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Abstract: Owing to the degradation of the performance of a retired battery and the unclear initial
value of the state of charge (SOC), the estimation of the state of power (SOP) of an echelon-use
battery is not accurate. An SOP estimation method based on an adaptive dual extended Kalman
filter (ADEKF) is proposed. First, the second-order Thevenin equivalent model of the echelon-use
battery is established. Second, the battery parameters are estimated by the ADEKF: (a) the SOC is
estimated based on an adaptive extended Kalman filtering algorithm, that uses the process noise
covariance Qk and observes the noise covariance Rk , and (b) the ohmic internal resistance and
actual capacity are estimated based on the aforementioned algorithm, that uses the process noise
covariance Qθ,k and observes the noise covariance Rθ,k. Third, the working voltage and internal
resistance are predicted using optimal estimation, and the SOP of the echelon-use battery is estimated.
MATLAB simulation results show that, regardless of whether or not the initial value of the SOC
is clear, the proposed algorithm can be adjusted to the adaptive algorithm, and if the estimation
accuracy error of the echelon-use battery SOP is less than 4.8%, it has high accuracy. This paper
provides a valuable reference for the prediction of the SOP of an echelon-use battery, and will be
helpful for understanding the behavior of retired batteries for further discharge and use.

Keywords: echelon-use battery; adaptive dual extended Kalman filter; state of power; second-order
Thevenin equivalent model

1. Introduction

In recent years, with the increase of the number of retired batteries, the cascade
utilization of power batteries has attracted increasingly more attention. The echelon-use
battery refers to the lithium iron phosphate powered lithium battery used in EV (electric
vehicle) when the capacity attenuates to less than 80%, and more than 20%, which is
used for the power backup and energy storage of the communication base station. There
are many works in the literature devoted to the second use of retired EV batteries. Back
in 2010, Neubauer et al. [1] believed that the second use strategies had the potential to
become a common part of the future automotive battery life cycle. Tong et al. [2] and
Omar et al. [3] verified the feasibility of the retired vehicle batteries used in an off-grid
photovoltaic vehicle charging system and clarified the capacity decay trend of cells. The
result showed that the testing cells possessed another 1400 or 1000 cycles of life while
they were charged/discharged at 1C and 80% depth of discharge (DOD). Jiang et al. [4]
estimated the second-life battery remaining capacity by three types of regression methods
and concluded that the correlation-based feature selection method was feasible and the
estimation error was within 3%. Schuster et al. [5] assessed the correlation between the
capacity and impedance of lithium-ion cells during calendar life as a base for capacity quick
tests and found that the SOH (state of health) quick test must be parameterized with aging
data close to actual use. YL et al. [6] tested the performance of retired EV battery modules
in order to learn their attenuation states, and different capacity test protocols of retired
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modules were compared in order to strike a balance between calibration accuracy and test
time. When the vehicle battery was retired, the capacity was below 80%, the retired cells
possessed another more than 1000 cycles of life while they were charged/discharged at 1C
and 80% depth of discharge (DOD) [2,3]. The retired modules still have a good discharge
ability, implying that a retired battery energy storage system can be employed to satisfy
the power demand of an electricity grid.

Because of the performance degradation and capacity attenuation of a ladder battery,
its safety is difficult to guarantee, leading to the difficulty of large-scale promotion and
utilization of cascade batteries. The state of power (SOP), as an important parameter for
battery safety control and energy recovery, has attracted significantly greater attention.
The battery experimental method and model method are commonly used to estimate SOP.
The battery experimental method is a test method adopted by the United States Advanced
Battery Consortium (USABC) [7] that has the advantage of strong practicability [8]. Fang [9]
of Central South University, China, and Yu [10] of Harbin University of Science and
Technology, China, adopted the experimental method. The disadvantage of this method
is that the testing is complicated, and equipment is required. Therefore, the use of the
estimation method based on the equivalent circuit model has increased. Plett [11] was
the first to propose the method of estimating peak power based on the equivalent circuit
model. In [12,13], the first-order equivalent circuit model is used by the authors to estimate
the SOP. In [14–19], the second-order Thevenin equivalent model is used by the authors to
estimate SOP, and an accuracy of 7.2% is obtained.

Using the model method to estimate the SOP has the advantages of simplicity and
low equipment requirements. However, the estimation accuracy of the SOP by this method
depends on the accuracy of the equivalent model of the echelon battery itself. Owing
to the degradation of echelon-use battery performance, its equivalent model is far from
meeting the estimation accuracy requirements of the SOP; therefore, an important research
direction of battery SOP estimation is to improve the accuracy of the equivalent model of
an echelon-use battery and the adaptive ability of the algorithm.

To sum up, the research object of this paper is the echelon-use battery. Most researchers
did not consider the impact of battery performance attenuation on SOP estimation. In
addition, due to performance attenuation, the estimation error of the SOC increases, and
there is a large error between the SOC and the actual value when it is reused. Aiming
at the above problems of echelon-use battery performance, an adaptive dual extended
Kalman filter (ADEKF) algorithm is first applied based on the second-order Thevenin
equivalent model. That is, based on the ADEKF algorithm used to estimate the SOC,
ohmic internal resistance, and actual capacity, the optimal estimation is used to predict
the working voltage and ohmic internal resistance to estimate the echelon-use battery SOP.
Finally, the estimation method of the cascade battery SOP is established to provide a safe
guarantee for the promotion and utilization of the cascade battery.

The objective of this study is to propose an effective SOP estimation method for
echelon-use batteries and analyze the influence of the degradation of the performance of
such batteries and the SOC estimation on the SOP estimation. Four original contributions
are made herein.

(1) In this paper, the parameter estimation of the echelon-use battery is discussed.
Compared with the new battery, the SOC initial value is not clear, and the parameters are
degraded.

(2) In view of the unclear SOC, an adaptive method is adopted, that can be adjusted
adaptively to estimate the accuracy based on process noise covariance Qk and observe the
noise covariance Rk.

(3) To improve the accuracy of SOP estimation, an adaptive Kalman filter algorithm is
adopted to estimate the parameters of echelon-use batteries in real time based on process
noise covariance Qθ,k and observing the noise covariance Rθ,k, aiming at the performance
attenuation of the echelon-use battery and the inaccuracy of actual capacity and ohmic
internal resistance.



Energies 2021, 14, 5579 3 of 14

(4) The impact of echelon-use battery SOC and working voltage on the SOP estimation
is presented.

2. The Second Order Thevenin Equivalent Model of Echelon-Use Battery

A lithium battery is a very complex nonlinear system. It is necessary to choose
a higher-order battery equivalent model to simulate the characteristics of the battery
more accurately. The second-order Thevenin equivalent model can not only better reflect
the dynamic and static characteristics of the battery but can also lower the order of the
model, which reduces the calculation of the processor and makes it easy to implement in
engineering applications [20].

In this paper, the second-order Thevenin model is used as the equivalent model of
an echelon-use battery, and the equivalent circuit diagram is shown in Figure 1. Indeed,
τ1 = R1C1 is the short constant of time, which is used to simulate the process of rapid
change of discharge voltage in the dynamic characteristics of the battery; τ2 = R2C2 is the
time length constant, which is used to simulate the process of slow and stable discharge
voltage in the dynamic characteristics of the battery. Furthermore, Uoc is the open circuit
voltage of the battery, UL is the working voltage of the battery, iL is the charge and discharge
current of the battery, R0 is the ohmic internal resistance of the battery.

Figure 1. The second-order Thevenin equivalent model.

From Figure 1, the discrete state equation of the second-order equivalent circuit of the
echelon-use cell is as follows:
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From Figure 1, the discrete observation equation of the second-order equivalent circuit
of the echelon-use cell is as follows:
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g(xk, uk) = Ckxk − R0,kuk (4)

where, Sck, Sck+1 are the SOC of the cascade battery at k, k + 1 time in the discrete state; C
is the actual capacity of the cascade battery, the unit is A·h; ik is the charge and discharge
current at k time in the discrete state; Uk is the working voltage of the cascade battery at k
time in the discrete state; ∆t is the sampling period; UR1C1

k , UR1C1
k+1 are the estimated voltage

values of R1 at k, k + 1 time in the discrete state; UR2C2
k , UR2C2

k+1 are the estimated voltage
values of R2 at k, k + 1 time in the discrete state; ωk, ϑk are independent system noises;
Uoc(SC) is the open circuit voltage of the battery corresponding to the SOC value of the
cascade battery at the k time in the discrete state.

3. Parameter Identification
3.1. Open Circuit Voltage

The open circuit voltage UOC:

(1) Charge at the current of 30 A and stop at the cell voltage of 3.65 V.
(2) Discharge at the current of 30 A and stop at the cell voltage of 2.5 V. Record the

discharge voltage Udis.
(3) Charge at the current of 30 A and stop at the cell voltage of 3.65 V. Record the charge

voltage Uch.
(4) The open circuit voltage UOC is as follows:

UOC =
Udis + Uch

2
(5)

3.2. Ohmic Internal Resistance

According to Ohm’s law, the ohmic internal resistance R0 is as follows:

R0 =
∆U
|iL|

(6)

where ∆U is voltage change, iL is the charge and discharge current of the battery [20].

3.3. Polarization Resistance

The working voltage UL, charge–discharge current iL and open circuit voltage UOC
of the echelon-use battery obtained through the charge–discharge test. The least square
method is used to minimize the sum of the squares of the residual and identify the pa-
rameter model. This method is introduced in detail in the literature [21], so it will not be
repeated.

4. SOP Estimation

In this paper, an adaptive dual Kalman filter algorithm is applied based on the
second-order Thevenin equivalent model: the first is to estimate the SOC based on the
adaptive extended Kalman filter (AEKF) algorithm; the second is to estimate the ohmic
internal resistance and actual capacity based on the adaptive extended Kalman filter (AEKF)
algorithm [22,23].

4.1. SOC Estimation Based on AEKF

According to Equations (3) and (4), the variable of the echelon-use battery system is
the SOC. In this paper, the ohmic resistance and actual capacity of the echelon-use battery
are added into the state variable due to the serious problems of the increase of ohmic
resistance and the decline of the actual capacity of the echelon-use battery. The system state
variable has three parameters: SOC, ohm internal resistance, and the actual capacity [24,25].

The state and observation equations are as follows:

xk+1 = f (xk, uk, θk) + ωk (7)
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yk+1 = g(xk, uk, θk) + ϑk (8)

where, θk is the state variable ohmic internal resistance and actual capacity, θk = [R0,k, Ck]; xk
is the system state variable; uk is the input of the system and is the cascade battery
current; yk is the system observation variable and is the working voltage of the echelon-use
battery.

In this paper, the error covariance matrices of the zero-mean Gaussian white noise
ωk and ϑk are Qk and Rk.

The algorithm flow is as follows:

• Step 1: Initialize x is as follows:
x̂0 = E(x0) (9)

P̂0 = E[(x0 − x̂0)(x0 − x̂0)
T (10)

• Step 2: Time update of the system state x is as follows:

xk = f (x̂k−1, uk−1, θk) (11)

Pk = Ak−1P̂k−1 AT
k−1 + Qk (12)

• Step 3: Status update of the system state x is as follows: The Kalman gain is as follows:

Kk = PkCT
k (CkPkCT

k + Rk)
−1

(13)

The optimal estimation of state variables is as follows:

x̂k = xk + Kk
[
yk − g

(
x̂k−1, uk−1, θ̂k−1

)]
(14)

The optimal estimate of the covariance is as follows:

P̂k = (E− KkCk)Pk (15)

• Step 4: Process noise covariance equation is as follows:

Qk = (1− dk)Qk−1 + dk[Kk(ŷk − yk)(ŷk − yk)
TKT

k + Pk − Ak−1P̂k−1 AT
k−1] (16)

• Step 5: Observe the noise covariance equation as follows:

Rk = (1− dk)Rk−1 + dk[(ŷk − yk)(ŷk − yk)
T − CkPkCT

k ] (17)

where dk =
1−b
1−bk , k = 1, 2, · · · , n, b is the forgetting factor, 0 < b < 1; x̂k is the optimal

state estimation value at k time of sampling; xk is the estimated value of the state
variable at k time of sampling; ŷk is the actual observed value at k time of sampling; yk
is the estimated value of the observed variable at k time of sampling; P̂k is the optimal
estimation value of error covariance at k time of sampling; Pk is the estimated value of
error covariance at k time of sampling.

4.2. The Ohm Internal Resistance and Actual Capacity Estimation Based on AEKF

The state and observation equations of the system with the newly added state param-
eters are as follows:

θk+1 = θk + γk (18)

Dk+1 = g(xk, uk, θk) + ek (19)

where γk is the noise on the input variable, ek is the noise on the output variable; an
adaptive extended Kalman filter algorithm is applied to the state variable θ to obtain the
real-time estimation results of the internal resistance and actual capacity of the battery. In
order to obtain the accurate ohmic resistance and actual capacity of the battery, the error
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between the estimated value of the observation variable and the actual value of the work
of the echelon battery was corrected [26,27].

In this paper, the error covariance matrices of the zero-mean Gaussian white noise
rk and ek are Qθ,k and Rθ,k.

The algorithm flow is as follows:

• Step 1: Initialize θ as follows:
θ̂0 = E(θ0) (20)

Pθ,0 = E
[
(x0 − x̂0)(x0 − x̂0)

T
]

(21)

• Step 2: Time update of the system state θ is as follows:

θk = θ̂k−1 (22)

Pθ,k = P̂θ,k−1 + Qθ,k (23)

• Step 3: Status update of the system state θ is as follows: The Kalman gain is as follows:

Kθ,k = Pθ,kCT
k (CkPθ,kCT

k + Rθ,k)
−1

(24)

The optimal estimation of state variables is as follows:

θ̂k = θk + Kθ,k[yk − g
(
x̂k−1, uk−1, θ̂k−1

)
(25)

The optimal estimate of the covariance is as follows:

P̂θ,k = (E− Kθ,kCk)Pθ,k (26)

• Step 4: Process noise covariance equation is as follows:

Qθ,k = (1− dθ,k)Qθ,k−1 + dθ,k[Kθ,k(ŷk − yk)(ŷk − yk)
TKT

θ,k + Pθ,k − Ak−1P̂θ,k−1 AT
k−1] (27)

• Step 5: Observe the noise covariance equation as follows:

Rθ,k = (1− dθ,k)Rθ,k−1 + dθ,k[(ŷk − yk)(ŷk − yk)
T − CkPθ,kCT

k ] (28)

where dθ,k =
1−bθ

1−bk
θ

, k = 1, 2, · · · , n, bθ is the forgetting factor, 0 < bθ < 1.

4.3. SOP Estimation Based on ADEKF

The SOP optimal estimate forecast is updated as follows:
The optimal estimation of the predicted working voltage at time k + 1 is as follows:

Ûk+1 = g
(

x̂k, uk, θ̂k
)
=

[
d(Uoc(SC))

dSC
|SC=SCK − 1−1

]
·

 Sck

UR1C1
k

UR2C2
k

− ikR0,k (29)

The optimal estimation prediction SOP at time k + 1 is as follows:

Pk+1 =
Û2

k+1
R0,k+1 + R1 + R2

(30)

Ignore the effect of internal polarization resistance:

PSOP =
Û2

k+1
R0,k+1

(31)
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where g
(

x̂k−1, uk−1, θ̂k−1
)

is the estimated value of the observed variable at k time of
sampling.

4.4. The Flow Chart of SOP Estimation Based on ADEKF

The flow chart of the SOP estimation of an echelon-use battery is shown in Figure 2.
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5. Simulation and Discussion
5.1. SOC Estimation Based on AEKF

In Figure 3, a lithium iron phosphate echelon-use battery (60 AH, 3.2 V, Table 1) was
selected to conduct the charge/discharge experiment using BTS20-5V/4*300A/WD (Hubei
Techpow Electric Co., Ltd., China) monomer battery charging-discharging equipment at
room temperature. The fully charged echelon battery was discharged several times to
simulate the simple working conditions. Different discharge currents were used each time
for simulation verification and analysis using MATLAB R2020a (MathWorks, Natick, USA).

To verify the adaptive characteristics of the algorithm, a discharge experiment was
carried out on a fully charged echelon battery, starting from an SOC of 100% and ending
at an SOC of 25%. In the process of simulation verification, the initial SOC values were
changed to 100%, 70%, and 40% separately, and the adaptive and error curves were
observed and analyzed.

In the simulation verification, the actual values of the SOC, working voltage, and SOP
were acquired by the charging-discharging equipment (BTS20-5V/4*300A/WD), and the
estimated values were calculated using the ADEKF algorithm.
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Figure 3. Experimental environment. (a) The lithium iron phosphate echelon-use battery (60 AH, 3.2 V). (b) The
charge/discharge experiment.

Table 1. Parameters of the echelon-use battery.

Items Parameter Remarks

capacity 60 Ah 60 A
nominal voltage 3.2 V
working voltage 2.5 V to 3.65 V

charging time 3 h 20 A
charging temperature 0 ◦C to 45 ◦C

discharging temperature −20 ◦C to 55 ◦C

The formula for error:

By formula (1), (2), (14), x̂k =

 Ŝck

ÛR1C1
k

ÛR2C2
k

, the first behavior is the optimal value ŜCk

of SOC.
The SOC error equation is as follows:

SOC error = ŜCk − Sactual (32)

where, Sactual is the value collected by the device.
By formula (29), the optimal estimation of the predicted working voltage at time k + 1

is Ûk+1.
The working voltage error equation is as follows:

Working voltage error = Ûk+1 −Uactual (33)

where, Uactual is the value collected by the device.
By formula (31), the optimal estimation prediction SOP at time k + 1 is PSOP.
The SOP error equation is as follows:

SOP error = PSOP − Pactual (34)

where, Pactual is the value collected by the device.
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5.2. SOC Initial Value of 100%

The simulation verification curve when the initial value of the SOC is 100% is shown
in Figure 4.

Figure 4. The simulation verification curve when the initial value of the SOC is 100%. (a) The SOC
estimation and error curves. (b) The working voltage estimation and error curves. (c) The SOP
estimation and error curves.
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In Figure 4a, the top graph is the adaptive curve of the echelon-use battery SOC, while
the bottom graph is the error curve between the actual and the estimated values of the
echelon-use battery SOC. Through a curve comparison and error analysis, the estimated
error of the echelon-use battery SOC is within 2.12% (Table 2).

Table 2. Estimation error of the echelon-use battery parameters.

Echelon-Use Battery
Parameters

Estimation Error
(SOC = 100%)

Estimation Error
(SOC = 70%)

Estimation Error
(SOC = 40%)

SOC 2.12% −2.36% to 2.44% −2.49% to 2.43%
working voltage 4.36% 4.38% 4.40%

SOP 3.99% 4.04% 4.78%

In Figure 4b, the top graph is the adaptive curve of the echelon-use battery working
voltage, while the bottom graph is the error curve between the actual and the estimated
values of the echelon-use battery working voltage. Through a curve comparison and error
analysis, the estimated error value is 0.1396 V, the echelon-use battery working voltage
platform is 3.2 V, and the calculated estimated error is within 4.36% (Table 2).

In Figure 4c, the top graph is the adaptive curve of the echelon-use battery SOP, while
the bottom graph is the error curve between the actual value and the estimated value of the
echelon-use battery SOP. Through a curve comparison and error analysis, the estimated
error value is 7.67 W, the echelon-use battery is rated at 192 W, and the calculated estimate
error is within 3.99% (Table 2).

5.3. SOC Initial Value of 70%

The simulation verification curve when the initial value of the SOC is 70% is shown in
Figure 5.

n Figure 5a, the top graph is the adaptive curve of the echelon-use battery SOC, while
the bottom graph is the error curve between the actual and the estimated values of the
echelon-use battery SOC. Through a curve comparison and error analysis, the echelon-use
battery SOC estimation demonstrates adaptive characteristics, and the estimated error is
−2.36% to 2.44% (Table 2).

In Figure 5b, the top graph is the adaptive curve of the echelon-use battery working
voltage, while the bottom graph is the error curve between the actual and the estimated
values of the echelon-use battery working voltage. Through a curve comparison and error
analysis, the echelon-use battery working voltage estimation is found to exhibit adaptive
characteristics. The estimated error value is 0.1401 V, the echelon-use battery working
voltage platform is 3.2 V, and the calculated estimated error is within 4.38% (Table 2).

In Figure 5c, the top graph is the adaptive curve of the echelon-use battery SOP, while
the bottom graph is the error curve between the actual and the estimated values of the
echelon-use battery SOP. Through a curve comparison and error analysis, the echelon-use
battery SOP estimation has adaptive characteristics, the estimated error value is 7.75 W, the
echelon-use battery is rated at 192 W, and the calculated estimated error is within 4.04%
(Table 2).

5.4. SOC Initial Value of 40%

The simulation verification curve when the initial value of the SOC is 40% is shown in
Figure 6.

In Figure 6a, the top graph is the adaptive curve of the echelon-use battery SOC, while
the bottom graph is the error curve between the actual and the estimated values of the
echelon-use battery SOC. Through a curve comparison and error analysis, the echelon-use
battery SOC estimation demonstrates adaptive characteristics, and the estimated error is
−2.49% to 2.43% (Table 2).
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Figure 5. The simulation verification curve when the initial value of the SOC is 70%. (a) The SOC
estimation and error curves. (b) The working voltage estimation and error curves. (c) The SOP
estimation and error curves.
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Figure 6. The simulation verification curve when the initial value of the SOC is 40%. (a) The SOC
estimation and error curves. (b) The working voltage estimation and error curves. (c) The SOP
estimation and error curves.

In Figure 6b, the top graph is the adaptive curve of the echelon-use battery working
voltage, while the bottom graph is the error curve between the actual and the estimated
values of the echelon-use battery working voltage. Through a curve comparison and error
analysis, the echelon-use battery working voltage estimation is found to exhibit adaptive
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characteristics. The estimated error value is 0.1407 V, the echelon-use battery working
voltage platform is 3.2 V, and the calculated estimated error is within 4.40% (Table 2).

In Figure 6c, the top graph is the adaptive curve of the echelon-use battery SOP, while
the bottom graph is the error curve between the actual and the estimated values of the
echelon-use battery SOP. Through a curve comparison and error analysis, the echelon-use
battery SOP estimation has adaptive characteristics, the estimated error value is 9.17 W,
the echelon-use battery is rated at 192 W, and the calculated estimated error is within
4.78% (Table 2).

6. Conclusions

In this paper, the second-order Thevenin equivalent model of an echelon-use battery
is established first, and then the SOP estimation method of such a battery is established
by the ADEKF algorithm. A simulation analysis shows that the estimation accuracy error
of the echelon-use battery SOC is less than 2.5%, the estimation accuracy error of the
echelon-use battery working voltage is less than 4.5%, and the estimation accuracy error of
the echelon-use battery SOP is less than 4.8%. Therefore, the method has high accuracy.

In addition, regardless of whether or not the initial value of the SOC is clear, the
proposed algorithm can be adjusted to the adaptive algorithm, and it has high accuracy.
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