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Abstract: Battery storages are an essential element of the emerging smart grid. Compared to other
distributed intelligent energy resources, batteries have the advantage of being able to rapidly react to
events such as renewable generation fluctuations or grid disturbances. There is a lack of research on
ways to profitably exploit this ability. Any solution needs to consider rapid electrical phenomena
as well as the much slower dynamics of relevant electricity markets. Reinforcement learning is a
branch of artificial intelligence that has shown promise in optimizing complex problems involving
uncertainty. This article applies reinforcement learning to the problem of trading batteries. The
problem involves two timescales, both of which are important for profitability. Firstly, trading
the battery capacity must occur on the timescale of the chosen electricity markets. Secondly, the
real-time operation of the battery must ensure that no financial penalties are incurred from failing
to meet the technical specification. The trading-related decisions must be done under uncertainties,
such as unknown future market prices and unpredictable power grid disturbances. In this article,
a simulation model of a battery system is proposed as the environment to train a reinforcement
learning agent to make such decisions. The system is demonstrated with an application of the battery
to Finnish primary frequency reserve markets.

Keywords: battery; reinforcement learning; simulation; frequency reserve; frequency containment
reserve; timescale; artificial intelligence; real-time; electricity market

1. Introduction

Battery storages are an essential element of the emerging smart grid. Batteries are
crucial for coping with increased photovoltaic [1] and wind penetration [2]. Schemes for
introducing batteries are proposed at the level of buildings [3], wind farms [4] and the dis-
tribution grid [5]. Electric vehicle batteries can be used to temporarily store excess rooftop
photovoltaic generation, which can be used to supply the load after photovoltaic generation
has dropped [6]. Significant recent research has emerged on reinforcement learning (RL)
applications for complex decision-making involving battery systems and energy markets.
However, such works frequently ignore short-term electrical phenomena and employ RL
frameworks with the simplifying assumption that renewable generation, power consump-
tion and battery charging and discharging power remain constant throughout each market
interval. Such assumptions are usually captured by a set of equations that specifies the
environment of the RL agent. The environment is a system for interactive training of an
RL agent: when the agent takes actions such as placing bids on a market, the environment
gives feedback about the beneficial as well as the undesirable outcomes resulting from the
action. If these simplifying assumptions could be eliminated, RL-powered battery systems
could be a solution for managing short-term phenomena such as fluctuating renewable
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generation and power consumption, as well as sudden grid disturbances. To this end, this
article presents an RL application working on two timescales: the timescale of the markets
and the short-term timescale of electrical phenomena.

There are numerous applications for quickly reacting batteries. For example, batteries
can support the extraction of maximum power generation from photovoltaic batteries with
real-time maximum power point tracking control [7,8]. Battery applications for smooth-
ing fluctuations of wind power generation require real-time control [9,10]. Without such
smoothing applications, grid operations are required to take countermeasures to manage
the resulting grid frequency variations [11]. One way to use batteries is to directly react to
such frequency variations. Frequency reserves are energy resources that stand by to react
to such frequency deviations by adjusting their production and consumption. Depending
on the region, transmission system operators (TSO) or independent system operators (ISO)
operate frequency reserve markets in which they procure frequency reserves and pay com-
pensations for the provider of the reserve resource. Out of the various frequency reserve
markets, primary frequency reserves (PFR) have the fastest response time requirements,
which is reflected in the financial compensations paid to the reserve resource providers [12].
As batteries are easily capable of meeting such requirements, PFR participation allows
batteries to contribute to coping with imbalances in the grid, regardless of whether such
imbalances are caused by fluctuations in photovoltaic or wind generation, changes in
electricity consumption or other disturbances [13].

PFR markets are generally auctions, in which the provider of the reserve resource has
to specify the reserve capacity (adjustable MW of power production or consumption) for
each market interval of the upcoming bidding period. A common market structure is that
the bidding period is day-ahead and that the interval is one hour; this is also the case in the
Finnish PFR market Frequency Containment Reserve for Normal Operation (FCR-N) [14],
which will be the case study of this paper. Although revenues can be increased by bidding
on as many intervals as possible, and with as much capacity as possible, the market will
penalize participants that fail to provide the capacity specified in their bid. In the case of a
battery storage, such failures will occur whenever the battery state of charge (S0C) reaches
a minimum or maximum limit. As PFR requires the battery to react to frequency deviations
on the order of seconds, it is an application operating on the two timescales identified
above: the timescale of the markets and the short-term timescale of electrical phenomena.
The contribution of this paper is an RL solution operating on these two timescales and
using a simulation model to accurately capture the dynamics of the battery. The RL agent
bids on the PFR market, and its training environment is a simulation model in which the
battery reacts to grid frequency deviations with a one-second time step.

This paper is structured as follows: Section 2 reviews the state of the art. Section 3
presents a semiformal description of the solution. Section 4 describes the implementation
of the simulation as well as the RL, with an application to the Northern European PFR
market. Section 5 presents results of running the RL bidder on this market. Section 6
concludes the paper with an assessment of the obtained results and a discussion of further
research directions.

2. Literature Review

There is a lack of research on using RL to trade batteries on PFR markets. However,
there is a growing body of research on RL applications for batteries. There is also research
on battery applications for frequency regulation.

2.1. Batteries in Primary Frequency Reserves

The increased reliance on renewable generation [15] and unreliabilities resulting from
a rapid drive towards a smart grid [16] are increasing the demand for PFR, which has
traditionally been provided by fossil fuel-based solutions [17]. There is a growing volume
of research on solutions for providing PFR with distributed intelligent energy resources
such as electric vehicles [18,19], domestic loads [20,21] and industrial processes [22]. The
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increased penetration of renewables is driving investments to battery-provided PFR [23].
However, since batteries can be exploited for a variety of grid support services, their
penetration in PFR markets will depend on how prices on these markets develop [24].
Although batteries have been economically viable PFR assets for a long time [25], a growing
body of research has emerged only in the last few years. The economic disadvantages
caused by the battery degradation resulting from PFR participation are well understood
and do not prevent economically profitable PFR participation [26,27]. Srinivasan et al. [28]
propose the use of a virtual power plant to complement batteries with other intelligent
distributed energy resources providing PFR.

2.2. Reinforcement Learning Applications for Batteries

In this section, RL applications for batteries are reviewed according to the timescale in
which they operate. Three distinct timescales have been identified:

Real-time control.
Medium-term decision-making for optimizing some operational criteria such as elec-
tricity costs or photovoltaic self-consumption. In many cases, this involves decision-
making once per electricity market interval, which in many cases is hourly.

e  Long-term studies to support investment decisions.

RL is broadly applied in real-time control, and research exists for a variety of battery
applications. Maximizing photovoltaic generation requires a control algorithm such as
mean power point tracking [29]. Real-time control with respect to driving speed is required
for advanced battery management applications in electric vehicles [30] and plug-in hybrid
electric vehicles (Chen et al. [31]). As a semi-real-time example, Sui and Song [32] used RL
with a one-minute timestep to manage battery temperatures and thus battery lifetime in a
battery pack.

Medium-term RL applications adjust the parameters of intelligent battery systems
to optimize their operation. Muriithi and Chowdhury [33] optimized a battery and local
photovoltaic to minimize electricity bills under variable electricity prices. Batteries have
been used in conjunction with reschedulable loads to perform the rescheduling to exploit
time-of-use and real-time energy pricing schemes [34-36] and variable intraday electricity
market prices [37]. Whereas most works are aimed at existing electricity markets, a few
authors have demonstrated the benefits of RL to optimize the emerging decentralized
electricity system on novel markets [38,39]. The above works involved decision-making
on electricity markets, which is the most common type of RL application in this category.
However, other kinds of applications also exist. Mbuwir et al. [40] used a battery to maxi-
mize self-consumption of a local photovoltaic system. Finally, it is noted that for building
HVAC systems, a thermal energy storage can be a competitor to a battery storage [41].

RL can be used at investment time to determine the parameters of a smart energy
system that incorporates batteries. Diverse application contexts have been encountered,
including wireless EV charging systems [42], wind farms [43], microgrids [44] and isolated
villages with microgrids [45].

There is a lack of RL applications combining multiple timescales. In particular, the
referenced works addressing the timescale of relevant markets ignore phenomena requiring
real-time control actions, so there is a lack of research on how to financially exploit RL
applications for batteries that try to solve the global problem of smoothing the fluctuations
of renewable power generation. In this article, an RL agent is presented for trading on
hourly PFR markets, so that the impact of power grid frequency fluctuations is considered
on the timescale of seconds.

3. Battery Trading System

Figure 1 presents an overview of the proposed system. The bidding agent is im-
plemented with a neural network, and it operates on the timescale of the market. The
environment includes an offline implementation of the frequency market, based on mar-
ket data, as well as a real-time battery simulation, which will detect if the battery goes
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out of bounds. The simulation has two modes: a PFR market participation mode and
a resting mode, for hours with no PFR participation, during which the battery state of
charge is driven to a value that is ideal with respect to upcoming PFR participation. Two
items of state information are provided by the environment to the RL agent: battery state
information and a market forecast. While battery state of charge information could be
very useful for the RL, it would not be available at the timeframe when the bidding is
done on the previous day. Thus, the only battery state information that is available is the
information of when the battery last rested—this information can readily be extracted from
the bidding plans. The PFR market forecast is also relevant, since it may be beneficial to
concentrate bidding on high-price hours and resting on low-price hours. The day-ahead
PFR forecasting method presented in [14] is used.

State: Battery status &
Market forecast

Environmen

Bidding agent
Battery o o

e N simulation aa TR
Reward: ; fDeep . N
‘ Frequency ‘ Market ] ren|1 orC(lemen }
| earnin
g \reserve marke}tl y, revenues & i g ;
S penalties
Action: Bid

Figure 1. System overview.

Several formulations of the reinforcement learning mechanism exist, and these have
been applied in the battery energy management domain. The simplest is g-learning, which
involves a table for mapping states and actions [46]. As our problem formulation involves
a small state space, g-learning could have been used in this work. However, the use of
g-learning would have introduced scalability problems in further work involving more
complex state spaces. Reinforcement learning methods using a neural network instead of a
g-table are a more scalable approach. Such methods are called deep reinforcement learning
in case there is more than one hidden layer [30]. In our case, a neural network with one
hidden layer was used, since experimentation with a second hidden layer did not result
in improved performance. Advanced variations of deep reinforcement learning involve
the use of several interdependent neural networks. This is a beneficial approach when
the state space becomes significantly more complicated, as in the case of Zhang et al. [47],
who consider a system with several resources in each of the following categories: batteries,
wind and photovoltaic generation, water purification plants and diesel generators.

In order to support a problem formulation of the concept in Figure 1, Table 1 defines
relevant symbols and Table 2 defines functions, which are used by the algorithm for training
the reinforcement learning agent. Figure 2 formalizes the concept in Figure 1 using these
symbols. Figure 3 presents the algorithm for training the reinforcement learning agent
(‘bidding agent’) in the environment of Figure 2. The algorithm is based on established
reinforcement learning techniques and integrates a real-time simulation of the battery on a
primary frequency reserves market. A time range of days is selected for the training. One
epoch is one iteration of the outer loop in Figure 3 and involves running the agent for each
day in the training period. One state—action pair of the reinforcement learning agent is
one hour, since that is the primary frequency reserves market interval. One state—action
pair is taken by one iteration of the inner loop of the unshaded area in Figure 3 (i.e., the
loop with the condition ‘% < 24’, which iterates through each hour of the day). The shaded
area of Figure 3 involves calling the battery simulation with a one-second timestep. The
purpose of this is to determine whether the battery state of charge goes out of bounds,
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which involves a penalty from the primary frequency reserves market, since the battery is
not available to provide the primary frequency reserves in such a state.

Calendar
data

’fFCR-N[h ]ﬁ

Environment

Weath i
‘ (ethaer TSO data %ﬁ,—» Battery simulator

l

) )

FCR-N market price predictor ‘

update r

L

| FCR-Npaulh] R | sjhj—» Bidding |_a
sth] agent
Figure 2. Setup for training the bidding agent.
Table 1. Symbols.
Symbol Data Type Description
SoC Float State of charge of the battery expressed as percentage of full charge
O0B,,in Boolean True if (50C) was out of bounds (OoB) at any time during a specific minute
Oo0Bg Boolean True if SoC was out of bounds for a one-second timestep of the battery simulation
Hours since the battery last rested. Resting is defined as not participating in the
R Integer frequency reserve market and charging/discharging to bring the SoC to 50%. E.g., if
the battery rested most recently on the previous hour, R = 0
day Date The current day corresponding to the current state of the environment
Aaystart Date The first day of the training set
Aayeng Date The last day of the training set
h Integer in range 0-23 The current hour (the current day is stored in the symbol day)
FCR-Nfgaslhl Float The forecasted FCR-N market price in EUR per megawatt (EUR/MW) for hour &
FCR-N[h] Float The actual FCR-N market price (EUR/MW) for hour h
S[h] [Integer, Float] State of the environment at the hour #, i.e., [R, FCR-Nyshi]
fn Float [3600] Power grid frequency time series for hour k. One data point per second
a Integer in range 0-3 Action to be take.n by ihe.bid(?ling agent. 3 = re§t (no_bi(.:l), 2 = bid with 600 1.<ilowatt
(kW) capacity, 1 = bid with 800 kW capacity, 0 = bid with 1 MW capacity
r float Reward
trace Array with elements of An experience trace consisting of all of the experiences collected during one epoch.
type [S[h], a, v, S[h + 1]] A single experience consists of the following: [S[k], a, r, S[h + 1]]
maxEp Integer The maximum number of epochs used to train the reinforcement learning agent
The number of minutes during the current hour in which the battery was not available
penaltyi, Integer for providing frequency reserves and thus incurred a financial penalty from the
frequency reserve market
compensation[h] float The compensation in EUR for participating in FCR-N for the hour h
penaltylh] float The penalty in EUR for ti};e;)ggi]yfzfi;ge ir;i\;a}illable while participating
repuutation gaygge float A quan.tiﬁcafion in EUR of the damage to the rgputation of the FCR-N reserve
provider (i.e., the battery operator), due to failures to provide the reserve
reputationg o float A coefficient in EUR that can be adjusted to train the bidding agent to avoid penalties
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Table 2. Functions used in the procedure for training the reinforcement learning agent (Figure 3).

Function Description

reset(S[0]) Resets the state variables at the beginning of the epoch

The parameter a is the frequency reserve capacity in kW that the bidding
agent decided to bid on the frequency reserve market. The output pow is
pow = ctrl(a) the discharge/charge power command to the battery from the battery
controller. The output is determined according to the frequency data
from f;, and the FCR-N market technical specification [48].

This function runs the battery simulation for one second, according to the
pow charge/discharge command from ctrl(a). SoC is an internal state
variable of the battery simulator. If the SoC goes OoB during this second,
the OoBs output is true, otherwise false.

OoB; = sim(pow)

Oo0B,;i,, = bounds(OoBs) If OoBs is true, OoB,,,;, is set true. Otherwise, no action.
The capacity in MW of the bid corresponding to the action a taken by the
capacity(a) agent. The capacityisOifa=3,0.6 MW ifa=2,08 MW ifa=1and
1.0MW ifa =0.
S[h] = state(h) Construct the state data structure S[h] with the current value of R and h.

Finally, the environment needs to provide feedback to the RL agent in the form of a
reward. The compensation from the PFR markets and the penalties for failing to provide
the reserve are elements of the reward. For a particular hour, the compensation from
the market is the product of the market price EUR/MW and the reserve capacity in MW.
The FCR-N technical specification states that the compensation is only received for those
minutes when the reserve was available [49]:

60 — penalty,,, ECR N

compensation = <0

[h] % capacity(a), 1)

For each hour, the compensation is paid only for those minutes during which the
system did not violate the penalty criteria. For this reason, Equations (1) and (2) include
the fraction (60_penalty_min)/60 [49]:

penaltyin

Ity =
penalty <0

FCRypy) % capacity(a), )

The terms and conditions for providers of FCR state that if the reserve resource
is unavailable too often, the frequency reserve market operator may, at its discretion,
temporarily ban the reserve provider from participating in the market [50]. In order to
include such considerations in the learning process of the reinforcement learning agent,
a reputation jgmag. is defined. This differs from the penalty in Equation (2) in two respects.
Firstly, it is not dependent on the FCR-N price for the hour in question [50]. Secondly,
since the market operator does not provide any quantitative criteria for banning the
reserve provider [50], a reputationg,,, coefficient is defined, which can be adjusted by the
reserve provider in order to make the tradeoff between increasing revenues versus bidding
prudently to avoid penalties:

penalty i,

%0 X capacity(a), 3)

reputationgmage = reputation gaeror X

Therefore, the reward for the reinforcement learning agent is the formula for the net
revenue with an additional element to further penalize the agent for failing to provide the
reserve and thus damaging the reputation of the reserve provider:

r = compensation — penalty — reputation g, 4)
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b= epoch
START epoch=0 <= maxEp F STOP

T

day = daystarr

day <=
‘ day =day +1 Jergens F{ epoch = epoch + 1 ’—

Use trace to train the policy
with pollcy gradient h 0; reset(S[O]) trace =

<
<

h=h+1
Adjust rewards in trace
R ———— Get a by running the policy ’—

Parameterize the battery controller with a
Upload frequency data to fj <
008, = false; min = 0; S[h] = state(h); penalty,, = 0

min < 60
T
sec = ﬂ

v r | IF 00Bpi, THEN penaltyp, += 1
R=R+1 sec=sec+1 00Bpin=0
7'y min+=1

T

pow = ctri(a)
S 0o0B; = sim(pow)
008,,i» = bounds(Oo8B;)

S[h+1] = state(h+1)
trace.append(S[h},a,r,S[h+1])

» Use equations (1)-(4) to determine r —» <+

Figure 3. Procedure for training the bidding agent using the environment in Figure 2. The shaded
area is the step (a) function discussed in Section 4.1.

4. Implementation
4.1. Enviroment

The battery model in Figure 4 is used to simulate the behavior of the battery’s SoC
when it is charged or discharged as it participates on PFR. The battery model is a Simulink
model and receives its inputs from the MATLAB function that implements the ctrl(a) func-
tion in Table 2. The implementation is done according to the rules of the Finnish PFR market
FCR-N [48]. The same rules apply to PFR markets in Sweden, Norway and Denmark. In
these countries, the nominal power grid frequency is 50 Hz with a maximum permit-
ted deadband zone when the grid frequency is in the range 49.99-50.01 Hz. Equation (5)
defines the discharging power when the frequency is in the range 49.9-49.99 Hz. A one-
second simulation step is used, so f,[s] in Equation (5) is the power grid frequency for the
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current second, which corresponds to sec in Figure 3. When the frequency is under 49.9 Hz,
the full power capacity of the bid, negative of capacity(a), is the discharge power.

B capacity(a) ~ 49.99 Hz X capacity(a)
ctrl(@) = 1900tz — 490z <"~ 19991, — 90t

©)

> / [soc] \ D|s1<:;z-ete
powergui
SOC
— c
_ +0—n2
1
B @ '1
Current o— +
Voltage - @
power from battery X <
@
P <
-

out.SOC
resting hours J
[Nap] Nap soc

initSoc

‘ currentCtrl
[SOC] soc currentCTRL

Figure 4. Battery simulation model.

The case of frequency in the range 50.01-50.1 Hz is symmetric and is described by
Equation (6).

capacity(a) 50.01 Hz X capacity(a)
trl(a) = -
ctrl(@) = 501, —so01mz <M T Tso1mz —s001Hz ©)

ctrl(a) from Equations (5) and (6) is the ‘power” input in Figure 4. Figure 5 shows
how ‘power’ is computed from the frequency according to a software implementation of
Equations (5) and (6). In this example, a = 0, so maximum capacity(a) is 1 MW. The slight
differences between the red and blue curves are due to the deadband, e.g., according to
Equation (5), ‘power’ is 0 when the frequency is 49.99 Hz. When frequency exceeds 50.1 Hz,
Equation (6) no longer applies, and the ‘power’ remains at 1 MW.

The battery in Figure 4 is an instance of the ‘Battery” from Simulink’s Simscape library [51].
The charging and discharging losses of the battery simulation component are according to
the equations for the lithium-ion battery type in [51]. The battery has been parameterized
as specified in Table 3. The OoB limits for the function sim(pow) in Table 2 are defined as 5%
and 95% SoC.

The battery simulation model is an open-loop system, where the battery’s behavior
is controlled with a controlled current source. The controlled current source receives its
control signal from the ‘CurrentCTRL’ (see Figure 4) MATLAB function. Its main purpose
is to convert the ‘power’ input to a current signal for the controlled current source. This
is done by dividing the signal by the battery’s ‘nominal voltage” (Table 3) when there is
a bid for that hour. Otherwise, the battery rests, which is indicated by the ‘Nap’ input to
‘CurrentCTRL". During rest hour, the battery will charge or discharge towards SOC 50%
with constant current. The charging and discharging are configured so that the SoC has
time to reach 50% by the end of the rest hour, regardless of the initial SoC. ‘CurrentCTRL’
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also keeps track of the SoC during the simulation. The SoC vector is passed to the MATLAB
function that implements the bounds(OoB;) function in Table 2.

50.12 1.2
1.1
50.10 ' 1.0
-0.9
50.08 (V) -0.8
| | A - 0.7
50.06 1 || 4 Y| \f y -0.6
vl ’.‘ l" | A L 0.5
_50.04 A W b ] l" ‘ - 0.4
x | L . L 03 =
.50.02 - ! L Fo2 2
§sooo- ————————— SR —— -gcl) g
2 50. V ﬂ ) o
§ | reweseeseesememocenmm—————— Rl F-o1e
* 49.98 I | -02
\ - —0.3
49.96 - R R - —0.4
al 0.5
49.94 ' - —0.6
I b-07
49.92 - - —0.8
- —0.9
49.90 T T T T T T T _1.0
0 200 400 600 800 1000 1200
time (s)

Figure 5. Power as a function of frequency (Equations (5) and (6)) for the time period 4 September
2020 00:32:59-00:52:59. Red horizontal lines are the deadband limits. Black horizontal line is the
nominal frequency and the battery idle state.

Table 3. Parameters of the battery in Simulink.

Parameter Value
Type Lithium-ion
Nominal voltage 1200 V
Rated capacity 1400 Ah
Battery response time 0.1s
Simulate temperature effects No
Simulate aging effects No

Discharge parameters: determine from the
nominal parameters of the battery

The battery simulation model was wrapped in custom Python code that implements
an interface similar to the environments in the OpenAl Gym collection [52], which has
been used in several recent publications on RL applications in the energy domain [53-58].
This interface defines the functions reset(S[0]) and step(a). reset(S[0]) is called in Figure 3
at the beginning of each day and assigns a random value to the SoC, which ensures that
the RL can continue to gain new experiences when the same day is used several times in
the training phase. In our implementation, the SoC is assigned a random value from a
continuous uniform distribution with bounds 35% and 65%. The shaded area in Figure 3 is
the step(a) function, which receives the action from the RL agent and returns the reward
and the next state.

4.2. Bidding Agent

The RL agent is implemented as a densely connected neural network. Its hyperparam-
eters were determined experimentally and are presented in Table 4. The input layer has
two nodes, since the state vector S[h] has two elements. The output layer has four nodes,
one for each possible value of the action a. An epsilon greedy exploration strategy is used,
so the probability of selecting a random action is initially 1 and is decreased by the epsilon
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decay factor at the end of each day in the algorithm of Figure 3. The algorithm in Figure 3
collects all 24 experiences gained over one day into an experience trace, which is used to
train the neural network, and a discount of 0.5 is applied to the trace.

Table 4. Hyperparameters of the neural network.

Hyperparameter Value
Number of hidden layers 1
Number of nodes in input layer 2
Number of nodes in hidden layer 20
Number of nodes in output layer 4
Epsilon decay 0.998
Learning rate 0.01
Discount factor 0.5
Hidden layer activation function Sigmoid
Output layer activation function Softmax
Dropout Not used
Optimizer Adam

Further work is possible for the optimization of hyperparameters. Automated machine
learning methods for neural architecture search can identify the optimal set of layers for
a deep neural network. Once the architecture has been fixed, automatic hyperparameter
tuning methods can optimize the remaining hyperparameters. However, these techniques
are in general not directly applicable to reinforcement learning [59]. Recent applications to
deep reinforcement learning are a promising approach for improving our neural network
architecture and hyperparameters [60].

The time range of 1 September 2020-31 October 2020 was used for training and
validation. A value of 110 was used for reputationy,,,. Out of these 61 days, 11 randomly
selected days were used for validation and the rest were used for training. A random seed
was defined to ensure the repeatability of the results. Figure 6 shows some insights into the
training process after 2, 4, 6, 8 and 10 epochs.

On the left of Figure 6, the actions selected by the trained RL agent are shown for
each state (the state is defined by the combination of R on the vertical axis and FCR-
Nest on the horizontal axis). Analyzing Equations (2)-(4), it can be seen that the positive
component of the reward is directly proportional to the price of the FCR-N market, which
is approximated by FCR-Nf,,;. However, the negative component of the reward is only
partially proportional to the price. Thus, at higher prices, the benefits should outweigh
the penalties, so it is expected that the agent will learn to prefer resting during low-price
hours. Accordingly, in Figure 6, it is observed that resting actions concentrate on the left of
the price forecast axis. With respect to the vertical axis, it is expected that the likelihood
of penalties increases when the battery has operated for several hours without resting, so
it is expected that the agent will learn to prefer resting on the lower part of the vertical
axis. The combined effect of these two learning outcomes is that the best states for resting
are in the bottom-left corner and the best states for bidding are in the top-right corner. By
observing the progression of the left-hand charts in Figure 6, it is evident that the agent has
learned this behavior.

On the right of Figure 6, the bidding actions taken by the agent are shown for one
of the validation days, 4 September 2020. After epoch 2 (Figure 6a), the chart on the left
shows that the agent has learned to use three actions: rest, bid 600 kW and bid 800 kW.
Only the rest and 800 kW actions are used in the chart on the left (the blue bars show the
bid size with 0 meaning rest). The red prices are the forecasted market price. As training
progresses over subsequent epochs 4, 6, 8 and 10 (Figure 6b-e), the agent learns to use only
two actions: resting and 800 kW bid. The agent also learns to schedule the rest actions for
hours with low price. The figure does not show penalties and rewards, which are discussed
next in Section 5. The purpose of the discussion in this section was to give insights into the
RL training process and the behavior learned by the RL agent.



Energies 2021, 14, 5587

11 0f 20

11 15
time (h)

19

23

1000

800

600

400

bid capacity (kW)

200

11 15
time (h)

19

23

600

400

bid capacity (kW)

200

11 15
time (h)

19

23

11 15
time (h)

19

23

(a)
g 20
< s
% )
o & 15
0 ]
= (=4
2 o
@ 3 10
s S
20 40 ? s
redlcted rice (€/MW) a
1000kW 800kW 600kW Rest 0
Bidding capacity
(b)
g 20
z z
% )
o s 15
") 9
= =
L2 s
& g
o o
20 40 % s
redlcted rlce €/MW s
1000kW 800kW 600kW Rest 0
Bidding capacity
(c)
=~ 20
g :
@ @
9} =35
g 10 8
= p=
=] Qo 10
> o
g 20 g
60§
redlcted nce €/MW o
1000kW 800kW 600kW Rest 0
Bidding capacity
(d)
=20
-~ 0 s
< -
i ™)
o = ED
; 10 g
-1 =4
2 o
> © 10
Q20 e
o a2
60 5
redlcted nce (€/MW) a
IOOOkW 800kW 600kW Rest 0
Bidding capacity
(e)
~20
0 s
€ £
k] )
9 35
; 10 .g
=1 (=
= £
> © 10
g 20 i,‘
60 5
redlcted rice € MW s
1000kW 800kW 600kW Rest 0

Bidding capacity

i ¥ 15
time (h)

19

23]

1000

800

600

400

bid capacity (kW)

200

1000

800

400

bid capacity (kW)

200

1000

800

600

400

bid capacity (kW)

200
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5. Result

Figure 7 shows the cumulative reward for all of the days in the training set, and
Figure 8 shows the cumulative reward for the days in the validation set. The results for the
training and validation sets start to stabilize after 20 epochs, so training was stopped after

35 epochs.
10,000 1
8000 1
@
< 6000
(o]
)
£ 4000 1
8
£ 2000+
2
g
O 4
—2000 1

1 8 5 7 § 11131517 19717325 272931 33 35
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Figure 7. The cumulative reward for all of the training days.
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Figure 8. The cumulative reward for all the validation days.
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Figure 9 shows the cumulative reward for one of the validation days, 4 September
2020. This is the sum of the rewards for each hour of the day. At nine epochs, there is a
relatively low reward. This epoch is analyzed further in Figure 10. The chart in Figure 10a
is similar to the charts on the right in Figure 6. The chart in Figure 10b is the reward and
the actual market price. The chart in Figure 10c is the penalties. It is observed that due to
only three resting hours for the entire day, the battery fails to provide the reserve capacity
and incurs significant penalties on hour 17, which explains the low reward for epoch 9 in
Figure 9. Figure 11 shows a similar chart after 35 epochs of training. The chart in Figure 11a
shows that the agent has learned to rest more frequently, and generally, the rest occurs
when there is a low price forecast. Although the increased resting reduces the market
revenues (Figure 11b), there are no penalties (Figure 11c). Thus, the agent at 35 epochs
plays safer than the agent at 10 epochs, resulting in a fairly good reward at 35 epochs,
although the reward is not as high as in some of the earlier epochs, when the agent was
resting less and thus making riskier bids. The risks are due to the unpredictable need
to charge or discharge the battery when participating in PFR. The need depends on the
occurrence of grid frequency deviations. There is a lack of research for predicting such
deviations day-ahead (which is when the PFR bids must be placed), so our agent does not
have information to learn the likelihood of charging or discharging needs for any particular
hour. However, the results show that based on the available market forecasts, the agent
learns to bid intelligently under uncertainty, balancing revenues and risk of penalties.

N
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1001

reward for the day (€)
o
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1 4 7 10 13 16 19 22 25 28 31 34
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Figure 9. The cumulative reward for all of the hours for one of the validation days (4 September 2020).
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The results shown in this paper have been obtained by using a value of 110 for the
reputationg,cior. Figure 12 shows how the results would change if the value of reputationg,cyor
is varied. The experiment described in this paper was repeated for the following values:
10, 30, 50, 70, 90, 110, 130, 150, 170 and 190. Each repetition of the experiment resulted in
one dot in the figure, labeled with the value of reputationg,co,. According to Equations
(3) and (4), a higher value of reputationg, o, Will result in a large negative component
in the reward whenever the battery is unavailable. The duration of this unavailability is
penaltyin on the x-axis. The compensation on the y-axis is according to Equation (1). As
reputationg,q,, is increased, it is expected that the RL agent learns to be more careful in
avoiding penalties, either by resting more or by bidding a lower capacity, thus reducing
the likelihood of the battery being unavailable. The result of this should be decreasing
compensation and decreasing penalties as reputationg,o, increases. This trend is visible
in Figure 12. The dots for 10, 30 and 50 are very close to each other and overlap in the
figure. This is because the compensation outweighs the penalties, so the agent learns to
ignore the penalties and only tries to maximize the compensation. At a value of 70, the
penalties are drastically reduced, without a loss of compensation. In fact, the compensation
is slightly higher, which can be understood from Equation (1): there is no compensation for
the minutes during which the battery is unavailable. As reputationg,, is increased to 90
and beyond, the trend that was mentioned above is observed: the agent bids more carefully,
resulting in a slight decrease in compensation as well as in the penalties. Looking at the
relative vertical positions of the dots, 130 is an outlier in this trend. Further, 110 and 150 do
not fully fit into the trend. The validation set is 11 days, so a longer set would be expected
to result in a clearer trend. From the results, it is concluded that it is advantageous to use a
reputationg,y of at least 70. The use of a higher value is a business decision, depending
on whether a decrease in compensation is considered desirable in order to decrease the
penalties. As has been explained in the context of Equation (3), the potential business
impact of incurring excessive penalties is very severe, but the market operator does not
publish any quantitative criteria for what it considers to be excessive penalties, so for that
reason, the choice of value for reputationg, ., is left as a business decision.

2800
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26001
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Figure 12. Compensation versus penaltymi,. The dots show the result of running the experi-
ment with different values of reputationg,,,. Each dot is labeled with the corresponding value of

reputationg,cor-
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6. Conclusions

In the literature review, a research gap was identified for RL-based energy man-
agement solutions that take into account market participation and cope with real-time
requirements for the energy resources that participate in the markets. In this paper, PFR
was selected as an application in which revenues depend on battery capacity that is bid on
hourly markets, as well as penalties that occur on the timeframe of seconds if the battery is
unavailable due to its SoC being OoB. The problem formulation addressed the realities of
an online deployment, in which bids on the PFR market must be done on the day before,
when it is not possible to accurately predict the SoC, as the requirement to discharge and
charge the battery on a PFR market is dependent on power grid frequency deviations,
which cannot be accurately predicted day-ahead. Thus, the state information for the RL
was limited to information that is available at bidding time. It was observed that the agent
learned behavior that took into account the benefits of bidding on high-price hours and
the increased risk of penalties of participating in PFR markets for several hours without
allowing the battery to rest.

A novel methodology integrating a real-time battery simulation with a reinforcement
learning agent bidding on hourly markets was proposed in this article. The main finding
is that this approach promises to achieve the dual goal of maximizing market revenues
while minimizing penalties caused by short-term failures to provide the frequency reserve.
In further work, the reliability of the methodology can be improved by addressing the
following limitations: Firstly, a 2-month dataset was used, so market and grid frequency
data for a longer time-period can be collected and preprocessed. Secondly, the state space
can be broadened with any variables that may have an impact on the power grid frequency.
Although it is not possible to accurately predict the grid frequency in a day-ahead bidding
scenario, some feature engineering based on historical frequency data is an avenue of
further research. Finally, automated machine learning methods that have recently emerged
for reinforcement learning applications can be used to search for the optimal neural network
architecture and hyperparameters.

For further work, batteries for supporting photovoltaic installations in residential and
commercial buildings are an application area that would benefit from optimization on the
two timescales that have been considered in this paper. Maximum power point tracking
(MPPT) algorithms have been proposed to control the battery and thus create an ideal load
for photovoltaic generation. However, such batteries have other uses related to shifting
power consumption from the grid and possible photovoltaic power sales to the grid, taking
into account variable electricity prices. The MPPT and variable electricity price exploitation
are two optimization tasks that occur on two different timescales but cannot be addressed
separately, since they both affect the SoC of the same battery.
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