraction pattern for activated, as made, and theoretical Zn(dcpa) samples.

The thermal stability of the sample was also characterized by TGA; the recorded
sample mass as a function of the heating temperature is shown in Figure 3. The results
show an initial mass decrease (~10%) from room temperature up to around 400 K, due
to the removal of pre-adsorbed impurities and humidity, due to MOF exposure to the
indoor atmosphere just prior to the analysis. MOF was stable up to 650 K, after which
a steep decrease in the mass was observed, reaching a mass decrease of 50%, similar to
the behavior observed by Liu et al. [34]. Above 750 K, the Zn(dcpa) mass decreased more
smoothly until reaching the remaining experimental amount of ca. 25% at 1130 K.
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Figure 3. TGA results for Zn(dcpa) as a function of temperature (heating rate of 3 K/min).

The Zn(dcpa) porosity was evaluated by N2 adsorption at 77 K. The obtained isotherm
is plotted in Figure 4, showing an initial step followed by a smoother increase until
p/p0 = 0.06; then, another steep increase is observed before reaching a nearly constant
plateau with only a small increase between p/p0 = 0.2 (274 cm3/g) and p/p0 = 0.97
(303 cm3/g). Note that p and p0 are the equilibrium and saturation pressures of the
adsorbate at 77 K, respectively. The same behavior was observed by Liu et al. [34] who
attributed the first step of the isotherm to the Zn(dcpa) structure with shrunken pores,
and the second step to an expanded structure. In our work, the expanded structure had
a specific pore volume of 0.47 cm3/g, determined at a relative pressure of p/p0 = 0.97,
assuming the pores were filled with condensed liquid N2 at its normal boiling point. The
desorption branch showed hysteresis at p/p0 < 0.2, which is also in accordance with
a previous report, although in our case, the hysteresis loop seemed to close at lower
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pressures—which corresponds to a return to the shrunken pore conformation—as opposed
to the observation of Liu et al. [34].
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3.2. Single-Component Adsorption Equilibrium

Prior to the adsorption of CO2, CH4, and N2, the skeletal density of Zn(dcpa) was
determined by helium picnometry at 323 K, obtaining a ρs = 1.74 g/cm3 (vs = 1/ρs =
0.575 cm3/g). For a purely crystalline porous material with a regular lattice, vµ + vs is
equal to the specific volume of the unit cell of the lattice. The particle density determined,
ρp = 1/

(
vs + vµ

)
= 0.957 g/cm3, is in excellent agreement with the value obtained from

the crystallographic data (ρp = 0.961 g/cm3) by Liu et al. [34].
The adsorption equilibria of CO2, CH4, and N2 on the Zn(dcpa) MOF were measured

at 273, 303, and 323 K over the pressure range of 0 to 35 bar. The CO2, CH4, and N2 absolute
adsorption equilibrium isotherms obtained are reported in Figures 5–7, respectively. The
CO2 adsorption isotherms were quite steep in the Henry region, showing a high adsorption
capacity at a low pressure, an important feature for use in post-combustion CO2 capture
applications. On the other hand, the N2 adsorption isotherms were much more linear and
had lower adsorption capacity; the CH4 adsorption isotherms were intermediate between
those of CO2 and N2.
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An interesting feature of the CO2 adsorption equilibrium isotherms can be observed
in Figure 5. At 273 K, the adsorption branch of the isotherm follows a typical Langmuir-
type shape up to approximately 22 bar, where a step in the isotherm is observed. This
behaviour is similar to that observed by Liu et al. [34] for CO2 adsorption at 195 K, which
the authors related to the transition between a shrunken-pore phase and an expanded-pore
one. The desorption branch then follows a different path than the adsorption one, showing
a hysteresis loop that closes at 7 bar. The reproducibility of this behaviour was checked
by repeating the measurements. The stepwise CO2 adsorption observed is an interesting
feature of Zn(dcpa) that can be explored for gas separation or storage applications. It can
enhance the working capacity of the solid material upon mild pressure or temperature
swings [33]. Despite the observation of the MOF flexibility for CO2 adsorption at 273 K, the
same behaviour was not observed for any of the other temperatures nor for the adsorbate
species tested (CH4 and N2).
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3.3. Osmotic Thermodynamic Theory

Some materials present clear transitions between different metastable framework
structures. Zn(dcpa) is an example of such materials. In these cases, an “osmotic subensem-
ble” [15,39–42] can be employed to describe the equilibrium between host structures when
exposed to gaseous adsorbates. Alternatively, Ghysels et al. [42] proposed another free
energy model able to describe the thermodynamics of breathing phenomena in flexible
materials. In this work, we interpreted our data using the former approach.

The osmotic potential [43] of the solid−adsorbate system for the ith structure of
Zn(dcpa), either shrunken-pore (SP) or expanded-pore (EP), is

Ω(i)
os (P, T) = F(i)

host(T) + Pv(i)p −
∫ P

0 q(i)(P, T)vg(P, T) dP
= F(i)

host(T) + Pv(i)p − RT
∫ P

0 q(i)(P, T)Z(P, T) d ln P
(3)

where F(i)
host(T) corresponds to the empty structure’s free energy at temperature T and v(i)p

to its apparent specific volume (i.e., to the sum of its skeletal, vs, and porous, v(i)µ , volumes);
q(i)(P, T) corresponds to the adsorption isotherm considering a rigid framework in its ith
structural form; and vg = 1/ng and P are the molar volume and compressibility factor
of the adsorptive. The difference in the osmotic potential between both of the structures
considered (EP and SP), ∆Ωos(P, T) = Ω(EP)

os (P, T)−Ω(SP)
os (P, T), is thus

∆Ωos(P, T) = ∆Fhost(T) + P∆vp − RT
∫ P

0
∆q(P, T)Z(P, T) d ln P (4)

where ∆φ ≡ φ(EP) − φ(SP) is the difference in the value of property φ between the EP and
SP structures at temperature T. If ∆Ωos > 0, the SP structure will be more stable than EP; if
∆Ωos < 0, the reverse will be true. For Zn(dcpa), v(EP)

µ = 0.47 cm3/g and v(SP)
µ = 0.14 cm3/g;

hence ∆vp =
(
vs + vµ

)(EP) −
(
vs + vµ

)(SP) ≈ v(EP)
µ − v(SP)

µ = 0.33 cm3/g. Assuming ideal
gas behavior (Z ≈ 1), the previous equation can be simplified to

∆Ωos(P, T) ≈ ∆Fhost(T) + P∆vp − RT
∫ P

0
∆q(P, T) d ln P. (5)

If ∆Fhost and ∆q(P) are known at a given temperature T, putting ∆Ωos = 0 in
Equation (4) (or Equation (5)) and solving it for P gives the pressure at which the phase
transition occurs at T. However, in real scenarios, the MOF crystals have defects and the
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sample has a distribution of crystal sizes, both contributing to smoothing the structural
transitions between the two metastable framework structures. Here, we extend the osmotic
thermodynamic theory to account for this diffuse effect. It is assumed that for a real sample,
∆Fhost is normally (Gaussian) distributed around the corresponding value for a perfect
crystal with a probability density function

f (∆Fhost) =
1

σ∆F
√

2π
exp

(
−1

2

(
∆Fhost − ∆Fµ

)2

σ2
∆F

)
, (6)

where ∆Fµ is the mean or expectation of the distribution (i.e., the value of ∆Fhost for a
perfect crystal) and σ∆F is its standard deviation. Given that in the case under study,
the structural transition is triggered by exposure to a specific guest species, the previous
hypothesis is almost equivalent to considering that the adsorptive pressure, P, that triggers
the structural transition at a fixed temperature is also a normally distribute variable and,
therefore, that its cumulative distribution function, Φ(P), at a fixed temperature is

Φ(P) ≡
∫

f (P)dP =
1
2

[
1 + erf

(
P− Pµ

σP
√

2

)]
(7)

where Pµ is the mean or expectation of the distribution (i.e., the transition pressure for a
perfect crystal) and σP is its standard deviation. Note that Φ(x) = prob(P ≤ x), where
the right-hand side represents the probability that P takes on a value less than or equal to
x. Therefore, the macroscopically observed adsorption branch of the isotherm for a real
sample is given by

qads(P) = [1−Φads(P)]q(SP)(P) + Φads(P)q(EP)(P)
qdes(P) = [1−Φdes(P)]q(SP)(P) + Φdes(P)q(EP)(P)

(fixed T) (8)

where q(i)(P, T) is the adsorption isotherm considering a rigid framework constrained to
its ith form.

This model was fitted to our experimental data, assuming the adsorption isotherms
for the metastable forms of the framework are Langmuirian, i.e.,

q(i)(P) =
q(i)∞ b(i)P
1 + b(i)P

(9)

where q(i)∞ and b(i) are the saturation capacity and equilibrium constant for the ith form,
respectively, in which case Equation (5) reduces to

∆Ωos(P, T) = ∆Fhost(T) + P∆vp − RT
[
q(EP)

∞ ln
(

1 + b(EP)P
)
− q(SP)

∞ ln
(

1 + b(SP)P
)]

(10)

Table 1 lists the parameter values resulting from the model fitting to the experimental
data, saturation capacity and Langmuir equilibrium constant (q(i)∞ and b(i)) for CO2 ad-
sorption at 273 K in the SP and EP metastable structures of Zn(dcpa), mean and standard
deviation (Pµ and σµ,) of the Gaussian distribution of adsorptive pressure that triggers the
phase transition along the adsorption and desorption branches of the isotherm, and the
corresponding free energy changes of the empty structure (∆Fhost).
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Table 1. Fitted parameters of the osmotic thermodynamic theory to the adsorption (Ads) and

desorption (Des) branches of the experimental CO2 isotherm at 273 K. ∆Fhost ≡ F(EP)
host − F(SP)

host .

q∞ b Pµ σP ∆Fhost
(mol/kg) (atm −1) (atm) (atm) (J/g)

SP 5.65 1.30 Ads 23.0 1.3 −4.45
EP 12.2 0.143 Des 7.0 0.5 −10.7

Figure 8 compares the experimental adsorption data and the fitted osmotic thermody-
namic model, and shows that excellent agreement with the experimental results has been
reached using the proposed procedure, substantiated by the fact that the plotted adsorption
and desorption curves accurately reproduce the experimental data.
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lines: predicted adsorption (——) and desorption (——) branches of the isotherm at 273 K.

The first two numeric columns of Table 2 list the parameter values of the Langmuir
adsorption isotherm model that best fit the CH4 and N2 experimental adsorption data at
273 K (Figure 9); these values apply when the framework is in its SP form. The last two
columns of Table 2 list the corresponding values if the framework were hypothetically in
EP form; given the absence of experimental data, the Langmuir parameters were estimated
using the following scaling rules:

q(EP)
i,∞ = q(SP)

i,∞

q(EP)
CO2,∞

q(SP)
CO2,∞

and b(EP)
i = b(SP)

i

b(EP)
CO2

b(SP)
CO2

(11)

Although these rules are rather crude and their application cannot be considered
quantitatively precise, they allow us to explain why the adsorption isotherms of CH4 and
N2 do not point to a phase transition between the SP and EP structures (and no hysteresis)
in the pressure range tested experimentally by us. The reason is that in the case of CH4
or N2 adsorption, the pressure must be increased considerably, well above the maximum
experimental value tested by us, for the term RT

∫ P
0 ∆q(P, T) d ln P to change the sign of

∆Ωos. A similar reasoning explains why the CO2 adsorption isotherms at 303 K and 323 K
do not hint at a phase transition between the SP and EP structures.
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Table 2. Fitting of the Langmuir adsorption isotherm model to the CH4 and N2 experimental

adsorption data at 273 K. The parameters for the EP form are estimated as q(EP)
i,∞ = q(SP)

i,∞ q(EP)
CO2,∞/q(SP)

CO2,∞

and b(EP)
i = b(SP)

i b(EP)
CO2

/b(SP)
CO2

.

q(SP)
∞ b(SP) q(EP)

∞ b(EP)

(mol/kg) (atm −1) (mol/kg) (atm −1)

N2 3.681 0.089 7.948 0.010
CH4 4.328 0.411 9.346 0.045
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Figure 9. Fitting of the Langmuir isotherm model to the CH4 (N) and N2 (•) experimental adsorption
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constrained to its EP (red) and SP (blue) forms; dashed lines: fitted N2 Langmuir isotherm for rigid
framework constrained to its EP (red) and SP (blue) forms.

3.4. Potential of Zn(dcpa) for CO2/N2 and CO2/CH4 Separation

To assess the potential use of Zn(dcpa) for the adsorptive separation of CO2/N2
and CO2/CH4, we first compared the single-component equilibrium isotherms and the
obtained selectivities. Figure 10a compares the isotherms obtained at 303 K for the three
gases. The ideal selectivity for an equimolar mixture, αA/B = qA/qB, was calculated
using the single-component adsorption capacity ratio; the obtained results are reported in
Figure 10b,c for the CO2/N2 and CO2/CH4 selectivities, respectively. Both the CO2/N2
and CO2/CH4 selectivities decreased with the increasing pressure, ranging from 12.8 (at
1 bar) to 6.7 (6 bar) for CO2/N2, and from 2.9 (at 1 bar) to 2.1 (6 bar) for CO2/CH4. The
CO2/N2 selectivity was significantly higher than that of CO2/CH4, especially at a lower
pressure. Although the reported equilibrium selectivity did not take into account the
influence of adsorption kinetics or the impact of a real gas mixture, these results serve
as a first evaluation of the good potential of Zn(dcpa) for CO2 separation from CO2/N2
and CO2/CH4 mixtures. Comparing the selectivity of Zn(dcpa) for CO2/N2 with those
of the commercial MOFs MIL-53(Al) [31], ZIF-8, [44], and Fe-BTC [45] (Figure 10b,c), it is
concluded that the former outperformed the others at a lower pressure. For example, at
1 bar, the order of selectivities was 12.8 (Zn(dcpa)) > 10.5 (Fe-BTC) > 9.6 (MIL-53(Al)) > 5.9
(ZIF-8). The same can be said about the CO2/CH4 selectivity trend: 2.9 (Zn(dcpa)) > 2.7
(MIL-53(Al)) > 2.6 (ZIF-8), although in this case, ZIF-8 surpassed Zn(dcpa) at pressures
above 2.4 bar.
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Figure 10. (a) Adsorption equilibrium isotherms of CO2 (�), CH4 (N), and N2 (•) on Zn(dcpa)
at 303 K. Filled and empty symbols represent adsorption and desorption data, respectively;
(b) CO2/N2 and (c) CO2/CH4 equilibrium selectivity at 303 K as a function of pressure for Zn(dcpa)
and commercial MOFs MIL-53(Al) [31], ZIF-8 [44], and Fe-BTC [45].
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The isosteric heat of adsorption, Qst, was determined from the experimental data via
the Clausius−Clapeyron equation: (log P)q = const−Qst/RT [46] Using this approach,
the plot of log P versus −1/RT, at constant loading, should give a straight line from which
the slope of Qst can be obtained. The plots in Figure 11 of Qst for CO2, CH4, and N2 on
Zn(dcpa) as a function of loading show that for CH4, their values were approximately
constant within the loading range studied, while for CO2 and N2, a linear increase was
observed. It should be noted that in the case of CO2, Qst was plotted for loadings lower
than the MOF’s conformational change observed at 273 K, i.e., less than 4 mol/kg. The
isosteric heat of the adsorption was higher for CO2 (23–28 kJ/mol), which is in accordance
with the values reported in the literature [34], followed by that for CH4 (~19.5 kJ/mol) and
N2 (13–15 kJ/mol).
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4. Conclusions

Zn(dcpa) MOF was characterized through PXRD, thermogravimetric analysis, and N2
adsorption at 77 K. In line with the XRD and N2 data reported by Liu et al. [34], our results
indicate that the framework conformation changes (pore shrinkage/pore expansion) upon
removal/loading of guest molecules. The TGA results demonstrate that the MOF is stable
up to 650 K.

The adsorption equilibrium isotherms of CO2, CH4, and N2 on Zn(dcpa) at 273 K,
303 K, and 323 K are reported up to 35 bar. The obtained data highlight the interesting
behavior of CO2 adsorption at 273 K, which exhibits a stepped isotherm related to the
transition between shrunken- and expanded-pore phases at around 22 bar. When observing
the desorption branch of the isotherm, a hysteresis loop is present, closing at 7 bar. Although
the same behavior is observed for CO2 adsorption at 195 K [34], this is the first report of
this effect at 273 K. None of the remaining CO2 (303 K and 323 K), CH4, or N2 isotherms
show the same behavior.

The CO2 adsorption equilibrium at 273 K is accurately interpreted using the osmotic
thermodynamic theory, which is further refined by considering that the free energy differ-
ence between the two metastable structures of Zn(dcpa) is a normally distributed variable
due to the distribution of crystal sizes and the defects in a real MOF sample.

Regarding the uptake amounts, Zn(dcpa) can adsorb higher amounts of CO2, followed
by CH4 and N2. The CO2/N2 and CO2/CH4 ideal equilibrium selectivities of Zn(dcpa) at
303 K are evaluated for equimolar mixtures, resulting in 12.8 and 2.9, respectively, for a
total pressure of 1 bar.
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The reported data are essential for the modelling of adsorption-based processes,
namely pressure swing adsorption (PSA) and temperature swing adsorption (TSA), for
the separation of mixtures containing the studied gases, e.g., biogas upgrading and CO2
capture from flue gases.
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