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Abstract: In the International Thermonuclear Experimental Reactor, plasma is magnetically confined
with Superconductive Magnets (SMs) that must be maintained at the cryogenic temperature of
4.5 K by one or more Superconducting Magnet Cryogenic Cooling Circuits (SMCCC). To guarantee
cooling, Loss-of-Flow Accidents (LOFAs) in the SMCCC are to be avoided. In this work, we develop
a three-step methodology for the prompt detection of LOFA precursors (i.e., those combinations of
component failures causing a LOFA). First, we randomly generate accident scenarios by Monte Carlo
sampling of the failures of typical SMCCC components and simulate the corresponding transient
system response by a deterministic thermal-hydraulic code. In this phase, we also employ quick-
running Proper Orthogonal Decomposition (POD)-based Kriging metamodels, adaptively trained
to reproduce the output of the long-running code, to decrease the computational time. Second, we
group the generated scenarios by a Spectral Clustering (SC) employing the Fuzzy C-Means (FCM), in
order to identify the main patterns of system evolution towards abnormal states (e.g., a LOFA). Third,
we develop an On-line Supervised Spectral Clustering (OSSC) technique to associate time-varying
parameters measured during plant functioning to one of the prototypical groups obtained, which
may highlight the related LOFA precursors (in terms of SMCCC components failures). We apply the
proposed technique to the simplified model of a cryogenic cooling circuit of a single module of the
ITER Central Solenoid Magnet (CSM). The framework developed promptly detects 95% of LOFA
events and around 80% of the related precursors.

Keywords: ITER Central Solenoid Magnet; cryogenic cooling circuit; Loss-of-Flow Accident;
precursors; Spectral Clustering; adaptive Kriging meta-model; Proper Orthogonal Decomposition

1. Introduction

The International Thermonuclear Experimental Reactor (ITER) will employ a plasma
of Deuterium and Tritium to produce a net energy output by means of thermonuclear
fusion reactions for the first time [1]. Different low-critical temperature (LTS) Supercon-
ducting Magnets (SMs) are used to confine and shape the plasma, and to drive the plasma
current [2]: eighteen Toroidal Field (TF) coils, six Poloidal Field (PF) coils and one Central
Solenoid (CS) coil, respectively (the eighteen Correction Coils (CCs) in ITER do not have
instead superconductive properties). Each of the six Central Solenoid Modules (CSMs),
which compose the CS, must sustain fast currents ramps up to high values of ~40 kA in
order to generate the rated plasma current: in such extreme conditions, ohmic heating
must be nullified by preserving the magnets superconductive properties [3]. While AC
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losses in the SC cables (due to the magnetic field variation) and parasitic heat load tend
to rise the temperature, appropriate cooling is ensured by a Superconducting Magnet
Cryogenic Cooling Circuit (SMCCC), where Supercritical Helium (SHe) flows at 4.5 K and
0.5–0.6 MPa. The heat removed from the magnet is transferred within the SMCCC to a
thermal buffer constituted by a bath with liquid Helium (LHe) in equilibrium with its
vapor [4,5]. Similar Cryogenic Circuits are installed for the TF and PF coils.

The safety of ITER (and of other nuclear fusion systems, like the European Demonstra-
tion Power Plant (EU DEMO)) needs to be verified and proved by a rigorous assessment of
the system’s response to operational transients and accidental conditions, and the related
(safety) gaps and issues need to be underlined [6–11]. Actually, we must avoid the plant
operators, the people, and the environment being contaminated by radioactive agents,
e.g., tritium and other materials activated by the neutrons generated by the nuclear fusion
reactions [12–15]. Additionally, the protection and integrity of the superconducting magnet
system must be guaranteed, due to its huge cost [16], as well as due to the need to ensure at
least a lifetime equal to that of the nuclear fusion plant itself. The relevance of these consid-
erations is testified by the flourishing recent literature concerning the detailed modeling of
the behavior of fusion systems under a large variety of abnormal and accidental conditions.
For example, in ref. [17] an in-vessel Loss-Of-Coolant Accident (LOCA) is analyzed for the
EU DEMO. Instead, in refs. [18–22] in-box and ex-vessel LOCAs, respectively, are studied
for the ITER facility; also, in ref. [23] the effects of a pipe break (and the consequent loss of
coolant) in the ITER secondary cooling water system are assessed. Loss-of-Flow Accidents
(LOFAs) in ITER current leads prototypes are modeled and tested in refs. [24,25], while
studies on Loss-Of-Vacuum Accidents (LOVAs) in the ITER vacuum vessel can be found in
ref. [26]. Finally, an analysis of the plasma quench propagation tests in the ITER TF insert
coil is developed in ref. [27].

Within this broad framework, here we are particularly concerned with Loss-of-Flow
Accidents (LOFAs). Actually, a LOFA in a SMCCC represents a major issue because it may
jeopardize the SC magnet cooling capability. In case of a LOFA, the CS temperature and
pressure may escalate rapidly due to the AC losses and a loss of the superconductivity (a
“quench”) could be initiated. If the quench propagates, when the temperature and the pres-
sure exceed 150 K and 25 MPa, respectively, the structural integrity and superconductive
properties of the CS could be lost [28–32].

In this paper, we elaborate an automatic, three-step data-driven technique to promptly
identify patterns of (time-varying) parameters measured during plant functioning and to
reveal LOFA precursors (i.e., combinations of SMCCC components failures) [33,34]. First,
we create a “database” of accident scenarios by repeated Monte Carlo Sampling (MCS)
of the SMCCC components failures and the simulation of the corresponding transient
system response by the deterministic thermal-hydraulic Cryogenic Circuit Conductor and
Coil (4C) code [35]. Since this procedure requires a huge computational cost, Kriging
metamodels [36] are employed as fast-running “surrogates” to reproduce the behavior
of the mechanistic code with a reduced computational time. In particular, we first adopt
the Adaptive Kriging–Monte Carlo Sampling (AK-MCS) method to progressively refine
the accuracy of the metamodels in reproducing the “critical” system configurations of our
interest (i.e., the LOFA conditions) [37–41]. Then, we construct Proper Orthogonal Decom-
position (POD)-based Kriging metamodels [42,43] to quickly simulate a large number of
(new) time-varying signals without resorting to the original long-running 4C code: this
allows enriching the database of accidental scenarios at a negligible computational cost.
In the second step, we employ a Spectral Clustering (SC) algorithm based on the Fuzzy
C-Means (FCM) [44] to group similar scenarios together, which allows typifying the main
patterns of the system evolution towards failure configurations (e.g., a LOFA). By so doing,
we can reveal the “prototypes” of component failure modes (i.e., the precursors) that most
likely drive the system to abnormal conditions [45,46]. Thirdly, we exploit the information
collected within an On-line Supervised Spectral Clustering (OSSC) to timely associate new
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developing scenarios (measured during plant functioning) to the proper clusters and to
identify the respective LOFA precursors [47].

The LOFA in ITER magnets has already been studied with a deterministic approach in
ref. [31], while a first probabilistic assessment has been proposed in ref. [28] for a sub-size
SMCCC tailored for the cooling of a single CSM. In ref. [48], some of the authors of this
paper have proposed a framework combining visual maps and a preliminary version
of the OSSC algorithm [47] to carry out a more extensive analysis of the same test case
of ref. [28], involving LOFA precursor identification in the cooling circuit of the ITER
CS magnets. One of the main limitations of [48] was the adoption of a relatively small
number of simulated scenarios (i.e., 83) to train the OSSC algorithm and to build the visual
maps in order to limit the overall computational cost of the analysis. This was shown
to impair the effectiveness of the method, leading, e.g., to erroneous detection of LOFA
precursors in some scenarios with no LOFA and to the identification as precursors of some
components that had not actually failed. These errors are on the conservative side but may
reduce the availability of the machine, due, e.g., to unnecessary inspections following the
precursor identification. To reduce such over-identification, the following applicative and
methodological contributions are introduced in the present paper with respect to ref. [48]:

• POD-based Kriging metamodels are employed for the first time to simulate—at a
reduced computational cost—a large number of time-varying (possibly accidental)
behavior of a machine for nuclear fusion;

• Classical techniques available for the post-processing of the clusters produced by
the FCM-based SC method [44–46] are originally tailored to identify both the LOFA
occurrence times and the components failure modes;

• The version of the OSSC algorithm here used to timely identify LOFA precursors
during the development of a new accident scenario is proposed for the first time in
this work.

It is worth mentioning that a huge variety of (data-driven, analytical-model-based,
and deep-knowledge-based) approaches has been proposed in the open literature for
the timely detection and diagnosis of faults in several fields of modern engineering. See
refs. [49–52] for interesting and complete reviews. For example, in the field of online moni-
toring of rotating machinery, a self-adaptable approach based on dynamically evolving
feature selection is introduced in ref. [53]. Additionally, in ref. [54] the authors develop a
compacted object sample extraction method based on unlabeled data for fault diagnosis
in evolving environments. Finally, in ref. [55] detection and diagnosis of anomalies are
performed by a combination of Convolutional Long Short-Term Memory, Fast Fourier
and continuous wavelet transforms. In the area of energy engineering, a recent example
can be found in ref. [56], where evolutionary classification trees and adaptive symbolic
aggregate approximation processes are combined to identify anomalous patterns of energy
consumption in buildings. Additionally, in ref. [57] a never-ending learning method (based
on dendrograms and 1-nearest-neighbor classifiers) is developed for online diagnosis of
different types of faults in a gas turbine oil system operating in dynamically evolving
environments. In the nuclear field (which is of particular interest to the present paper),
several techniques have been employed for the early identification and diagnosis of acci-
dents in fission systems, including: classical neural network architectures and Bayesian
statistics for identifying LOCA events in a pressurized heavy water reactor [58]; deep
neural networks for the fault detection and remaining useful life prediction of solenoid op-
erated valves [59] and for online monitoring of the (modular) Integrated Pressurized Water
Reactor IP-200 [60]; (Kernel) Principal Component Analysis combined with clustering for
anomaly detection and isolation in an advanced heavy water reactor [61] and for spotting
pipe ruptures in the cooling system of a pressurized light-water reactor [62]; particle filters
embedded with neural networks to detect very small-break LOCAs in pressurized water
reactors [63]; Auto-Associative Kernel Regression for early warnings about the water level
of a pressurizer, on the moisture separator and reheater temperature transmitters and
on environmental influences in real nuclear power plants of the Korea Hydro & Nuclear
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Power Co., Ltd. (KHNP) (Central Research Institute, KHNP, 70, 1312-gil, Yuseong-daero,
Yuseong-gu, Daejeon 34101, Republic of Korea) [64]; Bayesian Networks for the model-
based diagnosis in a single-phase heat exchanger [65]; Support Vector Machines combined
with Gaussian Process Regression for the transient analysis of seven different (normal
and accidental) conditions (LOCAs, load rejection, steam generator rupture, etc.) in a
simulated nuclear plant [66]; incremental learning and reconciliation of different clustering
approaches by unsupervised schemes applied to a fleet of nuclear power plant turbines
during shut-down transients [67]. While acknowledging this wide and diversified frame-
work of algorithms and applications, it is important to notice that to the best of the authors’
knowledge: (i) the structured, integrated combination of advanced methods proposed in
this work is new and original; (ii) no intelligent techniques for prompt anomaly detection,
fault diagnosis and precursor identification have yet been developed for, and applied to,
nuclear fusion systems.

The remainder of the paper is organized as follows. In Section 2, a description of a
typical SMCCC and the thermo-hydraulic code employed to simulate its behavior [35] is
briefly recapped. In Section 3, the method developed for LOFA precursor identification is
presented. The approach is tested in Section 4, where the main results are shown and the
comparison to the results obtained in [48] is presented. Finally, conclusions are drawn in
Section 5.

2. The Superconducting Magnet Cryogenic Cooling Circuit (SMCCC)

Supercritical Helium (SHe) is kept in motion in the SMCCC to cool down each
CSM [68]. Figure 1 shows a simplified scheme of the SMCCC circuit with its main com-
ponents. At nominal operational conditions, a nominal flow G0 = 0.32 kg/s in the two
cryolines and a downstream pressure p0 = 0.42 MPa [28,69] is ensured by a Centrifugal
Pump (CP); the heat produced in the CP by the compression and in the CSM by AC losses
due to pulsed operation is extracted from the SHe (in the heat exchangers HX1 and HX2,
respectively) by Liquid Helium (LHe) at saturated conditions (Tsat = 4.5 K). In the SMCCC
under analysis, several valves are present: the Control Valves (CV1 and CV2) are Normally
Open (NO), whereas the two Safety Valves (SV1 and SV2) and the By-pass Valve (BV) are
Normally Closed (NC); flow meters and pressure detectors send signals to controllers C1
and C2, respectively. Note that the SMCCC reported in Figure 1 is just a specific simplified
configuration of the much more complex loops under construction in ITER, but it is relevant
to develop and test the novel approach proposed here.
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When a LOFA occurs, and the coolant flow falls below 10% of the nominal value for
more than a validation time (τval = 1 s in this paper) both at the CSM inlet and the CSM
outlet [9]:
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• C1 closes CV1 and CV2, opens BV preventing the CP damage and dumps the current
inside the CSM in 30 s [70]: in this way, the SHe flows only through the by-pass
line, so that the CSM is isolated and the quantity of bi-phase helium at CP upstream
is reduced.

• C2 opens the two SVs with a PID controller when the pressure in the CSM goes
beyond plim = 1.8 MPa. By so doing, SHe is sent to the Quench Tank (QT), at pressure
pQT = 0.35 MPa and temperature TQT = 300 K [28]: thus, the pressure limit of 25 MPa
is not exceeded and the integrity of the joints adjacent to the CSM during quench is
guaranteed.

The closed cooling circuit is simulated for a mission time tmiss = 3600 s (at the
beginning of which the current evolution foreseen for the ITER 15 MA plasma scenario
is followed) with the 4C code that includes [35]: (i) a 1-D thermal-hydraulic model for
each channel of the CSM that is thermally coupled with the others through a 21/2-D model
accounting for heat diffusion phenomena in each radial section of the CSM; (ii) a 1-D
compressible fluid model for pipes and HXs; (iii) a 0-D model for the mass and the energy
balance in relevant points of the cooling loop (such as valves, QT, CP, etc.). The choice of
the mission time tmiss = 3600 s is dictated by the length and shape of one single pulse of
current in the ITER CSM, which can be divided into Q = 5 phases:

• First Magnetization phase (FM): in the first 130 s, a variation in the current from 40 kA
to −40 kA in 80 s is registered, which leads to large AC losses and eddy currents.

• Burning Phase (B): the current decreases to −45.5 kA for 386 s.
• Rump Down phase (R): the current reaches 0 kA at 975 s.
• Dwell phase (D): no current flows in the CSM until 1490 s (after the heat load of the

previous phases, it is necessary to cool down the CSM).
• Last Magnetization phase (M): the current returns to the initial value of 40 kA and,

after a plateau of 10 s, the pulse starts again for other 1800 s.

Further physical details are not reported here for brevity, since they go far beyond the
methodological scope of the present work: the interested reader is referred to [48,68].

For each i-th simulation, we monitor Z = 3 variables yk
i (t) [k = 1, 2, . . . , Z] at time t.

Relying on the experience of some of the authors of this paper in the thermal-hydraulic
modelling of superconducting magnets systems, these Z = 3 variables are identified as
(some of the most) critical for the safe functioning of the SMCCC under analysis and
worth to be monitored for a prompt and accurate detection of LOFAs, which is the main
objective and interest of the present study. In particular, the pressure pCSM,in at the inlet
of the CSM (k = 1) must not exceed plim = 1.8 MPa to ensure the integrity of joints and
headers in the SMCCC. Additionally, the hotspot temperature Ths in the CSM (k = 2)
and the ratio I/Icr between the current flowing in the conductors used to wind the CSM
and the critical one (at a given magnetic field, temperature and mechanical stress) (k = 3)
must not exceed the minimum current sharing temperature during the whole scenario
simulated here, i.e., Tcs = 7.3 K (corresponding to the nominal evolution of strain and
magnetic field) and the ratio (I/Icr)lim = 0.5 (conservatively chosen here just to keep
sufficiently far from the onset of a current sharing), respectively. The last two conditions
(on Ths and I/Icr) aim at avoiding ohmic heating (due to current flowing in the copper
strands) and at guaranteeing the superconductive properties in the CSM, thus preventing
quench. Some considerations are in order in this respect. First, we have relied entirely on
expert knowledge and on the physical considerations above for the selection of pCSM,in,
Ths and I/Icr, as they were deemed to be relevant for the early identification of the type of
accident of interest to the present study, i.e., a LOFA, and of the corresponding precursors.
Obviously, the analysis of a different class of accident scenarios would possibly require
the selection of a different set of monitored parameters. Additionally, more advanced
automatic techniques could be employed in the future for the optimal identification of the
variables to be used by the detection model, e.g., feature extraction [71] and selection [72]
algorithms. Second, the size of the set of monitored parameters (i.e., Z = 3) has been
chosen arbitrarily by the authors: on the one hand, it is small enough to make the physical
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analysis of the results easy and tractable; on the other hand, it still allows to demonstrate
the performance of the proposed framework for LOFA detection on a relatively simple
yet realistic multi-dimensional problem, which is the main methodological scope of the
present paper. Finally, notice that the numerical values of the failure limits (discussed
and motivated above), i.e., plim = 1.8 MPa, Tcs = 7.3 K and (I/Icr)lim = 0.5, do not have
any impact on the algorithmic structure, generalization properties and applicability of
the overall methodological framework for LOFA detection and precursor identification
here proposed.

The thresholds for pCSM,in, Ths and I/Icr may be exceeded due to failures of the
mechanical components (CP, CV1, CV2, BV, SV1 and SV2) that are characterized by different
magnitudes and timings [28]. In particular [48]:

• The rotational speed of the CP may decrease and lead to reducing the mass flow rate
at (i) 75%, (ii) 50%, (iii) 25% or (iv) 0% of the nominal value: i.e., for simplicity, five
(equally spaced) levels of performance are selected between 0% and 100% for CP.

• NO valves (CV1 and CV2) may fail in three different ways: (i) stuck opened at the
nominal position; (ii) partially closed with a flow area at 50% of the nominal one;
(iii) completely closed. For simplicity, three different (equally spaced) functioning
states are chosen between 0% and 100% for CV1 and CV2.

• NC valves (BV, SV1 and SV2) may fail in three different ways: (i) stuck closed at
the nominal position; (ii) partially opened with a flow area at 50% of the nominal
one; (iii) completely opened. Again, for simplicity, three different (equally spaced)
functioning states are chosen between 0% and 100% for BV, SV1 and SV2.

Notice that, as before, the different states of (full, degraded and failed) performance
of the mechanical components have been chosen arbitrarily by the authors: on the one
hand, the number of functioning states for each component is small enough to make the
physical analysis of the precursor identification results manageable and relatively easy
to describe; on the other hand, the random transitions of the components between such
performance levels at different times generate a large number of states for the overall
system: this allows to demonstrate the effectiveness of the proposed framework for LOFA
precursor identification on a relatively simple, but realistic multi-state dynamic problem,
which is the main methodological scope of the present work. In addition, notice that the
(arbitrary) fineness of the discretization of the performance of the (input) components
only determines the overall number of available states, which the system can visit during
its mission time. However, it does not have any impact on the algorithmic structure,
generalization properties and applicability of the methodological framework for LOFA
detection and precursor identification here proposed.

3. LOFA Precursors Identification: The Proposed Framework

We propose a three-step method for the “online” characterization of newly developing
scenarios relying on the analysis of the Z = 3 time-varying monitored signals [33,34]:
(i) creation of a “database” of simulated accidental scenario (Section 3.1); (ii) clustering
of the scenarios according to a measure of similarity, in order to characterize the “proto-
typical” evolutions of the system toward critical conditions (i.e., LOFA), together with the
corresponding precursors (i.e., component failures) (Section 3.2); (iii) comparison of a new
scenario with those belonging to the created database, in order to infer the possible com-
ponent failures responsible for the signal evolution (i.e., of the system’s critical condition)
(Section 3.3). The entire framework is summarized and sketched in Figure 2 for the sake
of clarity.
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Appendix A. Kriging Metamodels 
Kriging metamodels are stochastic regression algorithms, which allow predicting an output 

푌 (퓧) = ℳℳ (퓧) from an input 퓧 ∈ 풟풳 ⊂ ℝ  (with 푀 the number of input elements in 퓧, and 
풟풳 , the domain of    퓧     [39,73]. In Kriging metamodels, the residuals are correlated by mean 
of gaussian process like shown in Equation (A1): 

ℳℳ (퓧) = 휷풌 퓱(퓧)  + 휎 풵(퓧, 휔 ) = 풩 휷풌 퓱(퓧); 휎 풵(퓧, 휔 )  (A1)
The first term of ℳℳ  is the mean value (i.e., trend) of the linear regression model and it 

contains the regression coefficients 휷 = [훽 , 훽 , … , 훽 ] and the basis function 퓱 = [풽 , 풽 , … , 풽 ] 
where 푃 is the degree of the truncation of 퓱(퓧). The second term is constituted by the variance of 
the gaussian process  휎 , a constant value, and by the zero mean unit variance 풵(퓧, 휔 ) of the 
gaussian process that depends on the input 퓧 and on the probability space 휔 . The value 휔  relies 
on the correlation function ℛ(퓧, 퓧 ; 휽 ), depending on the distance between two input samples 퓧 
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i = [mCP, τCP, mCV1, τCV1, mCV2, τCV2, mBV , τBV ,
mSV1, τSV1, mSV2, τSV2] and generated by Monte Carlo Sampling (MCS): for each compo-
nent, the magnitude (m) of the failure and the time (τ) at which the failure occurs are
listed [28] (it is straightforward to notice that if the number of mechanical components
considered changes (e.g., because the analyst wants to include more valves, more pumps
or additional pipelines), this means that we are analyzing a different physical system and
correspondingly a different thermal-hydraulic model (with a different number of inputs).
Thus, a different metamodel should be coherently constructed and trained).

The magnitude (m) is assumed as follows:

• Discrete values between 0 and 4 are used to indicate the magnitude of the CP failure.
If the component has not failed, mCP = 0 in the corresponding state vector. Instead,
mCP values equal to 1, 2, 3 or 4 correspond to states of reduction of the mass flow rate
of 75%, 50%, 25% or 0% of the nominal value, respectively, due to a decrease of its
rotational speed.
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• Discrete values between 0 and 3 are employed to characterize the magnitude of NO
valves (CV1 and CV2) failures. If the component works correctly, m = 0. Instead, if
the valve remains stuck opened, partially closed with a reduction of the flow section
area of 50% or completely closed, then m is set to 1, 2 or 3, respectively.

• Discrete values between 0 and 3 are used to indicate the magnitude of NC valves (BV,
SV1 and SV2) failures, too. When the component has not failed, m = 0. Otherwise,
when the valve remains stuck closed, partially opened with the flow section area at
50% of the one completely opened or completely opened, then m is set to 1, 2 or 3,
respectively.

The failure time (τ) is a discrete value between 0 s and 1800 s (the discretization step
is chosen equal to 0.01 s). Notice that such time interval has been selected because 1800 s
is the length of a single pulse of current in the ITER CSM. In case a different mission
time, τmiss is of interest to the analysis, the failure time (τ) values will be straightforwardly
sampled within the range [0, τmiss] s. If a value of 0 is indicated for τ, this means that the
component has not failed.

For instance, if the vector
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i is equal to [2, 60, 2, 1785, 1, 689, 0, 0, 1, 856, 0, 0], the
scenario to be simulated by the 4C entails: failure of the CP at 60 s with the flow at 50% of
the nominal value; valves CV2 and SV1 stuck at their nominal position at 689 s and 856 s,
respectively; and partial closing of CV1 at 1785 s, whereas the BV and SV2 work correctly
during the entire transient

Once vector
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i is sampled, it is sent an an input to the 4C code, which outputs the
three critical variables yk

i (t) [k = 1, 2, 3] and the mass flow rates, GCSM,in(t) and GCSM,out(t),
at the inlet and at the outlet of the CSM, respectively. When GCSM,in(t) < 0.032 kg/s and
GCSM,out(t) < 0.032 kg/s for more than the validation time (τval = 1 s), a LOFA takes place
and is detected by controller C1 [31]; the LOFA detection time is indicated as tLOFA,C1,i.

Notice that each simulation of the system transient behavior by the 4C code requires
on average two days on an Intel Core i3-7100 3.9 GHz 3 MB Cache. Thus, in this phase, fast-
running Kriging metamodels are used to reduce the computational burden associated with
the creation of the accident scenario “database”. This is done in two sub-steps. First, the
Adaptive Kriging–Monte Carlo Sampling (AK-MCS) method is adopted to progressively
refine the accuracy of the metamodels in reproducing the critical system configurations of
our interest, i.e., the LOFA conditions [38–40] (Section 3.1.1). Based on the system state-
space exploration performed by the AK-MCS, Proper Orthogonal Decomposition (POD)-
based Kriging metamodels [42,43] are then constructed to quickly simulate a large number
of (new) time-varying signals without resorting to the original long-running 4C code: this
allows enriching the database of accidental scenarios at a negligible computational cost
(Section 3.1.2).

3.1.1. Adaptive Kriging–Monte Carlo Sampling (AK-MCS) Method

The Adaptive Kriging–Monte Carlo Sampling (AK-MCS) algorithm [37,39,40] is an
advanced metamodel-based random sampling method here used to generate and include
in the database “interesting” scenarios lying in proximity of system failure configurations
(i.e., LOFA conditions) intelligently and adaptively. In such scenarios, the maximum
values of the critical variables
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y1
i (t)
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max,

(
y2

i (t)
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max,
(
y3

i (t)
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max =[Y1
i , Y2

i , Y3
i ] lie

in proximity of the critical safety thresholds
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thr = [Y1
thr,Y

2
thr,Y

3
thr] = [plim = 1.8 MPa,

Tcs = 7.3 K, (I/Icr)lim = 0.5]. This criterion is used to drive the simulations preferably
towards “critical” scenarios and system configurations, without wasting computational
time in the exploration of safe (not interesting) areas of the system state-space.

The adaptive procedure, shown in the flow chart of Figure 3 and detailed below, is
applied to each k-th output (i.e., safety-critical) variable of interest [40]:
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• Step (0) An initial Design Of Experiment (DOE) (
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ℳℳ (퓧) = 휷풌 퓱(퓧)  + 휎 풵(퓧, 휔 ) = 풩 휷풌 퓱(퓧); 휎 풵(퓧, 휔 )  (A1)
The first term of ℳℳ  is the mean value (i.e., trend) of the linear regression model and it 

contains the regression coefficients 휷 = [훽 , 훽 , … , 훽 ] and the basis function 퓱 = [풽 , 풽 , … , 풽 ] 
where 푃 is the degree of the truncation of 퓱(퓧). The second term is constituted by the variance of 
the gaussian process  휎 , a constant value, and by the zero mean unit variance 풵(퓧, 휔 ) of the 
gaussian process that depends on the input 퓧 and on the probability space 휔 . The value 휔  relies 
on the correlation function ℛ(퓧, 퓧 ; 휽 ), depending on the distance between two input samples 퓧 
and 퓧′ and the hyperparameters 휽 . 

Each ℳℳ (푘 = 1, … , 푁 ) meta-model is built with the DOE made by the ensemble of the inputs 
퓧 = {퓧 , 퓧 , … , 퓧 } and the ensemble of the outputs 퓨 = {풴 , 풴 , … , 풴 } both constituted 
by 푁  elements. Consequently, to the assumption of the gaussian process, the k-th element output 
prediction 푌 (퓧) = ℳℳ (퓧) for a general 퓧 input and all the true model responses      퓨              of 
the DOE follows the gaussian distribution in Equation (A2): 

푌 (퓧)
 퓨

~풩 휷 퓱(퓧) 
퓗휷

; 휎
1 퓻 (퓧)

퓻 (퓧) 퓡
 (A2)

where: 
퓗     is the information matrix, whose generic term is (푖 = 1, … , 푁 ; 푝 = 1, … , 푃) 

ℋ = 풽 (퓧 )  (A3)
퓡           is the correlation matrix, whose generic term is (푖, 푗 = 1, … , 푁 ) 

ℛ = ℛ 퓧 , 퓧 ; 휽  (A4.)
퓻             (퓧) is vector of cross-correlations between the configuration 퓧 and each one of the 

DOE and its generic term is (푖 = 1, … , 푁 ) 
퓇 (퓧)  = ℛ(퓧, 퓧 ; 휽 ) (A5

Consequently, the mean Kriging value 휇  at the 퓧 point and its Kriging variance 휎  are  

  
 

휇 (퓧) = 퓱(퓧)휷 + 퓻 (퓧)퓡 (퓨 − 퓗휷 ) (A6)

휎 (퓧) = 휎  (1 − 퓻 (퓧)퓡 퓻 (퓧) + 퓾 (퓧) 퓗 퓡 ퟏ퓗
ퟏ

        퓾        (퓧))  (A7)

with 퓾 (퓧) = 퓗 퓡 퓻 (퓧) −        퓱           (퓧) (A8)

and 휷 = 퓗 퓡 퓗 퓗 퓡 퓨  (A9)

) (or training set), i.e., a

set of examples/realizations (
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of gaussian process like shown in Equation (A1): 

ℳℳ (퓧) = 휷풌 퓱(퓧)  + 휎 풵(퓧, 휔 ) = 풩 휷풌 퓱(퓧); 휎 풵(퓧, 휔 )  (A1)
The first term of ℳℳ  is the mean value (i.e., trend) of the linear regression model and it 

contains the regression coefficients 휷 = [훽 , 훽 , … , 훽 ] and the basis function 퓱 = [풽 , 풽 , … , 풽 ] 
where 푃 is the degree of the truncation of 퓱(퓧). The second term is constituted by the variance of 
the gaussian process  휎 , a constant value, and by the zero mean unit variance 풵(퓧, 휔 ) of the 
gaussian process that depends on the input 퓧 and on the probability space 휔 . The value 휔  relies 
on the correlation function ℛ(퓧, 퓧 ; 휽 ), depending on the distance between two input samples 퓧 
and 퓧′ and the hyperparameters 휽 . 

Each ℳℳ (푘 = 1, … , 푁 ) meta-model is built with the DOE made by the ensemble of the inputs 
퓧 = {퓧 , 퓧 , … , 퓧 } and the ensemble of the outputs 퓨 = {풴 , 풴 , … , 풴 } both constituted 
by 푁  elements. Consequently, to the assumption of the gaussian process, the k-th element output 
prediction 푌 (퓧) = ℳℳ (퓧) for a general 퓧 input and all the true model responses      퓨              of 
the DOE follows the gaussian distribution in Equation (A2): 

푌 (퓧)
 퓨

~풩 휷 퓱(퓧) 
퓗휷

; 휎
1 퓻 (퓧)

퓻 (퓧) 퓡
 (A2)

where: 
퓗     is the information matrix, whose generic term is (푖 = 1, … , 푁 ; 푝 = 1, … , 푃) 

ℋ = 풽 (퓧 )  (A3)
퓡           is the correlation matrix, whose generic term is (푖, 푗 = 1, … , 푁 ) 

ℛ = ℛ 퓧 , 퓧 ; 휽  (A4.)
퓻             (퓧) is vector of cross-correlations between the configuration 퓧 and each one of the 

DOE and its generic term is (푖 = 1, … , 푁 ) 
퓇 (퓧)  = ℛ(퓧, 퓧 ; 휽 ) (A5

Consequently, the mean Kriging value 휇  at the 퓧 point and its Kriging variance 휎  are  

  
 

휇 (퓧) = 퓱(퓧)휷 + 퓻 (퓧)퓡 (퓨 − 퓗휷 ) (A6)

휎 (퓧) = 휎  (1 − 퓻 (퓧)퓡 퓻 (퓧) + 퓾 (퓧) 퓗 퓡 ퟏ퓗
ퟏ

        퓾        (퓧))  (A7)

with 퓾 (퓧) = 퓗 퓡 퓻 (퓧) −        퓱           (퓧) (A8)

and 휷 = 퓗 퓡 퓗 퓗 퓡 퓨  (A9)

i,
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Kriging metamodels are stochastic regression algorithms, which allow predicting an output 

푌 (퓧) = ℳℳ (퓧) from an input 퓧 ∈ 풟풳 ⊂ ℝ  (with 푀 the number of input elements in 퓧, and 
풟풳 , the domain of    퓧     [39,73]. In Kriging metamodels, the residuals are correlated by mean 
of gaussian process like shown in Equation (A1): 

ℳℳ (퓧) = 휷풌 퓱(퓧)  + 휎 풵(퓧, 휔 ) = 풩 휷풌 퓱(퓧); 휎 풵(퓧, 휔 )  (A1)
The first term of ℳℳ  is the mean value (i.e., trend) of the linear regression model and it 

contains the regression coefficients 휷 = [훽 , 훽 , … , 훽 ] and the basis function 퓱 = [풽 , 풽 , … , 풽 ] 
where 푃 is the degree of the truncation of 퓱(퓧). The second term is constituted by the variance of 
the gaussian process  휎 , a constant value, and by the zero mean unit variance 풵(퓧, 휔 ) of the 
gaussian process that depends on the input 퓧 and on the probability space 휔 . The value 휔  relies 
on the correlation function ℛ(퓧, 퓧 ; 휽 ), depending on the distance between two input samples 퓧 
and 퓧′ and the hyperparameters 휽 . 

Each ℳℳ (푘 = 1, … , 푁 ) meta-model is built with the DOE made by the ensemble of the inputs 
퓧 = {퓧 , 퓧 , … , 퓧 } and the ensemble of the outputs 퓨 = {풴 , 풴 , … , 풴 } both constituted 
by 푁  elements. Consequently, to the assumption of the gaussian process, the k-th element output 
prediction 푌 (퓧) = ℳℳ (퓧) for a general 퓧 input and all the true model responses      퓨              of 
the DOE follows the gaussian distribution in Equation (A2): 

푌 (퓧)
 퓨

~풩 휷 퓱(퓧) 
퓗휷

; 휎
1 퓻 (퓧)

퓻 (퓧) 퓡
 (A2)

where: 
퓗     is the information matrix, whose generic term is (푖 = 1, … , 푁 ; 푝 = 1, … , 푃) 

ℋ = 풽 (퓧 )  (A3)
퓡           is the correlation matrix, whose generic term is (푖, 푗 = 1, … , 푁 ) 

ℛ = ℛ 퓧 , 퓧 ; 휽  (A4.)
퓻             (퓧) is vector of cross-correlations between the configuration 퓧 and each one of the 

DOE and its generic term is (푖 = 1, … , 푁 ) 
퓇 (퓧)  = ℛ(퓧, 퓧 ; 휽 ) (A5

Consequently, the mean Kriging value 휇  at the 퓧 point and its Kriging variance 휎  are  

  
 

휇 (퓧) = 퓱(퓧)휷 + 퓻 (퓧)퓡 (퓨 − 퓗휷 ) (A6)

휎 (퓧) = 휎  (1 − 퓻 (퓧)퓡 퓻 (퓧) + 퓾 (퓧) 퓗 퓡 ퟏ퓗
ퟏ

        퓾        (퓧))  (A7)

with 퓾 (퓧) = 퓗 퓡 퓻 (퓧) −        퓱           (퓧) (A8)

and 휷 = 퓗 퓡 퓗 퓗 퓡 퓨  (A9)

i) (i = 1, . . . , Ntrain) of the input–output rela-
tionship underlying the original 4C code, is first created, including all the inputs
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풟풳 , the domain of    퓧     [39,73]. In Kriging metamodels, the residuals are correlated by mean 
of gaussian process like shown in Equation (A1): 

ℳℳ (퓧) = 휷풌 퓱(퓧)  + 휎 풵(퓧, 휔 ) = 풩 휷풌 퓱(퓧); 휎 풵(퓧, 휔 )  (A1)
The first term of ℳℳ  is the mean value (i.e., trend) of the linear regression model and it 

contains the regression coefficients 휷 = [훽 , 훽 , … , 훽 ] and the basis function 퓱 = [풽 , 풽 , … , 풽 ] 
where 푃 is the degree of the truncation of 퓱(퓧). The second term is constituted by the variance of 
the gaussian process  휎 , a constant value, and by the zero mean unit variance 풵(퓧, 휔 ) of the 
gaussian process that depends on the input 퓧 and on the probability space 휔 . The value 휔  relies 
on the correlation function ℛ(퓧, 퓧 ; 휽 ), depending on the distance between two input samples 퓧 
and 퓧′ and the hyperparameters 휽 . 

Each ℳℳ (푘 = 1, … , 푁 ) meta-model is built with the DOE made by the ensemble of the inputs 
퓧 = {퓧 , 퓧 , … , 퓧 } and the ensemble of the outputs 퓨 = {풴 , 풴 , … , 풴 } both constituted 
by 푁  elements. Consequently, to the assumption of the gaussian process, the k-th element output 
prediction 푌 (퓧) = ℳℳ (퓧) for a general 퓧 input and all the true model responses      퓨              of 
the DOE follows the gaussian distribution in Equation (A2): 

푌 (퓧)
 퓨

~풩 휷 퓱(퓧) 
퓗휷

; 휎
1 퓻 (퓧)

퓻 (퓧) 퓡
 (A2)

where: 
퓗     is the information matrix, whose generic term is (푖 = 1, … , 푁 ; 푝 = 1, … , 푃) 

ℋ = 풽 (퓧 )  (A3)
퓡           is the correlation matrix, whose generic term is (푖, 푗 = 1, … , 푁 ) 

ℛ = ℛ 퓧 , 퓧 ; 휽  (A4.)
퓻             (퓧) is vector of cross-correlations between the configuration 퓧 and each one of the 

DOE and its generic term is (푖 = 1, … , 푁 ) 
퓇 (퓧)  = ℛ(퓧, 퓧 ; 휽 ) (A5

Consequently, the mean Kriging value 휇  at the 퓧 point and its Kriging variance 휎  are  

  
 

휇 (퓧) = 퓱(퓧)휷 + 퓻 (퓧)퓡 (퓨 − 퓗휷 ) (A6)

휎 (퓧) = 휎  (1 − 퓻 (퓧)퓡 퓻 (퓧) + 퓾 (퓧) 퓗 퓡 ퟏ퓗
ퟏ

        퓾        (퓧))  (A7)

with 퓾 (퓧) = 퓗 퓡 퓻 (퓧) −        퓱           (퓧) (A8)

and 휷 = 퓗 퓡 퓗 퓗 퓡 퓨  (A9)
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1 
 

Appendix A. Kriging Metamodels 
Kriging metamodels are stochastic regression algorithms, which allow predicting an output 

푌 (퓧) = ℳℳ (퓧) from an input 퓧 ∈ 풟풳 ⊂ ℝ  (with 푀 the number of input elements in 퓧, and 
풟풳 , the domain of    퓧     [39,73]. In Kriging metamodels, the residuals are correlated by mean 
of gaussian process like shown in Equation (A1): 

ℳℳ (퓧) = 휷풌 퓱(퓧)  + 휎 풵(퓧, 휔 ) = 풩 휷풌 퓱(퓧); 휎 풵(퓧, 휔 )  (A1)
The first term of ℳℳ  is the mean value (i.e., trend) of the linear regression model and it 

contains the regression coefficients 휷 = [훽 , 훽 , … , 훽 ] and the basis function 퓱 = [풽 , 풽 , … , 풽 ] 
where 푃 is the degree of the truncation of 퓱(퓧). The second term is constituted by the variance of 
the gaussian process  휎 , a constant value, and by the zero mean unit variance 풵(퓧, 휔 ) of the 
gaussian process that depends on the input 퓧 and on the probability space 휔 . The value 휔  relies 
on the correlation function ℛ(퓧, 퓧 ; 휽 ), depending on the distance between two input samples 퓧 
and 퓧′ and the hyperparameters 휽 . 

Each ℳℳ (푘 = 1, … , 푁 ) meta-model is built with the DOE made by the ensemble of the inputs 
퓧 = {퓧 , 퓧 , … , 퓧 } and the ensemble of the outputs 퓨 = {풴 , 풴 , … , 풴 } both constituted 
by 푁  elements. Consequently, to the assumption of the gaussian process, the k-th element output 
prediction 푌 (퓧) = ℳℳ (퓧) for a general 퓧 input and all the true model responses      퓨              of 
the DOE follows the gaussian distribution in Equation (A2): 

푌 (퓧)
 퓨

~풩 휷 퓱(퓧) 
퓗휷

; 휎
1 퓻 (퓧)

퓻 (퓧) 퓡
 (A2)

where: 
퓗     is the information matrix, whose generic term is (푖 = 1, … , 푁 ; 푝 = 1, … , 푃) 

ℋ = 풽 (퓧 )  (A3)
퓡           is the correlation matrix, whose generic term is (푖, 푗 = 1, … , 푁 ) 

ℛ = ℛ 퓧 , 퓧 ; 휽  (A4.)
퓻             (퓧) is vector of cross-correlations between the configuration 퓧 and each one of the 

DOE and its generic term is (푖 = 1, … , 푁 ) 
퓇 (퓧)  = ℛ(퓧, 퓧 ; 휽 ) (A5

Consequently, the mean Kriging value 휇  at the 퓧 point and its Kriging variance 휎  are  

  
 

휇 (퓧) = 퓱(퓧)휷 + 퓻 (퓧)퓡 (퓨 − 퓗휷 ) (A6)

휎 (퓧) = 휎  (1 − 퓻 (퓧)퓡 퓻 (퓧) + 퓾 (퓧) 퓗 퓡 ퟏ퓗
ퟏ

        퓾        (퓧))  (A7)

with 퓾 (퓧) = 퓗 퓡 퓻 (퓧) −        퓱           (퓧) (A8)

and 휷 = 퓗 퓡 퓗 퓗 퓡 퓨  (A9)

1,
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Appendix A. Kriging Metamodels 
Kriging metamodels are stochastic regression algorithms, which allow predicting an output 

푌 (퓧) = ℳℳ (퓧) from an input 퓧 ∈ 풟풳 ⊂ ℝ  (with 푀 the number of input elements in 퓧, and 
풟풳 , the domain of    퓧     [39,73]. In Kriging metamodels, the residuals are correlated by mean 
of gaussian process like shown in Equation (A1): 

ℳℳ (퓧) = 휷풌 퓱(퓧)  + 휎 풵(퓧, 휔 ) = 풩 휷풌 퓱(퓧); 휎 풵(퓧, 휔 )  (A1)
The first term of ℳℳ  is the mean value (i.e., trend) of the linear regression model and it 

contains the regression coefficients 휷 = [훽 , 훽 , … , 훽 ] and the basis function 퓱 = [풽 , 풽 , … , 풽 ] 
where 푃 is the degree of the truncation of 퓱(퓧). The second term is constituted by the variance of 
the gaussian process  휎 , a constant value, and by the zero mean unit variance 풵(퓧, 휔 ) of the 
gaussian process that depends on the input 퓧 and on the probability space 휔 . The value 휔  relies 
on the correlation function ℛ(퓧, 퓧 ; 휽 ), depending on the distance between two input samples 퓧 
and 퓧′ and the hyperparameters 휽 . 

Each ℳℳ (푘 = 1, … , 푁 ) meta-model is built with the DOE made by the ensemble of the inputs 
퓧 = {퓧 , 퓧 , … , 퓧 } and the ensemble of the outputs 퓨 = {풴 , 풴 , … , 풴 } both constituted 
by 푁  elements. Consequently, to the assumption of the gaussian process, the k-th element output 
prediction 푌 (퓧) = ℳℳ (퓧) for a general 퓧 input and all the true model responses      퓨              of 
the DOE follows the gaussian distribution in Equation (A2): 

푌 (퓧)
 퓨

~풩 휷 퓱(퓧) 
퓗휷

; 휎
1 퓻 (퓧)

퓻 (퓧) 퓡
 (A2)

where: 
퓗     is the information matrix, whose generic term is (푖 = 1, … , 푁 ; 푝 = 1, … , 푃) 

ℋ = 풽 (퓧 )  (A3)
퓡           is the correlation matrix, whose generic term is (푖, 푗 = 1, … , 푁 ) 

ℛ = ℛ 퓧 , 퓧 ; 휽  (A4.)
퓻             (퓧) is vector of cross-correlations between the configuration 퓧 and each one of the 

DOE and its generic term is (푖 = 1, … , 푁 ) 
퓇 (퓧)  = ℛ(퓧, 퓧 ; 휽 ) (A5

Consequently, the mean Kriging value 휇  at the 퓧 point and its Kriging variance 휎  are  

  
 

휇 (퓧) = 퓱(퓧)휷 + 퓻 (퓧)퓡 (퓨 − 퓗휷 ) (A6)

휎 (퓧) = 휎  (1 − 퓻 (퓧)퓡 퓻 (퓧) + 퓾 (퓧) 퓗 퓡 ퟏ퓗
ퟏ

        퓾        (퓧))  (A7)

with 퓾 (퓧) = 퓗 퓡 퓻 (퓧) −        퓱           (퓧) (A8)

and 휷 = 퓗 퓡 퓗 퓗 퓡 퓨  (A9)

2, . . . ,
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Appendix A. Kriging Metamodels 
Kriging metamodels are stochastic regression algorithms, which allow predicting an output 

푌 (퓧) = ℳℳ (퓧) from an input 퓧 ∈ 풟풳 ⊂ ℝ  (with 푀 the number of input elements in 퓧, and 
풟풳 , the domain of    퓧     [39,73]. In Kriging metamodels, the residuals are correlated by mean 
of gaussian process like shown in Equation (A1): 

ℳℳ (퓧) = 휷풌 퓱(퓧)  + 휎 풵(퓧, 휔 ) = 풩 휷풌 퓱(퓧); 휎 풵(퓧, 휔 )  (A1)
The first term of ℳℳ  is the mean value (i.e., trend) of the linear regression model and it 

contains the regression coefficients 휷 = [훽 , 훽 , … , 훽 ] and the basis function 퓱 = [풽 , 풽 , … , 풽 ] 
where 푃 is the degree of the truncation of 퓱(퓧). The second term is constituted by the variance of 
the gaussian process  휎 , a constant value, and by the zero mean unit variance 풵(퓧, 휔 ) of the 
gaussian process that depends on the input 퓧 and on the probability space 휔 . The value 휔  relies 
on the correlation function ℛ(퓧, 퓧 ; 휽 ), depending on the distance between two input samples 퓧 
and 퓧′ and the hyperparameters 휽 . 

Each ℳℳ (푘 = 1, … , 푁 ) meta-model is built with the DOE made by the ensemble of the inputs 
퓧 = {퓧 , 퓧 , … , 퓧 } and the ensemble of the outputs 퓨 = {풴 , 풴 , … , 풴 } both constituted 
by 푁  elements. Consequently, to the assumption of the gaussian process, the k-th element output 
prediction 푌 (퓧) = ℳℳ (퓧) for a general 퓧 input and all the true model responses      퓨              of 
the DOE follows the gaussian distribution in Equation (A2): 

푌 (퓧)
 퓨

~풩 휷 퓱(퓧) 
퓗휷

; 휎
1 퓻 (퓧)

퓻 (퓧) 퓡
 (A2)

where: 
퓗     is the information matrix, whose generic term is (푖 = 1, … , 푁 ; 푝 = 1, … , 푃) 

ℋ = 풽 (퓧 )  (A3)
퓡           is the correlation matrix, whose generic term is (푖, 푗 = 1, … , 푁 ) 

ℛ = ℛ 퓧 , 퓧 ; 휽  (A4.)
퓻             (퓧) is vector of cross-correlations between the configuration 퓧 and each one of the 

DOE and its generic term is (푖 = 1, … , 푁 ) 
퓇 (퓧)  = ℛ(퓧, 퓧 ; 휽 ) (A5

Consequently, the mean Kriging value 휇  at the 퓧 point and its Kriging variance 휎  are  

  
 

휇 (퓧) = 퓱(퓧)휷 + 퓻 (퓧)퓡 (퓨 − 퓗휷 ) (A6)

휎 (퓧) = 휎  (1 − 퓻 (퓧)퓡 퓻 (퓧) + 퓾 (퓧) 퓗 퓡 ퟏ퓗
ퟏ

        퓾        (퓧))  (A7)

with 퓾 (퓧) = 퓗 퓡 퓻 (퓧) −        퓱           (퓧) (A8)

and 휷 = 퓗 퓡 퓗 퓗 퓡 퓨  (A9)

Ntrain} and the corresponding simulated outputs
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Kriging metamodels are stochastic regression algorithms, which allow predicting an output 

푌 (퓧) = ℳℳ (퓧) from an input 퓧 ∈ 풟풳 ⊂ ℝ  (with 푀 the number of input elements in 퓧, and 
풟풳 , the domain of    퓧     [39,73]. In Kriging metamodels, the residuals are correlated by mean 
of gaussian process like shown in Equation (A1): 

ℳℳ (퓧) = 휷풌 퓱(퓧)  + 휎 풵(퓧, 휔 ) = 풩 휷풌 퓱(퓧); 휎 풵(퓧, 휔 )  (A1)
The first term of ℳℳ  is the mean value (i.e., trend) of the linear regression model and it 

contains the regression coefficients 휷 = [훽 , 훽 , … , 훽 ] and the basis function 퓱 = [풽 , 풽 , … , 풽 ] 
where 푃 is the degree of the truncation of 퓱(퓧). The second term is constituted by the variance of 
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on the correlation function ℛ(퓧, 퓧 ; 휽 ), depending on the distance between two input samples 퓧 
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Each ℳℳ (푘 = 1, … , 푁 ) meta-model is built with the DOE made by the ensemble of the inputs 
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푌 (퓧)
 퓨

~풩 휷 퓱(퓧) 
퓗휷

; 휎
1 퓻 (퓧)

퓻 (퓧) 퓡
 (A2)

where: 
퓗     is the information matrix, whose generic term is (푖 = 1, … , 푁 ; 푝 = 1, … , 푃) 

ℋ = 풽 (퓧 )  (A3)
퓡           is the correlation matrix, whose generic term is (푖, 푗 = 1, … , 푁 ) 

ℛ = ℛ 퓧 , 퓧 ; 휽  (A4.)
퓻             (퓧) is vector of cross-correlations between the configuration 퓧 and each one of the 

DOE and its generic term is (푖 = 1, … , 푁 ) 
퓇 (퓧)  = ℛ(퓧, 퓧 ; 휽 ) (A5

Consequently, the mean Kriging value 휇  at the 퓧 point and its Kriging variance 휎  are  

  
 

휇 (퓧) = 퓱(퓧)휷 + 퓻 (퓧)퓡 (퓨 − 퓗휷 ) (A6)

휎 (퓧) = 휎  (1 − 퓻 (퓧)퓡 퓻 (퓧) + 퓾 (퓧) 퓗 퓡 ퟏ퓗
ퟏ

        퓾        (퓧))  (A7)

with 퓾 (퓧) = 퓗 퓡 퓻 (퓧) −        퓱           (퓧) (A8)

and 휷 = 퓗 퓡 퓗 퓗 퓡 퓨  (A9)
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퓻 (퓧) 퓡
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where: 
퓗     is the information matrix, whose generic term is (푖 = 1, … , 푁 ; 푝 = 1, … , 푃) 

ℋ = 풽 (퓧 )  (A3)
퓡           is the correlation matrix, whose generic term is (푖, 푗 = 1, … , 푁 ) 

ℛ = ℛ 퓧 , 퓧 ; 휽  (A4.)
퓻             (퓧) is vector of cross-correlations between the configuration 퓧 and each one of the 

DOE and its generic term is (푖 = 1, … , 푁 ) 
퓇 (퓧)  = ℛ(퓧, 퓧 ; 휽 ) (A5

Consequently, the mean Kriging value 휇  at the 퓧 point and its Kriging variance 휎  are  

  
 

휇 (퓧) = 퓱(퓧)휷 + 퓻 (퓧)퓡 (퓨 − 퓗휷 ) (A6)

휎 (퓧) = 휎  (1 − 퓻 (퓧)퓡 퓻 (퓧) + 퓾 (퓧) 퓗 퓡 ퟏ퓗
ퟏ

        퓾        (퓧))  (A7)

with 퓾 (퓧) = 퓗 퓡 퓻 (퓧) −        퓱           (퓧) (A8)

and 휷 = 퓗 퓡 퓗 퓗 퓡 퓨  (A9)
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The first term of ℳℳ  is the mean value (i.e., trend) of the linear regression model and it 
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Each ℳℳ (푘 = 1, … , 푁 ) meta-model is built with the DOE made by the ensemble of the inputs 
퓧 = {퓧 , 퓧 , … , 퓧 } and the ensemble of the outputs 퓨 = {풴 , 풴 , … , 풴 } both constituted 
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prediction 푌 (퓧) = ℳℳ (퓧) for a general 퓧 input and all the true model responses      퓨              of 
the DOE follows the gaussian distribution in Equation (A2): 

푌 (퓧)
 퓨

~풩 휷 퓱(퓧) 
퓗휷

; 휎
1 퓻 (퓧)

퓻 (퓧) 퓡
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where: 
퓗     is the information matrix, whose generic term is (푖 = 1, … , 푁 ; 푝 = 1, … , 푃) 

ℋ = 풽 (퓧 )  (A3)
퓡           is the correlation matrix, whose generic term is (푖, 푗 = 1, … , 푁 ) 

ℛ = ℛ 퓧 , 퓧 ; 휽  (A4.)
퓻             (퓧) is vector of cross-correlations between the configuration 퓧 and each one of the 

DOE and its generic term is (푖 = 1, … , 푁 ) 
퓇 (퓧)  = ℛ(퓧, 퓧 ; 휽 ) (A5

Consequently, the mean Kriging value 휇  at the 퓧 point and its Kriging variance 휎  are  

  
 

휇 (퓧) = 퓱(퓧)휷 + 퓻 (퓧)퓡 (퓨 − 퓗휷 ) (A6)

휎 (퓧) = 휎  (1 − 퓻 (퓧)퓡 퓻 (퓧) + 퓾 (퓧) 퓗 퓡 ퟏ퓗
ퟏ

        퓾        (퓧))  (A7)

with 퓾 (퓧) = 퓗 퓡 퓻 (퓧) −        퓱           (퓧) (A8)

and 휷 = 퓗 퓡 퓗 퓗 퓡 퓨  (A9)
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~풩 휷 퓱(퓧) 
퓗휷

; 휎
1 퓻 (퓧)

퓻 (퓧) 퓡
 (A2)

where: 
퓗     is the information matrix, whose generic term is (푖 = 1, … , 푁 ; 푝 = 1, … , 푃) 

ℋ = 풽 (퓧 )  (A3)
퓡           is the correlation matrix, whose generic term is (푖, 푗 = 1, … , 푁 ) 

ℛ = ℛ 퓧 , 퓧 ; 휽  (A4.)
퓻             (퓧) is vector of cross-correlations between the configuration 퓧 and each one of the 

DOE and its generic term is (푖 = 1, … , 푁 ) 
퓇 (퓧)  = ℛ(퓧, 퓧 ; 휽 ) (A5

Consequently, the mean Kriging value 휇  at the 퓧 point and its Kriging variance 휎  are  

  
 

휇 (퓧) = 퓱(퓧)휷 + 퓻 (퓧)퓡 (퓨 − 퓗휷 ) (A6)

휎 (퓧) = 휎  (1 − 퓻 (퓧)퓡 퓻 (퓧) + 퓾 (퓧) 퓗 퓡 ퟏ퓗
ퟏ

        퓾        (퓧))  (A7)

with 퓾 (퓧) = 퓗 퓡 퓻 (퓧) −        퓱           (퓧) (A8)

and 휷 = 퓗 퓡 퓗 퓗 퓡 퓨  (A9)

Ntrain}. In this work, Ntrain = 83 training scenarios, available from previous stud-
ies [26], are employed as the initial DOE.

• Step (1) Set Nkrig = Ntrain. The DOE (
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where: 
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휇 (퓧) = 퓱(퓧)휷 + 퓻 (퓧)퓡 (퓨 − 퓗휷 ) (A6)
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풟풳 , the domain of    퓧     [39,73]. In Kriging metamodels, the residuals are correlated by mean 
of gaussian process like shown in Equation (A1): 

ℳℳ (퓧) = 휷풌 퓱(퓧)  + 휎 풵(퓧, 휔 ) = 풩 휷풌 퓱(퓧); 휎 풵(퓧, 휔 )  (A1)
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by 푁  elements. Consequently, to the assumption of the gaussian process, the k-th element output 
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푌 (퓧)
 퓨

~풩 휷 퓱(퓧) 
퓗휷

; 휎
1 퓻 (퓧)

퓻 (퓧) 퓡
 (A2)

where: 
퓗     is the information matrix, whose generic term is (푖 = 1, … , 푁 ; 푝 = 1, … , 푃) 

ℋ = 풽 (퓧 )  (A3)
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퓻             (퓧) is vector of cross-correlations between the configuration 퓧 and each one of the 

DOE and its generic term is (푖 = 1, … , 푁 ) 
퓇 (퓧)  = ℛ(퓧, 퓧 ; 휽 ) (A5

Consequently, the mean Kriging value 휇  at the 퓧 point and its Kriging variance 휎  are  
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of gaussian process like shown in Equation (A1): 
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The first term of ℳℳ  is the mean value (i.e., trend) of the linear regression model and it 
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where: 
퓗     is the information matrix, whose generic term is (푖 = 1, … , 푁 ; 푝 = 1, … , 푃) 

ℋ = 풽 (퓧 )  (A3)
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Consequently, the mean Kriging value 휇  at the 퓧 point and its Kriging variance 휎  are  
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The first term of ℳℳ  is the mean value (i.e., trend) of the linear regression model and it 

contains the regression coefficients 휷 = [훽 , 훽 , … , 훽 ] and the basis function 퓱 = [풽 , 풽 , … , 풽 ] 
where 푃 is the degree of the truncation of 퓱(퓧). The second term is constituted by the variance of 
the gaussian process  휎 , a constant value, and by the zero mean unit variance 풵(퓧, 휔 ) of the 
gaussian process that depends on the input 퓧 and on the probability space 휔 . The value 휔  relies 
on the correlation function ℛ(퓧, 퓧 ; 휽 ), depending on the distance between two input samples 퓧 
and 퓧′ and the hyperparameters 휽 . 

Each ℳℳ (푘 = 1, … , 푁 ) meta-model is built with the DOE made by the ensemble of the inputs 
퓧 = {퓧 , 퓧 , … , 퓧 } and the ensemble of the outputs 퓨 = {풴 , 풴 , … , 풴 } both constituted 
by 푁  elements. Consequently, to the assumption of the gaussian process, the k-th element output 
prediction 푌 (퓧) = ℳℳ (퓧) for a general 퓧 input and all the true model responses      퓨              of 
the DOE follows the gaussian distribution in Equation (A2): 

푌 (퓧)
 퓨

~풩 휷 퓱(퓧) 
퓗휷

; 휎
1 퓻 (퓧)

퓻 (퓧) 퓡
 (A2)

where: 
퓗     is the information matrix, whose generic term is (푖 = 1, … , 푁 ; 푝 = 1, … , 푃) 

ℋ = 풽 (퓧 )  (A3)
퓡           is the correlation matrix, whose generic term is (푖, 푗 = 1, … , 푁 ) 

ℛ = ℛ 퓧 , 퓧 ; 휽  (A4.)
퓻             (퓧) is vector of cross-correlations between the configuration 퓧 and each one of the 

DOE and its generic term is (푖 = 1, … , 푁 ) 
퓇 (퓧)  = ℛ(퓧, 퓧 ; 휽 ) (A5

Consequently, the mean Kriging value 휇  at the 퓧 point and its Kriging variance 휎  are  

  
 

휇 (퓧) = 퓱(퓧)휷 + 퓻 (퓧)퓡 (퓨 − 퓗휷 ) (A6)

휎 (퓧) = 휎  (1 − 퓻 (퓧)퓡 퓻 (퓧) + 퓾 (퓧) 퓗 퓡 ퟏ퓗
ퟏ

        퓾        (퓧))  (A7)

with 퓾 (퓧) = 퓗 퓡 퓻 (퓧) −        퓱           (퓧) (A8)

and 휷 = 퓗 퓡 퓗 퓗 퓡 퓨  (A9)

i) (i = 1, . . . ,
Nkrig), is employed to train one Kriging metamodelMMk for each output k = 1, 2, 3.
Such surrogate models are adopted for their capability of approximating and repro-
ducing complex nonlinear functions and of providing an estimate of the uncertainty
associated with their predictions on new, unknown inputs [36,41,73]. The parameters
of these metamodels are “tuned” according to the guidelines given in ref. [39] (see
Appendix A for details).

• Step (2) New NMCS = 100, 000 (input) scenarios
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Each ℳℳ (푘 = 1, … , 푁 ) meta-model is built with the DOE made by the ensemble of the inputs 
퓧 = {퓧 , 퓧 , … , 퓧 } and the ensemble of the outputs 퓨 = {풴 , 풴 , … , 풴 } both constituted 
by 푁  elements. Consequently, to the assumption of the gaussian process, the k-th element output 
prediction 푌 (퓧) = ℳℳ (퓧) for a general 퓧 input and all the true model responses      퓨              of 
the DOE follows the gaussian distribution in Equation (A2): 
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; 휎
1 퓻 (퓧)

퓻 (퓧) 퓡
 (A2)

where: 
퓗     is the information matrix, whose generic term is (푖 = 1, … , 푁 ; 푝 = 1, … , 푃) 

ℋ = 풽 (퓧 )  (A3)
퓡           is the correlation matrix, whose generic term is (푖, 푗 = 1, … , 푁 ) 

ℛ = ℛ 퓧 , 퓧 ; 휽  (A4.)
퓻             (퓧) is vector of cross-correlations between the configuration 퓧 and each one of the 

DOE and its generic term is (푖 = 1, … , 푁 ) 
퓇 (퓧)  = ℛ(퓧, 퓧 ; 휽 ) (A5

Consequently, the mean Kriging value 휇  at the 퓧 point and its Kriging variance 휎  are  

  
 

휇 (퓧) = 퓱(퓧)휷 + 퓻 (퓧)퓡 (퓨 − 퓗휷 ) (A6)

휎 (퓧) = 휎  (1 − 퓻 (퓧)퓡 퓻 (퓧) + 퓾 (퓧) 퓗 퓡 ퟏ퓗
ퟏ

        퓾        (퓧))  (A7)

with 퓾 (퓧) = 퓗 퓡 퓻 (퓧) −        퓱           (퓧) (A8)

and 휷 = 퓗 퓡 퓗 퓗 퓡 퓨  (A9)

MCS = {
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where 푃 is the degree of the truncation of 퓱(퓧). The second term is constituted by the variance of 
the gaussian process  휎 , a constant value, and by the zero mean unit variance 풵(퓧, 휔 ) of the 
gaussian process that depends on the input 퓧 and on the probability space 휔 . The value 휔  relies 
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Each ℳℳ (푘 = 1, … , 푁 ) meta-model is built with the DOE made by the ensemble of the inputs 
퓧 = {퓧 , 퓧 , … , 퓧 } and the ensemble of the outputs 퓨 = {풴 , 풴 , … , 풴 } both constituted 
by 푁  elements. Consequently, to the assumption of the gaussian process, the k-th element output 
prediction 푌 (퓧) = ℳℳ (퓧) for a general 퓧 input and all the true model responses      퓨              of 
the DOE follows the gaussian distribution in Equation (A2): 
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~풩 휷 퓱(퓧) 
퓗휷

; 휎
1 퓻 (퓧)

퓻 (퓧) 퓡
 (A2)

where: 
퓗     is the information matrix, whose generic term is (푖 = 1, … , 푁 ; 푝 = 1, … , 푃) 

ℋ = 풽 (퓧 )  (A3)
퓡           is the correlation matrix, whose generic term is (푖, 푗 = 1, … , 푁 ) 

ℛ = ℛ 퓧 , 퓧 ; 휽  (A4.)
퓻             (퓧) is vector of cross-correlations between the configuration 퓧 and each one of the 

DOE and its generic term is (푖 = 1, … , 푁 ) 
퓇 (퓧)  = ℛ(퓧, 퓧 ; 휽 ) (A5

Consequently, the mean Kriging value 휇  at the 퓧 point and its Kriging variance 휎  are  

  
 

휇 (퓧) = 퓱(퓧)휷 + 퓻 (퓧)퓡 (퓨 − 퓗휷 ) (A6)

휎 (퓧) = 휎  (1 − 퓻 (퓧)퓡 퓻 (퓧) + 퓾 (퓧) 퓗 퓡 ퟏ퓗
ퟏ

        퓾        (퓧))  (A7)

with 퓾 (퓧) = 퓗 퓡 퓻 (퓧) −        퓱           (퓧) (A8)

and 휷 = 퓗 퓡 퓗 퓗 퓡 퓨  (A9)

1,

1 
 

Appendix A. Kriging Metamodels 
Kriging metamodels are stochastic regression algorithms, which allow predicting an output 
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The first term of ℳℳ  is the mean value (i.e., trend) of the linear regression model and it 
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where 푃 is the degree of the truncation of 퓱(퓧). The second term is constituted by the variance of 
the gaussian process  휎 , a constant value, and by the zero mean unit variance 풵(퓧, 휔 ) of the 
gaussian process that depends on the input 퓧 and on the probability space 휔 . The value 휔  relies 
on the correlation function ℛ(퓧, 퓧 ; 휽 ), depending on the distance between two input samples 퓧 
and 퓧′ and the hyperparameters 휽 . 

Each ℳℳ (푘 = 1, … , 푁 ) meta-model is built with the DOE made by the ensemble of the inputs 
퓧 = {퓧 , 퓧 , … , 퓧 } and the ensemble of the outputs 퓨 = {풴 , 풴 , … , 풴 } both constituted 
by 푁  elements. Consequently, to the assumption of the gaussian process, the k-th element output 
prediction 푌 (퓧) = ℳℳ (퓧) for a general 퓧 input and all the true model responses      퓨              of 
the DOE follows the gaussian distribution in Equation (A2): 
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퓗휷

; 휎
1 퓻 (퓧)

퓻 (퓧) 퓡
 (A2)

where: 
퓗     is the information matrix, whose generic term is (푖 = 1, … , 푁 ; 푝 = 1, … , 푃) 

ℋ = 풽 (퓧 )  (A3)
퓡           is the correlation matrix, whose generic term is (푖, 푗 = 1, … , 푁 ) 

ℛ = ℛ 퓧 , 퓧 ; 휽  (A4.)
퓻             (퓧) is vector of cross-correlations between the configuration 퓧 and each one of the 

DOE and its generic term is (푖 = 1, … , 푁 ) 
퓇 (퓧)  = ℛ(퓧, 퓧 ; 휽 ) (A5

Consequently, the mean Kriging value 휇  at the 퓧 point and its Kriging variance 휎  are  

  
 

휇 (퓧) = 퓱(퓧)휷 + 퓻 (퓧)퓡 (퓨 − 퓗휷 ) (A6)

휎 (퓧) = 휎  (1 − 퓻 (퓧)퓡 퓻 (퓧) + 퓾 (퓧) 퓗 퓡 ퟏ퓗
ퟏ

        퓾        (퓧))  (A7)

with 퓾 (퓧) = 퓗 퓡 퓻 (퓧) −        퓱           (퓧) (A8)

and 휷 = 퓗 퓡 퓗 퓗 퓡 퓨  (A9)

2, . . . ,
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Kriging metamodels are stochastic regression algorithms, which allow predicting an output 
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풟풳 , the domain of    퓧     [39,73]. In Kriging metamodels, the residuals are correlated by mean 
of gaussian process like shown in Equation (A1): 

ℳℳ (퓧) = 휷풌 퓱(퓧)  + 휎 풵(퓧, 휔 ) = 풩 휷풌 퓱(퓧); 휎 풵(퓧, 휔 )  (A1)
The first term of ℳℳ  is the mean value (i.e., trend) of the linear regression model and it 
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and 퓧′ and the hyperparameters 휽 . 

Each ℳℳ (푘 = 1, … , 푁 ) meta-model is built with the DOE made by the ensemble of the inputs 
퓧 = {퓧 , 퓧 , … , 퓧 } and the ensemble of the outputs 퓨 = {풴 , 풴 , … , 풴 } both constituted 
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prediction 푌 (퓧) = ℳℳ (퓧) for a general 퓧 input and all the true model responses      퓨              of 
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; 휎
1 퓻 (퓧)

퓻 (퓧) 퓡
 (A2)

where: 
퓗     is the information matrix, whose generic term is (푖 = 1, … , 푁 ; 푝 = 1, … , 푃) 

ℋ = 풽 (퓧 )  (A3)
퓡           is the correlation matrix, whose generic term is (푖, 푗 = 1, … , 푁 ) 

ℛ = ℛ 퓧 , 퓧 ; 휽  (A4.)
퓻             (퓧) is vector of cross-correlations between the configuration 퓧 and each one of the 

DOE and its generic term is (푖 = 1, … , 푁 ) 
퓇 (퓧)  = ℛ(퓧, 퓧 ; 휽 ) (A5

Consequently, the mean Kriging value 휇  at the 퓧 point and its Kriging variance 휎  are  

  
 

휇 (퓧) = 퓱(퓧)휷 + 퓻 (퓧)퓡 (퓨 − 퓗휷 ) (A6)

휎 (퓧) = 휎  (1 − 퓻 (퓧)퓡 퓻 (퓧) + 퓾 (퓧) 퓗 퓡 ퟏ퓗
ퟏ

        퓾        (퓧))  (A7)

with 퓾 (퓧) = 퓗 퓡 퓻 (퓧) −        퓱           (퓧) (A8)

and 휷 = 퓗 퓡 퓗 퓗 퓡 퓨  (A9)

NMCS} (dif-
ferent from the Nkrig ones) are generated by standard Monte Carlo Sampling (MCS)

and the corresponding Kriging predictions (i.e., mean values) will be Ŷk
MCS(
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by 푁  elements. Consequently, to the assumption of the gaussian process, the k-th element output 
prediction 푌 (퓧) = ℳℳ (퓧) for a general 퓧 input and all the true model responses      퓨              of 
the DOE follows the gaussian distribution in Equation (A2): 
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where: 
퓗     is the information matrix, whose generic term is (푖 = 1, … , 푁 ; 푝 = 1, … , 푃) 
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DOE and its generic term is (푖 = 1, … , 푁 ) 
퓇 (퓧)  = ℛ(퓧, 퓧 ; 휽 ) (A5

Consequently, the mean Kriging value 휇  at the 퓧 point and its Kriging variance 휎  are  

  
 

휇 (퓧) = 퓱(퓧)휷 + 퓻 (퓧)퓡 (퓨 − 퓗휷 ) (A6)
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MCS) =

MMk(

1 
 

Appendix A. Kriging Metamodels 
Kriging metamodels are stochastic regression algorithms, which allow predicting an output 

푌 (퓧) = ℳℳ (퓧) from an input 퓧 ∈ 풟풳 ⊂ ℝ  (with 푀 the number of input elements in 퓧, and 
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where: 
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DOE and its generic term is (푖 = 1, … , 푁 ) 
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Consequently, the mean Kriging value 휇  at the 퓧 point and its Kriging variance 휎  are  
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풟풳 , the domain of    퓧     [39,73]. In Kriging metamodels, the residuals are correlated by mean 
of gaussian process like shown in Equation (A1): 

ℳℳ (퓧) = 휷풌 퓱(퓧)  + 휎 풵(퓧, 휔 ) = 풩 휷풌 퓱(퓧); 휎 풵(퓧, 휔 )  (A1)
The first term of ℳℳ  is the mean value (i.e., trend) of the linear regression model and it 

contains the regression coefficients 휷 = [훽 , 훽 , … , 훽 ] and the basis function 퓱 = [풽 , 풽 , … , 풽 ] 
where 푃 is the degree of the truncation of 퓱(퓧). The second term is constituted by the variance of 
the gaussian process  휎 , a constant value, and by the zero mean unit variance 풵(퓧, 휔 ) of the 
gaussian process that depends on the input 퓧 and on the probability space 휔 . The value 휔  relies 
on the correlation function ℛ(퓧, 퓧 ; 휽 ), depending on the distance between two input samples 퓧 
and 퓧′ and the hyperparameters 휽 . 

Each ℳℳ (푘 = 1, … , 푁 ) meta-model is built with the DOE made by the ensemble of the inputs 
퓧 = {퓧 , 퓧 , … , 퓧 } and the ensemble of the outputs 퓨 = {풴 , 풴 , … , 풴 } both constituted 
by 푁  elements. Consequently, to the assumption of the gaussian process, the k-th element output 
prediction 푌 (퓧) = ℳℳ (퓧) for a general 퓧 input and all the true model responses      퓨              of 
the DOE follows the gaussian distribution in Equation (A2): 
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where: 
퓗     is the information matrix, whose generic term is (푖 = 1, … , 푁 ; 푝 = 1, … , 푃) 

ℋ = 풽 (퓧 )  (A3)
퓡           is the correlation matrix, whose generic term is (푖, 푗 = 1, … , 푁 ) 

ℛ = ℛ 퓧 , 퓧 ; 휽  (A4.)
퓻             (퓧) is vector of cross-correlations between the configuration 퓧 and each one of the 

DOE and its generic term is (푖 = 1, … , 푁 ) 
퓇 (퓧)  = ℛ(퓧, 퓧 ; 휽 ) (A5

Consequently, the mean Kriging value 휇  at the 퓧 point and its Kriging variance 휎  are  

  
 

휇 (퓧) = 퓱(퓧)휷 + 퓻 (퓧)퓡 (퓨 − 퓗휷 ) (A6)

휎 (퓧) = 휎  (1 − 퓻 (퓧)퓡 퓻 (퓧) + 퓾 (퓧) 퓗 퓡 ퟏ퓗
ퟏ

        퓾        (퓧))  (A7)

with 퓾 (퓧) = 퓗 퓡 퓻 (퓧) −        퓱           (퓧) (A8)

and 휷 = 퓗 퓡 퓗 퓗 퓡 퓨  (A9)

NMCS)} are ob-
tained. Notice that these evaluations (i.e., the approximations of the code outputs)
are computed by the metamodel at a reduced computational cost (i.e., of the order of
few seconds).

• Step (3) The NMCS scenarios are analyzed to find those ones lying “in proximity” of the
system failure region. To this aim, the learning function U k(
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(1)

A low value of the learning function U k(
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) (1) means that: (i) the system configuration
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Kriging metamodels are stochastic regression algorithms, which allow predicting an output 

푌 (퓧) = ℳℳ (퓧) from an input 퓧 ∈ 풟풳 ⊂ ℝ  (with 푀 the number of input elements in 퓧, and 
풟풳 , the domain of    퓧     [39,73]. In Kriging metamodels, the residuals are correlated by mean 
of gaussian process like shown in Equation (A1): 

ℳℳ (퓧) = 휷풌 퓱(퓧)  + 휎 풵(퓧, 휔 ) = 풩 휷풌 퓱(퓧); 휎 풵(퓧, 휔 )  (A1)
The first term of ℳℳ  is the mean value (i.e., trend) of the linear regression model and it 

contains the regression coefficients 휷 = [훽 , 훽 , … , 훽 ] and the basis function 퓱 = [풽 , 풽 , … , 풽 ] 
where 푃 is the degree of the truncation of 퓱(퓧). The second term is constituted by the variance of 
the gaussian process  휎 , a constant value, and by the zero mean unit variance 풵(퓧, 휔 ) of the 
gaussian process that depends on the input 퓧 and on the probability space 휔 . The value 휔  relies 
on the correlation function ℛ(퓧, 퓧 ; 휽 ), depending on the distance between two input samples 퓧 
and 퓧′ and the hyperparameters 휽 . 

Each ℳℳ (푘 = 1, … , 푁 ) meta-model is built with the DOE made by the ensemble of the inputs 
퓧 = {퓧 , 퓧 , … , 퓧 } and the ensemble of the outputs 퓨 = {풴 , 풴 , … , 풴 } both constituted 
by 푁  elements. Consequently, to the assumption of the gaussian process, the k-th element output 
prediction 푌 (퓧) = ℳℳ (퓧) for a general 퓧 input and all the true model responses      퓨              of 
the DOE follows the gaussian distribution in Equation (A2): 

푌 (퓧)
 퓨

~풩 휷 퓱(퓧) 
퓗휷

; 휎
1 퓻 (퓧)

퓻 (퓧) 퓡
 (A2)

where: 
퓗     is the information matrix, whose generic term is (푖 = 1, … , 푁 ; 푝 = 1, … , 푃) 

ℋ = 풽 (퓧 )  (A3)
퓡           is the correlation matrix, whose generic term is (푖, 푗 = 1, … , 푁 ) 

ℛ = ℛ 퓧 , 퓧 ; 휽  (A4.)
퓻             (퓧) is vector of cross-correlations between the configuration 퓧 and each one of the 

DOE and its generic term is (푖 = 1, … , 푁 ) 
퓇 (퓧)  = ℛ(퓧, 퓧 ; 휽 ) (A5

Consequently, the mean Kriging value 휇  at the 퓧 point and its Kriging variance 휎  are  

  
 

휇 (퓧) = 퓱(퓧)휷 + 퓻 (퓧)퓡 (퓨 − 퓗휷 ) (A6)

휎 (퓧) = 휎  (1 − 퓻 (퓧)퓡 퓻 (퓧) + 퓾 (퓧) 퓗 퓡 ퟏ퓗
ퟏ

        퓾        (퓧))  (A7)

with 퓾 (퓧) = 퓗 퓡 퓻 (퓧) −        퓱           (퓧) (A8)

and 휷 = 퓗 퓡 퓗 퓗 퓡 퓨  (A9)

) is close to the failure
threshold Y k

thr); and/or (ii) the uncertainty σŶk (
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ℳℳ (퓧) = 휷풌 퓱(퓧)  + 휎 풵(퓧, 휔 ) = 풩 휷풌 퓱(퓧); 휎 풵(퓧, 휔 )  (A1)
The first term of ℳℳ  is the mean value (i.e., trend) of the linear regression model and it 

contains the regression coefficients 휷 = [훽 , 훽 , … , 훽 ] and the basis function 퓱 = [풽 , 풽 , … , 풽 ] 
where 푃 is the degree of the truncation of 퓱(퓧). The second term is constituted by the variance of 
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Each ℳℳ (푘 = 1, … , 푁 ) meta-model is built with the DOE made by the ensemble of the inputs 
퓧 = {퓧 , 퓧 , … , 퓧 } and the ensemble of the outputs 퓨 = {풴 , 풴 , … , 풴 } both constituted 
by 푁  elements. Consequently, to the assumption of the gaussian process, the k-th element output 
prediction 푌 (퓧) = ℳℳ (퓧) for a general 퓧 input and all the true model responses      퓨              of 
the DOE follows the gaussian distribution in Equation (A2): 

푌 (퓧)
 퓨

~풩 휷 퓱(퓧) 
퓗휷

; 휎
1 퓻 (퓧)

퓻 (퓧) 퓡
 (A2)

where: 
퓗     is the information matrix, whose generic term is (푖 = 1, … , 푁 ; 푝 = 1, … , 푃) 

ℋ = 풽 (퓧 )  (A3)
퓡           is the correlation matrix, whose generic term is (푖, 푗 = 1, … , 푁 ) 

ℛ = ℛ 퓧 , 퓧 ; 휽  (A4.)
퓻             (퓧) is vector of cross-correlations between the configuration 퓧 and each one of the 

DOE and its generic term is (푖 = 1, … , 푁 ) 
퓇 (퓧)  = ℛ(퓧, 퓧 ; 휽 ) (A5

Consequently, the mean Kriging value 휇  at the 퓧 point and its Kriging variance 휎  are  

  
 

휇 (퓧) = 퓱(퓧)휷 + 퓻 (퓧)퓡 (퓨 − 퓗휷 ) (A6)

휎 (퓧) = 휎  (1 − 퓻 (퓧)퓡 퓻 (퓧) + 퓾 (퓧) 퓗 퓡 ퟏ퓗
ퟏ

        퓾        (퓧))  (A7)

with 퓾 (퓧) = 퓗 퓡 퓻 (퓧) −        퓱           (퓧) (A8)

and 휷 = 퓗 퓡 퓗 퓗 퓡 퓨  (A9)

) associated with the Kriging prediction
µŶk (

1 
 

Appendix A. Kriging Metamodels 
Kriging metamodels are stochastic regression algorithms, which allow predicting an output 
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ℳℳ (퓧) = 휷풌 퓱(퓧)  + 휎 풵(퓧, 휔 ) = 풩 휷풌 퓱(퓧); 휎 풵(퓧, 휔 )  (A1)
The first term of ℳℳ  is the mean value (i.e., trend) of the linear regression model and it 

contains the regression coefficients 휷 = [훽 , 훽 , … , 훽 ] and the basis function 퓱 = [풽 , 풽 , … , 풽 ] 
where 푃 is the degree of the truncation of 퓱(퓧). The second term is constituted by the variance of 
the gaussian process  휎 , a constant value, and by the zero mean unit variance 풵(퓧, 휔 ) of the 
gaussian process that depends on the input 퓧 and on the probability space 휔 . The value 휔  relies 
on the correlation function ℛ(퓧, 퓧 ; 휽 ), depending on the distance between two input samples 퓧 
and 퓧′ and the hyperparameters 휽 . 

Each ℳℳ (푘 = 1, … , 푁 ) meta-model is built with the DOE made by the ensemble of the inputs 
퓧 = {퓧 , 퓧 , … , 퓧 } and the ensemble of the outputs 퓨 = {풴 , 풴 , … , 풴 } both constituted 
by 푁  elements. Consequently, to the assumption of the gaussian process, the k-th element output 
prediction 푌 (퓧) = ℳℳ (퓧) for a general 퓧 input and all the true model responses      퓨              of 
the DOE follows the gaussian distribution in Equation (A2): 

푌 (퓧)
 퓨

~풩 휷 퓱(퓧) 
퓗휷

; 휎
1 퓻 (퓧)

퓻 (퓧) 퓡
 (A2)

where: 
퓗     is the information matrix, whose generic term is (푖 = 1, … , 푁 ; 푝 = 1, … , 푃) 

ℋ = 풽 (퓧 )  (A3)
퓡           is the correlation matrix, whose generic term is (푖, 푗 = 1, … , 푁 ) 

ℛ = ℛ 퓧 , 퓧 ; 휽  (A4.)
퓻             (퓧) is vector of cross-correlations between the configuration 퓧 and each one of the 

DOE and its generic term is (푖 = 1, … , 푁 ) 
퓇 (퓧)  = ℛ(퓧, 퓧 ; 휽 ) (A5

Consequently, the mean Kriging value 휇  at the 퓧 point and its Kriging variance 휎  are  

  
 

휇 (퓧) = 퓱(퓧)휷 + 퓻 (퓧)퓡 (퓨 − 퓗휷 ) (A6)

휎 (퓧) = 휎  (1 − 퓻 (퓧)퓡 퓻 (퓧) + 퓾 (퓧) 퓗 퓡 ퟏ퓗
ퟏ

        퓾        (퓧))  (A7)

with 퓾 (퓧) = 퓗 퓡 퓻 (퓧) −        퓱           (퓧) (A8)

and 휷 = 퓗 퓡 퓗 퓗 퓡 퓨  (A9)

) is high (this is typically due to the scarcity of DOE training examples around
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푌 (퓧) = ℳℳ (퓧) from an input 퓧 ∈ 풟풳 ⊂ ℝ  (with 푀 the number of input elements in 퓧, and 
풟풳 , the domain of    퓧     [39,73]. In Kriging metamodels, the residuals are correlated by mean 
of gaussian process like shown in Equation (A1): 

ℳℳ (퓧) = 휷풌 퓱(퓧)  + 휎 풵(퓧, 휔 ) = 풩 휷풌 퓱(퓧); 휎 풵(퓧, 휔 )  (A1)
The first term of ℳℳ  is the mean value (i.e., trend) of the linear regression model and it 

contains the regression coefficients 휷 = [훽 , 훽 , … , 훽 ] and the basis function 퓱 = [풽 , 풽 , … , 풽 ] 
where 푃 is the degree of the truncation of 퓱(퓧). The second term is constituted by the variance of 
the gaussian process  휎 , a constant value, and by the zero mean unit variance 풵(퓧, 휔 ) of the 
gaussian process that depends on the input 퓧 and on the probability space 휔 . The value 휔  relies 
on the correlation function ℛ(퓧, 퓧 ; 휽 ), depending on the distance between two input samples 퓧 
and 퓧′ and the hyperparameters 휽 . 

Each ℳℳ (푘 = 1, … , 푁 ) meta-model is built with the DOE made by the ensemble of the inputs 
퓧 = {퓧 , 퓧 , … , 퓧 } and the ensemble of the outputs 퓨 = {풴 , 풴 , … , 풴 } both constituted 
by 푁  elements. Consequently, to the assumption of the gaussian process, the k-th element output 
prediction 푌 (퓧) = ℳℳ (퓧) for a general 퓧 input and all the true model responses      퓨              of 
the DOE follows the gaussian distribution in Equation (A2): 

푌 (퓧)
 퓨

~풩 휷 퓱(퓧) 
퓗휷

; 휎
1 퓻 (퓧)

퓻 (퓧) 퓡
 (A2)

where: 
퓗     is the information matrix, whose generic term is (푖 = 1, … , 푁 ; 푝 = 1, … , 푃) 

ℋ = 풽 (퓧 )  (A3)
퓡           is the correlation matrix, whose generic term is (푖, 푗 = 1, … , 푁 ) 

ℛ = ℛ 퓧 , 퓧 ; 휽  (A4.)
퓻             (퓧) is vector of cross-correlations between the configuration 퓧 and each one of the 

DOE and its generic term is (푖 = 1, … , 푁 ) 
퓇 (퓧)  = ℛ(퓧, 퓧 ; 휽 ) (A5

Consequently, the mean Kriging value 휇  at the 퓧 point and its Kriging variance 휎  are  

  
 

휇 (퓧) = 퓱(퓧)휷 + 퓻 (퓧)퓡 (퓨 − 퓗휷 ) (A6)

휎 (퓧) = 휎  (1 − 퓻 (퓧)퓡 퓻 (퓧) + 퓾 (퓧) 퓗 퓡 ퟏ퓗
ퟏ

        퓾        (퓧))  (A7)

with 퓾 (퓧) = 퓗 퓡 퓻 (퓧) −        퓱           (퓧) (A8)

and 휷 = 퓗 퓡 퓗 퓗 퓡 퓨  (A9)

,
which prevents the metamodel from producing precise estimates: in this view, adding new
examples in that critical area would improve the accuracy and precision of the metamodel).

Let us define S(k)
M as the region containing a subset of the NMCS scenarios characterized

by “low” learning function values for output Yk(
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of gaussian process like shown in Equation (A1): 

ℳℳ (퓧) = 휷풌 퓱(퓧)  + 휎 풵(퓧, 휔 ) = 풩 휷풌 퓱(퓧); 휎 풵(퓧, 휔 )  (A1)
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Each ℳℳ (푘 = 1, … , 푁 ) meta-model is built with the DOE made by the ensemble of the inputs 
퓧 = {퓧 , 퓧 , … , 퓧 } and the ensemble of the outputs 퓨 = {풴 , 풴 , … , 풴 } both constituted 
by 푁  elements. Consequently, to the assumption of the gaussian process, the k-th element output 
prediction 푌 (퓧) = ℳℳ (퓧) for a general 퓧 input and all the true model responses      퓨              of 
the DOE follows the gaussian distribution in Equation (A2): 

푌 (퓧)
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~풩 휷 퓱(퓧) 
퓗휷

; 휎
1 퓻 (퓧)

퓻 (퓧) 퓡
 (A2)

where: 
퓗     is the information matrix, whose generic term is (푖 = 1, … , 푁 ; 푝 = 1, … , 푃) 

ℋ = 풽 (퓧 )  (A3)
퓡           is the correlation matrix, whose generic term is (푖, 푗 = 1, … , 푁 ) 

ℛ = ℛ 퓧 , 퓧 ; 휽  (A4.)
퓻             (퓧) is vector of cross-correlations between the configuration 퓧 and each one of the 

DOE and its generic term is (푖 = 1, … , 푁 ) 
퓇 (퓧)  = ℛ(퓧, 퓧 ; 휽 ) (A5

Consequently, the mean Kriging value 휇  at the 퓧 point and its Kriging variance 휎  are  

  
 

휇 (퓧) = 퓱(퓧)휷 + 퓻 (퓧)퓡 (퓨 − 퓗휷 ) (A6)

휎 (퓧) = 휎  (1 − 퓻 (퓧)퓡 퓻 (퓧) + 퓾 (퓧) 퓗 퓡 ퟏ퓗
ퟏ

        퓾        (퓧))  (A7)

with 퓾 (퓧) = 퓗 퓡 퓻 (퓧) −        퓱           (퓧) (A8)

and 휷 = 퓗 퓡 퓗 퓗 퓡 퓨  (A9)

):

S(k)
M ≡ {
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by 푁  elements. Consequently, to the assumption of the gaussian process, the k-th element output 
prediction 푌 (퓧) = ℳℳ (퓧) for a general 퓧 input and all the true model responses      퓨              of 
the DOE follows the gaussian distribution in Equation (A2): 
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1 퓻 (퓧)

퓻 (퓧) 퓡
 (A2)

where: 
퓗     is the information matrix, whose generic term is (푖 = 1, … , 푁 ; 푝 = 1, … , 푃) 

ℋ = 풽 (퓧 )  (A3)
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ℛ = ℛ 퓧 , 퓧 ; 휽  (A4.)
퓻             (퓧) is vector of cross-correlations between the configuration 퓧 and each one of the 

DOE and its generic term is (푖 = 1, … , 푁 ) 
퓇 (퓧)  = ℛ(퓧, 퓧 ; 휽 ) (A5

Consequently, the mean Kriging value 휇  at the 퓧 point and its Kriging variance 휎  are  

  
 

휇 (퓧) = 퓱(퓧)휷 + 퓻 (퓧)퓡 (퓨 − 퓗휷 ) (A6)

휎 (퓧) = 휎  (1 − 퓻 (퓧)퓡 퓻 (퓧) + 퓾 (퓧) 퓗 퓡 ퟏ퓗
ퟏ

        퓾        (퓧))  (A7)

with 퓾 (퓧) = 퓗 퓡 퓻 (퓧) −        퓱           (퓧) (A8)

and 휷 = 퓗 퓡 퓗 퓗 퓡 퓨  (A9)

: U k(
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ℳℳ (퓧) = 휷풌 퓱(퓧)  + 휎 풵(퓧, 휔 ) = 풩 휷풌 퓱(퓧); 휎 풵(퓧, 휔 )  (A1)
The first term of ℳℳ  is the mean value (i.e., trend) of the linear regression model and it 
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prediction 푌 (퓧) = ℳℳ (퓧) for a general 퓧 input and all the true model responses      퓨              of 
the DOE follows the gaussian distribution in Equation (A2): 
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1 퓻 (퓧)

퓻 (퓧) 퓡
 (A2)

where: 
퓗     is the information matrix, whose generic term is (푖 = 1, … , 푁 ; 푝 = 1, … , 푃) 

ℋ = 풽 (퓧 )  (A3)
퓡           is the correlation matrix, whose generic term is (푖, 푗 = 1, … , 푁 ) 

ℛ = ℛ 퓧 , 퓧 ; 휽  (A4.)
퓻             (퓧) is vector of cross-correlations between the configuration 퓧 and each one of the 

DOE and its generic term is (푖 = 1, … , 푁 ) 
퓇 (퓧)  = ℛ(퓧, 퓧 ; 휽 ) (A5

Consequently, the mean Kriging value 휇  at the 퓧 point and its Kriging variance 휎  are  

  
 

휇 (퓧) = 퓱(퓧)휷 + 퓻 (퓧)퓡 (퓨 − 퓗휷 ) (A6)

휎 (퓧) = 휎  (1 − 퓻 (퓧)퓡 퓻 (퓧) + 퓾 (퓧) 퓗 퓡 ퟏ퓗
ퟏ

        퓾        (퓧))  (A7)

with 퓾 (퓧) = 퓗 퓡 퓻 (퓧) −        퓱           (퓧) (A8)

and 휷 = 퓗 퓡 퓗 퓗 퓡 퓨  (A9)

) < ε}, (2)

where ε is a properly selected “confidence” coefficient. Region S(k)
M includes those system

configurations
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푌 (퓧) = ℳℳ (퓧) from an input 퓧 ∈ 풟풳 ⊂ ℝ  (with 푀 the number of input elements in 퓧, and 
풟풳 , the domain of    퓧     [39,73]. In Kriging metamodels, the residuals are correlated by mean 
of gaussian process like shown in Equation (A1): 

ℳℳ (퓧) = 휷풌 퓱(퓧)  + 휎 풵(퓧, 휔 ) = 풩 휷풌 퓱(퓧); 휎 풵(퓧, 휔 )  (A1)
The first term of ℳℳ  is the mean value (i.e., trend) of the linear regression model and it 

contains the regression coefficients 휷 = [훽 , 훽 , … , 훽 ] and the basis function 퓱 = [풽 , 풽 , … , 풽 ] 
where 푃 is the degree of the truncation of 퓱(퓧). The second term is constituted by the variance of 
the gaussian process  휎 , a constant value, and by the zero mean unit variance 풵(퓧, 휔 ) of the 
gaussian process that depends on the input 퓧 and on the probability space 휔 . The value 휔  relies 
on the correlation function ℛ(퓧, 퓧 ; 휽 ), depending on the distance between two input samples 퓧 
and 퓧′ and the hyperparameters 휽 . 

Each ℳℳ (푘 = 1, … , 푁 ) meta-model is built with the DOE made by the ensemble of the inputs 
퓧 = {퓧 , 퓧 , … , 퓧 } and the ensemble of the outputs 퓨 = {풴 , 풴 , … , 풴 } both constituted 
by 푁  elements. Consequently, to the assumption of the gaussian process, the k-th element output 
prediction 푌 (퓧) = ℳℳ (퓧) for a general 퓧 input and all the true model responses      퓨              of 
the DOE follows the gaussian distribution in Equation (A2): 
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~풩 휷 퓱(퓧) 
퓗휷

; 휎
1 퓻 (퓧)

퓻 (퓧) 퓡
 (A2)

where: 
퓗     is the information matrix, whose generic term is (푖 = 1, … , 푁 ; 푝 = 1, … , 푃) 

ℋ = 풽 (퓧 )  (A3)
퓡           is the correlation matrix, whose generic term is (푖, 푗 = 1, … , 푁 ) 

ℛ = ℛ 퓧 , 퓧 ; 휽  (A4.)
퓻             (퓧) is vector of cross-correlations between the configuration 퓧 and each one of the 

DOE and its generic term is (푖 = 1, … , 푁 ) 
퓇 (퓧)  = ℛ(퓧, 퓧 ; 휽 ) (A5

Consequently, the mean Kriging value 휇  at the 퓧 point and its Kriging variance 휎  are  
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, for which the critical variable Yk(
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thr − ε× σŶk (
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and 휷 = 퓗 퓡 퓗 퓗 퓡 퓨  (A9)

) and Y k
thr + ε× σŶk (i.e., it lies “around” the failure threshold

with a given confidence). In other words, the values Y k
thr ± ε× σŶk (
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) represent lower and
upper boundaries of the (failure) limit state surface including the prediction uncertainty of
the Kriging metamodel. In this view, ε sets the confidence level: by way of example, for a
two-sided α = 95% Confidence Interval (CI) ε = Φ−1( 1+α

2 ) = Φ−1(0.975) = 1.96 (where
Φ−1(·) is the inverse cumulative distribution function of the Normal distribution). By way
of example, the lower boundary estimates the limit state surface under the assumption
that the real value of every sample
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The first term of ℳℳ  is the mean value (i.e., trend) of the linear regression model and it 

contains the regression coefficients 휷 = [훽 , 훽 , … , 훽 ] and the basis function 퓱 = [풽 , 풽 , … , 풽 ] 
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prediction 푌 (퓧) = ℳℳ (퓧) for a general 퓧 input and all the true model responses      퓨              of 
the DOE follows the gaussian distribution in Equation (A2): 
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DOE and its generic term is (푖 = 1, … , 푁 ) 
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code: this allows enriching the database of accidental scenarios at a negligible computa-
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3.1.1. Adaptive Kriging–Monte Carlo Sampling (AK-MCS) Method 
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The adaptive procedure, shown in the flow chart of Figure 3 and detailed below, is 
applied to each k-th output (i.e., safety-critical) variable of interest [40]: 

 

Figure 3. Flowchart of the AK-MCS method.

Once S(k)
M is identified, a set of N∗ input configurations, “evenly distributed” in the

confidence region S(k)
M , is selected to be added to the current DOE (these new configurations

are used to update and enrich the current DOE with “interesting” scenarios that will likely
lead the system to failure). It is shown in refs. [37–40] that optimal performances of the
algorithm are typically obtained for N* lying between M and 2M. Coherently, in this
work we set N∗ = M = 12 in order to obtain satisfactory performances at an affordable
computational cost (i.e., reducing the number of additional simulations by the detailed 4C
code as much as possible).

• Step (4) The identified N∗ = 12 input configurations
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on the correlation function ℛ(퓧, 퓧 ; 휽 ), depending on the distance between two input samples 퓧 
and 퓧′ and the hyperparameters 휽 . 
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퓧 = {퓧 , 퓧 , … , 퓧 } and the ensemble of the outputs 퓨 = {풴 , 풴 , … , 풴 } both constituted 
by 푁  elements. Consequently, to the assumption of the gaussian process, the k-th element output 
prediction 푌 (퓧) = ℳℳ (퓧) for a general 퓧 input and all the true model responses      퓨              of 
the DOE follows the gaussian distribution in Equation (A2): 
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where: 
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퓻             (퓧) is vector of cross-correlations between the configuration 퓧 and each one of the 

DOE and its generic term is (푖 = 1, … , 푁 ) 
퓇 (퓧)  = ℛ(퓧, 퓧 ; 휽 ) (A5

Consequently, the mean Kriging value 휇  at the 퓧 point and its Kriging variance 휎  are  
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where: 
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DOE and its generic term is (푖 = 1, … , 푁 ) 
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Consequently, the mean Kriging value 휇  at the 퓧 point and its Kriging variance 휎  are  
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• Step (5) The new (input–output) training examples (
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푌 (퓧) = ℳℳ (퓧) from an input 퓧 ∈ 풟풳 ⊂ ℝ  (with 푀 the number of input elements in 퓧, and 
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of gaussian process like shown in Equation (A1): 

ℳℳ (퓧) = 휷풌 퓱(퓧)  + 휎 풵(퓧, 휔 ) = 풩 휷풌 퓱(퓧); 휎 풵(퓧, 휔 )  (A1)
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contains the regression coefficients 휷 = [훽 , 훽 , … , 훽 ] and the basis function 퓱 = [풽 , 풽 , … , 풽 ] 
where 푃 is the degree of the truncation of 퓱(퓧). The second term is constituted by the variance of 
the gaussian process  휎 , a constant value, and by the zero mean unit variance 풵(퓧, 휔 ) of the 
gaussian process that depends on the input 퓧 and on the probability space 휔 . The value 휔  relies 
on the correlation function ℛ(퓧, 퓧 ; 휽 ), depending on the distance between two input samples 퓧 
and 퓧′ and the hyperparameters 휽 . 

Each ℳℳ (푘 = 1, … , 푁 ) meta-model is built with the DOE made by the ensemble of the inputs 
퓧 = {퓧 , 퓧 , … , 퓧 } and the ensemble of the outputs 퓨 = {풴 , 풴 , … , 풴 } both constituted 
by 푁  elements. Consequently, to the assumption of the gaussian process, the k-th element output 
prediction 푌 (퓧) = ℳℳ (퓧) for a general 퓧 input and all the true model responses      퓨              of 
the DOE follows the gaussian distribution in Equation (A2): 
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where: 
퓗     is the information matrix, whose generic term is (푖 = 1, … , 푁 ; 푝 = 1, … , 푃) 

ℋ = 풽 (퓧 )  (A3)
퓡           is the correlation matrix, whose generic term is (푖, 푗 = 1, … , 푁 ) 

ℛ = ℛ 퓧 , 퓧 ; 휽  (A4.)
퓻             (퓧) is vector of cross-correlations between the configuration 퓧 and each one of the 

DOE and its generic term is (푖 = 1, … , 푁 ) 
퓇 (퓧)  = ℛ(퓧, 퓧 ; 휽 ) (A5

Consequently, the mean Kriging value 휇  at the 퓧 point and its Kriging variance 휎  are  
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where: 
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Consequently, the mean Kriging value 휇  at the 퓧 point and its Kriging variance 휎  are  
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∗
), whose size becomes Nkrig = Nkrig + N∗.

• Steps (1)–(5) are repeated until a desired level of accuracy of the metamodelMMk

is reached.

3.1.2. Proper Orthogonal Decomposition (POD)-Based Kriging Metamodels

In order to simulate a large number of new (time-varying) outputs yk(t) at a reduced
computational cost (i.e., without resorting to the 4C code), an algorithm (still based on
Kriging metamodels) is adopted. These new (approximate) transients will be employed for
further enrichment of the available database of accident scenarios.

Each i-th scenario (i = 1, . . . , Nkrig) generated in the previous step by the 4C code
simulations (Section 3.1.1) is decomposed by resorting to POD with truncation at the Hk-th
basis [20]:

yk
i (t) =

Hk

∑
h=1

ak
ih(
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i)× ϕk
h(t) (3)

where ϕk
h(t) (depending only on time t) is the orthogonal basis function of the k-th variable

for the h-th base valid for all the Nkrig scenarios, and ak
ih(
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i) is its coefficient corresponding to the i-th scenario.
Each orthogonal function ϕk

h(t) is characterized by the property shown in Equation (4):

∫ t=tmiss

t=0s
ϕk

h1
(t)× ϕk

h2
(t)× dt = δh1h2 =

{
0 if h1 = h2
1 if h1 6= h2

(4)

Thanks to this property, each coefficient ak
ih (i = 1, . . . , Nkrig; h = 1, . . . , Hk) can be

easily estimated by Equation (5):

ak
ih =

∫ t=tmiss

t=0s
yk

i (t)× ϕk
h(t)× dt (5)

In order to employ this strategy for the simulation of new scenarios, the following
procedure is performed for each k-th critical output variable yk(t) (k = 1, 2, 3):

• Step (1): The database of Nkrig scenarios is employed to build a matrix
=
Y

k
[Nkrig, L],

containing the value yk
il of the k-th variable of the i-th training scenario at the l-th

time step.

• Step (2): The matrix
=
Y

k
is decomposed by Singular Value Decomposition (SVD) [33]

as in Equation (6):
=
Y

k
=

=
Ψ

k
×

=
Λ

k
×

=
Φ

k
(6)

where
=
Ψ

k
[Nkrig, Nkrig] and

=
Φ

k
[L, L] are matrices containing in their columns left-

singular vectors and right-singular vectors, respectively, whereas
=
Λ

k
[Nkrig, L] is a

diagonal matrix containing the nonnegative Λk
h singular values in decreasing order.

• Step (3): The best number Hk of bases retained is identified using the singular values
Λk

h (h = 1, . . . , Nkrig) by Equation (7):

Γk
h =

∑h
j=1 Λk

j

∑
Nkrig
h=1 Λk

h

(7)
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where Γk
h represents the percentage of “variability” (i.e., variance) of the real Nkrig

transients that is “explained” by the POD decomposition truncated at h-th basis. In
this work, Hk is the number of (ordered) bases for which Γk

h reaches a value of 0.99 (i.e.,
for which the POD decomposition can explain the 99% of the total variance of the real

transients). Matrix
=
Φ

k
[L, Hk] is then truncated at the Hk-th column: its generic element

ϕk
lh at the l-th row and h-th column corresponds to the value of the h-th orthogonal

basis ϕk
h(t) at l-th time step for output k.

• Step (4): Matrix
=
A

k
[Nkrig, Hk], containing coefficients ak

ih in the i-th row and the h-th
column, is calculated as in Equation (8):

=
A

k
=

=
Y

k
×

=
Φ

kT

(8)

where
=
Φ

kT

[Hk, L] is the transposal of
=
Φ

k
. This equation represents a discretized form

of Equation (5).
• Step (5): We build a Kriging metamodelMMk

h for each h-th base and k-th critical vari-

able. The training set (DOE) is constituted by the inputs
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Nkrig}
and the corresponding basis coefficients ak

h = {ak
1h, ak

2h, . . . , ak
Nkrigh} as outputs. In this

way, for a new input configuration
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j)× ϕk
lh (9)

where ỹk
jl is the estimate of yk

jl , resulting from the metamodel-based POD decomposition.

In this way, by resorting to multiple Kriging metamodels instead of the 4C code, the
computational time per simulation is sharply reduced.

We employ the same approach to approximate Gmax,j(t), i.e., the maximum between
the helium mass flow rates at the inlet and outlet of the CSM, (see Equation (10)), which is
here used to estimate tLOFA,C1,j (i.e., of the time when a LOFA occurs and is detected by
C1) for the j-th scenario:

Gmax(t) = max(GCSM,in(t), GCSM,out(t)) (10)

We indicate the approximation of Gmax,j(t) by POD-based Kriging metamodels for a
generic j-th scenario at l-th time step as G̃max,l j. Then, t̃LOFA,C1,j (i.e., the POD metamodel-
based approximation of tLOFA,C1,j) is the time where G̃max,l j < 0.032 kg/s for more than
the validation time τval = 1 s (thus, mimicking the operation of the controller C1). The
total number of scenarios simulated by the POD-based metamodels (and included in
the “database”) is indicated as NPOD (notice that typically NPOD � Nkrig, due to the
fast-running property of the Kriging metamodels with respect to the 4C code).

For the sake of clarity, a pictorial representation of the conceptual steps (1)–(6) above,
undertaken to construct the POD-based Kriging metamodels, is given in Figure 4.
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3.2. Step 2: Prototypical Transients and Components Failure Modes Identification

From the previous step, a database is available constituted by Nkrig and NPOD scenar-
ios simulated with the 4C code and with POD-based Kriging metamodels, respectively.
Based on Spectral Clustering (SC), we classify the Ndata = Nkrig + NPOD transients in C
clusters [28,44,74,75]. Then, we post-process each c-th cluster to extract its main features, in
terms of prototypical time evolutions towards failure and of the corresponding component
failures (i.e., the accident precursors) [45,46,76].

3.2.1. Spectral Clustering (SC) Embedding the Fuzzy C-Means (FCM)

Spectral Clustering (SC) allows to classify Ndata objects into C clusters through a
similarity measure (namely, w) between them (see Appendix B). We compute all the
similarity values using the three critical variables yk

i (t) [k = 1, 2, 3] (constituted by L time

steps) and we collected them in the similarity matrix
=
W[Ndata , Ndata], from which the

Normalized Laplacian matrix
=
Lsym is calculated. We extract the features needed to classify

the Ndata objects from
=
Lsym and we feed them to the Fuzzy C-Means (FCM) code.

The algorithm outputs two matrices: (i) a matrix
=
A[C, C] containing the eigenspace

coordinates of the center of the c-th cluster in each c-th row (in this notation, Ac =

[Ac1,Ac2, . . . ,AcC] is the vector containing such coordinates); (ii) a matrix
=
M[C, Ndata]

whose generic element is the Mci membership degree of the i-th transient of the database
respect to the c-th cluster: the i-th transient is said to belong to the cluster with the mem-
bership exceeding a certain limit (in this paper, Mlim = 0.7).

3.2.2. Post-Processing of the Clusters to Identify the LOFA Occurrence Time and the
Components Failure Modes

The Ndata,c < Ndata scenarios belonging to the c-th cluster are post-processed to
evaluate the following quantities: PLOFA,l(c), which quantifies the probability that a LOFA
has occurred at the l-th time step in a system state belonging to cluster c; and PFAIL,l(e|c),
which describes the probability that component e has failed at the l-th time step, given that
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a LOFA has occurred due to a system configuration of cluster c. The above-mentioned
probabilities are quantified as in Equations (11) and (12), respectively:

PLOFA,l(c) =
. ∑

Ndata,c
i=1 Θ(tLOFA,C1,iε[to, to+1])

Ndata,c
(11)

PFAIL,l(e|c) =
∑

Ndata,c
i=1 Θ(τe,iε[to, to+1] ∧ me,i 6= 0)

Ndata,c
(12)

with Θ(x) =
{

0 if x false
1 if x true

. (13)

Here, [to, to+1] is the o-th time interval, which the l-th time step belongs; and Θ(x)
is the Heaviside function (Equation (13)) used to count the events of interest during that
interval, i.e., the number of LOFA occurrences in Equation (11) and the e-th component
failures (me 6= 0) in Equation (12). Notice that the length of the o-th interval [to, to+1] is here
set to 300 s, as a satisfactory compromise between analysis resolution and computational
tractability (the intervals should be large enough to count a statistically meaningful number
of samples). Quantities (11) and (12) thus represent a discretization (with steps of 300 s) of
the time-dependent probabilities described above.

3.3. Step 3: Timely LOFA Precursors Identification by On-Line Supervised Spectral
Clustering (OSSC)

A novel Online Supervised Spectral Clustering (OSSC) method is trained with the
available Ndata scenarios to timely identify LOFA precursors during the development
of a new j-th accident scenario, different from the training ones. The j-th scenarios are
characterized by the monitored critical variables yk

j (t) (k = 1, 2, . . . , Z = 3) and compared

to those of the database yk
i (t) (i = 1, 2, . . . , Ndata) at each l-th time step. The algorithm

proceeds each j-th scenario (the flowchart is sketched in Figure 5) as follows:

• Step (1): Record the k-th trajectory yk
j (t) every ∆t = 0.01 s from 0 s to 3600 s, obtaining

values yk
jl (l = 1, 2, . . . , L) at each l-th time step. Thus, store L = 360, 001 points for

each k-th variable.
• Step (2): As suggested by ref. [77], normalize the value yk

jl (l = 1, 2, . . . , L; k = 1, . . . , Nk)

in the range [0.2, 0.8] as in Equation (14) and save it as yk
n,jl (see also Appendix B):

yk
n,jl = 0.2 + 0.6×

yk
jl −min

(
=
Y

k)
max

(
=
Y

k)
−min

(
=
Y

k) (14)

where
=
Y

k
is the matrix containing values yk

il(i = 1, . . . , Ndata) for the k-th trajectory.
• Step (3): Evaluate the Euclidean pointwise distance δl,ji between the j-th new scenario

and the i-th training scenario (i = 1, 2, . . . , Ndata) of the l-th time step (l = 1, 2, . . . , L),
as in Equation (15):

δl,ji =
Z

∑
k=1

l

∑
p=1

∣∣∣yk
n,jp − yk

n,ip

∣∣∣ (15)
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• Step (4): Build the similarity vector W l,j[1, Ndata] at each l-th time step, whose generic
element wl,ji is computed as in Equation (16):

wl,ji = e−F×δ2
l,ji (16)

with F = 1.7 × 10−9 [28]. The higher wl,ji, the higher the similarity between the j-th
testing scenario and the i-th training scenario until the l-th time step.

• Step (5): Calculate the row vector Ul,j[1, C] by projecting W l,j in the eigenspace through
Equation (A19) (see Appendix C for a proof). Afterward, normalize it obtaining
Tl, j[1, C], whose generic element tl,jc is expressed by Equation (A22).

• Step (6): Calculate each Ml,cj membership (c = 1, . . . , C), measuring the “level” of
confidence with which the j-th scenario at the l-th time step “belongs” to the c-th
cluster, as in Equation (17) (produced by the FCM algorithm—see Appendix B):

Ml,cj =

 C

∑
ς=1

(
‖Tl, j −Ac‖
‖T l,j −Aς‖

) 2
ρ−1
−1

(17)

whereAc[1, C] (c = 1, 2, . . . , C) contains the eigenspace coordinates of the prototypical
transient of the c-th cluster (i.e., the cluster center) and ρ = 2 is the fuzzy partition
exponent [78].

• Step (7): Evaluate the difference Mrel,l,cj between Ml,cj(c = 1, 2, . . . , C) and Ml,c0
(i.e., the membership to the c-th cluster at l-th time respect of a scenario at nomi-
nal conditions with no failures):

Mrel,l,cj = Ml,cj −Ml,c0 (18)

By so doing, the “background” contribution of a “standard” scenario is “removed”
from the membership trend of the j-th test transient to cluster c.

• Step (8): Calculate Vrel,l,cj(c = 1, 2, . . . , C) by Equation (19), i.e., a discrete estimator of
the derivative of the membership Ml,cj with respect to the l-th time:

Vrel,l,cj =

{
0 if l = 1

Mrel,l,cj−Mrel,(l−1),cj
∆t if l 6= 1

(19)

• Step (9): Identify LOFA precursors as follows: Step (9a): Compare each Vrel,l,cj [c = 1, . . . , C]
to Vlim,LOFA,l , following the pseudo code described in Figure 6. In extreme synthesis,
if at least two values of Vrel,l,cj, namely V1st = max

c
(Vrel,l,cj) and V2nd = max

c 6=c1st
(Vrel,l,cj),

overcome the threshold Vlim,LOFA,l at time l, then indicator PLOFA,l,j is assigned a value
(different from zero) as in Equation (20). Finally, if PLOFA,l,j exceeds the threshold
PLOFA,lim, the algorithm identifies the LOFA precursors (see step 9b below); otherwise,
no precursor is identified.

PLOFA,l,j =
PLOFA,l(c1st,l) + PLOFA,l(c2nd,l)

∑C
c PLOFA,l(c)

(20)

Notice that Equation (20) indicates the probability that a LOFA has happened at
time l, due to a system configuration of either cluster c1st,l = arg(max

c
(Vrel,l,cj)) or

c2nd,l = arg(max
c 6=c1st

(Vrel,l,cj)).
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It is worth noting that Vlim,LOFA,l and PLOFA,lim are determined from the training data,
with the objective of minimizing the sum of false positives (i.e., not occurred failure events



Energies 2021, 14, 5552 17 of 37

wrongly identified as occurred) and false negatives (i.e., occurred events not identified)
encountered in the LOFA identification process on the training scenarios. In particular,
the trend of Vlim,LOFA,l is assumed to be a monotonic increasing piecewise function that
is calculated relying on the pseudo-code of Figure 7. The trend of Vlim,LOFA,l is initially
defined using a discrete set of points obtained from the Ndata scenarios and then joined and
corrected/revised to build a stepwise function which is monotonically increasing.
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In Figure 7, tlast,Fail,i is the time when the last failure before tLOFA,C1,i occurs.
Step (9b): Compute fCl,l,j(c) and PCl,l(c) by Equation (21) and Equation (22), respec-

tively, for each c-th cluster. The former is set equal to PLOFA,l(c) (see Equation (11)), only
if the corresponding membership Mrel,l,cj overcomes the limit value Mlim,FAIL,l (see expla-
nation and Equation (24) below); otherwise, it is set to 0. The latter quantifies the degree
with which cluster c is “responsible” for the failure (i.e., the probability that a system state
belonging to cluster c is causing the LOFA). Actually, Equation (22) represents a “normal-
ization” of Equation (11), conditional to the fact that a LOFA has occurred and has been
identified. Then, PFAIL,l,j(e) is calculated for each e-th component, which represents the
unconditional probability that in the j-th test scenario, component e has failed at time l. The
value of PFAIL,l,j(e) is obtained by the Theorem of Total probability, as the sum over all the
clusters of the product between PFAIL,l(e|c) (estimated by Equation (12) and indicating the
probability of failure of the e-th component at the l-th time conditional to the c-th cluster)
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and PCl,l(c) (see Equation (23) below). Finally, if PFAIL,l,j(e) exceeds PFAIL,lim(e), then the
e-th component is considered to have failed, as shown in the pseudo code of Figure 8.

fCl,l,j(c) =
{

PLOFA,l(c) if Mrel,l,cj > Mlim,FAIL.l
0 if Mrel,l,cj ≤ Mlim,FAIL.l

(21)

PCl,l(c) =
fCl,l,j(c)

∑C=9
c fCl,l,j(c)

(22)

PFAIL,l,j(e) =
C=9

∑
c

PFAIL,l(e|c)× PCl,l,j(c) (23)
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The trend of Mlim,FAIL.l and each PFAIL,lim(e) are determined from the Ndata training
scenarios, too. In particular, Mlim,FAIL,l is computed as in Equation (24):

Mlim,FAIL.l = S × (lth time) (24)

It is worth mentioning that Mlim,FAIL,l is assumed to be linearly dependent on time,
because δij (B.1) (Appendix B) linearly increases from t = 0 s to t = tmiss = 3600 s and it is
used to calculate Mrel,l,cj. S is the value that maximises the number of training scenarios
whose components’ failures are correctly identified as LOFA precursors, minimizing at the
same time the time delay between component failures and precursor identification. Instead,
for each e-th component, PFAIL,lim(e) is set to minimize the sum between false positives
and false negatives, related to the identification of the e-th component as precursor over
the Ndata training scenarios.

4. Results

The main results of the overall procedure explained in Section 3 are here reported for
the three steps. Finally, the devised method is tested on the Ntest = 38 scenarios different
from the Ndata training ones to verify its robustness.

4.1. Step 1: Creation of a “Database” of Simulated Accidental Scenarios

The AK-MCS procedure (Figure 3) has been iterated three times employing the output
(I/ICR)max(k = 3) as reference: this has led to an increase of the scenarios in the database
from Ntrain = 83 (created with simple MCS and available from ref. [28]) to Nkrig = 119.
Notice that pCSM,in,max (k = 1) and THS,max (k = 2) are not taken into account in AK-
MCS, because their values have been found to lie very far from the corresponding failure
thresholds in the present case.
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Appendix A. Kriging Metamodels 
Kriging metamodels are stochastic regression algorithms, which allow predicting an output 

푌 (퓧) = ℳℳ (퓧) from an input 퓧 ∈ 풟풳 ⊂ ℝ  (with 푀 the number of input elements in 퓧, and 
풟풳 , the domain of    퓧     [39,73]. In Kriging metamodels, the residuals are correlated by mean 
of gaussian process like shown in Equation (A1): 

ℳℳ (퓧) = 휷풌 퓱(퓧)  + 휎 풵(퓧, 휔 ) = 풩 휷풌 퓱(퓧); 휎 풵(퓧, 휔 )  (A1)
The first term of ℳℳ  is the mean value (i.e., trend) of the linear regression model and it 

contains the regression coefficients 휷 = [훽 , 훽 , … , 훽 ] and the basis function 퓱 = [풽 , 풽 , … , 풽 ] 
where 푃 is the degree of the truncation of 퓱(퓧). The second term is constituted by the variance of 
the gaussian process  휎 , a constant value, and by the zero mean unit variance 풵(퓧, 휔 ) of the 
gaussian process that depends on the input 퓧 and on the probability space 휔 . The value 휔  relies 
on the correlation function ℛ(퓧, 퓧 ; 휽 ), depending on the distance between two input samples 퓧 
and 퓧′ and the hyperparameters 휽 . 

Each ℳℳ (푘 = 1, … , 푁 ) meta-model is built with the DOE made by the ensemble of the inputs 
퓧 = {퓧 , 퓧 , … , 퓧 } and the ensemble of the outputs 퓨 = {풴 , 풴 , … , 풴 } both constituted 
by 푁  elements. Consequently, to the assumption of the gaussian process, the k-th element output 
prediction 푌 (퓧) = ℳℳ (퓧) for a general 퓧 input and all the true model responses      퓨              of 
the DOE follows the gaussian distribution in Equation (A2): 

푌 (퓧)
 퓨

~풩 휷 퓱(퓧) 
퓗휷

; 휎
1 퓻 (퓧)

퓻 (퓧) 퓡
 (A2)

where: 
퓗     is the information matrix, whose generic term is (푖 = 1, … , 푁 ; 푝 = 1, … , 푃) 

ℋ = 풽 (퓧 )  (A3)
퓡           is the correlation matrix, whose generic term is (푖, 푗 = 1, … , 푁 ) 

ℛ = ℛ 퓧 , 퓧 ; 휽  (A4.)
퓻             (퓧) is vector of cross-correlations between the configuration 퓧 and each one of the 

DOE and its generic term is (푖 = 1, … , 푁 ) 
퓇 (퓧)  = ℛ(퓧, 퓧 ; 휽 ) (A5

Consequently, the mean Kriging value 휇  at the 퓧 point and its Kriging variance 휎  are  
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MCS) for the NMCS = 100, 000 con-
figurations generated during different iterations of the AK-MCS algorithm are shown in
Figure 9.

Energies 2021, 14, 5552 20 of 41 
 

 

and their learning function values ( ) for the = 100,000 configurations gen-
erated during different iterations of the AK-MCS algorithm are shown in Figure 9. 

 
Figure 9. AK-MCS iterations for ( ) = ( / ) . 

A progressive decrease in the number of configurations contained in the α = 95% 
confidence region ( ) is evident at each step of the AK-MCS (red diamonds below the 
horizontal line, i.e., characterized by a value of the learning function ( ) (1) smaller 
than = = (0.975) = 1.96: see Section 3.1.1). They are halved after 3 itera-
tions of the adaptive algorithm. In practice, this means that the area of the ( ) region is 
reduced, i.e., that the precision (resp., uncertainty) of the Kriging metamodel in the char-
acterization of the failure domain is increased (resp., decreased). Further, this demon-
strates an improvement in the representativity of the abnormal (failure) scenarios in the 
dataset (in other words, a better coverage of the failure domain by the training dataset is 
obtained). 

The = 119 scenarios (simulated by the 4C code) are employed to train the POD-
based Kriging metamodels. The accuracy of the constructed metamodels is estimated by: 
i) a Leave-One-Out (LOO) assessment of the Normalized Root Mean Squared Error 
(NRMSE) computed on the training set of = 119 transients; and ii) an NRMSE eval-
uated on a test set of 38 scenarios never used during training (see Section 4.3): the corre-
sponding error values are 4.73% and 7.94%, respectively. The metamodel accuracy is sat-
isfactory, considering that: (i) the size of the training set (containing only 119 transients) 

Figure 9. AK-MCS iterations for
(
y3

i (t)
)

max = (I/Icr)max.

A progressive decrease in the number of configurations contained in the α = 95%
confidence region S(3)

M is evident at each step of the AK-MCS (red diamonds below the
horizontal line, i.e., characterized by a value of the learning function U k(

1 
 

Appendix A. Kriging Metamodels 
Kriging metamodels are stochastic regression algorithms, which allow predicting an output 

푌 (퓧) = ℳℳ (퓧) from an input 퓧 ∈ 풟풳 ⊂ ℝ  (with 푀 the number of input elements in 퓧, and 
풟풳 , the domain of    퓧     [39,73]. In Kriging metamodels, the residuals are correlated by mean 
of gaussian process like shown in Equation (A1): 

ℳℳ (퓧) = 휷풌 퓱(퓧)  + 휎 풵(퓧, 휔 ) = 풩 휷풌 퓱(퓧); 휎 풵(퓧, 휔 )  (A1)
The first term of ℳℳ  is the mean value (i.e., trend) of the linear regression model and it 

contains the regression coefficients 휷 = [훽 , 훽 , … , 훽 ] and the basis function 퓱 = [풽 , 풽 , … , 풽 ] 
where 푃 is the degree of the truncation of 퓱(퓧). The second term is constituted by the variance of 
the gaussian process  휎 , a constant value, and by the zero mean unit variance 풵(퓧, 휔 ) of the 
gaussian process that depends on the input 퓧 and on the probability space 휔 . The value 휔  relies 
on the correlation function ℛ(퓧, 퓧 ; 휽 ), depending on the distance between two input samples 퓧 
and 퓧′ and the hyperparameters 휽 . 

Each ℳℳ (푘 = 1, … , 푁 ) meta-model is built with the DOE made by the ensemble of the inputs 
퓧 = {퓧 , 퓧 , … , 퓧 } and the ensemble of the outputs 퓨 = {풴 , 풴 , … , 풴 } both constituted 
by 푁  elements. Consequently, to the assumption of the gaussian process, the k-th element output 
prediction 푌 (퓧) = ℳℳ (퓧) for a general 퓧 input and all the true model responses      퓨              of 
the DOE follows the gaussian distribution in Equation (A2): 

푌 (퓧)
 퓨

~풩 휷 퓱(퓧) 
퓗휷

; 휎
1 퓻 (퓧)

퓻 (퓧) 퓡
 (A2)

where: 
퓗     is the information matrix, whose generic term is (푖 = 1, … , 푁 ; 푝 = 1, … , 푃) 

ℋ = 풽 (퓧 )  (A3)
퓡           is the correlation matrix, whose generic term is (푖, 푗 = 1, … , 푁 ) 

ℛ = ℛ 퓧 , 퓧 ; 휽  (A4.)
퓻             (퓧) is vector of cross-correlations between the configuration 퓧 and each one of the 

DOE and its generic term is (푖 = 1, … , 푁 ) 
퓇 (퓧)  = ℛ(퓧, 퓧 ; 휽 ) (A5

Consequently, the mean Kriging value 휇  at the 퓧 point and its Kriging variance 휎  are  

  
 

휇 (퓧) = 퓱(퓧)휷 + 퓻 (퓧)퓡 (퓨 − 퓗휷 ) (A6)

휎 (퓧) = 휎  (1 − 퓻 (퓧)퓡 퓻 (퓧) + 퓾 (퓧) 퓗 퓡 ퟏ퓗
ퟏ

        퓾        (퓧))  (A7)

with 퓾 (퓧) = 퓗 퓡 퓻 (퓧) −        퓱           (퓧) (A8)

and 휷 = 퓗 퓡 퓗 퓗 퓡 퓨  (A9)

) (1) smaller
than ε = Φ−1

(
1+α

2

)
= Φ−1(0.975) = 1.96: see Section 3.1.1). They are halved after

3 iterations of the adaptive algorithm. In practice, this means that the area of the S(3)
M

region is reduced, i.e., that the precision (resp., uncertainty) of the Kriging metamodel
in the characterization of the failure domain is increased (resp., decreased). Further, this
demonstrates an improvement in the representativity of the abnormal (failure) scenarios in
the dataset (in other words, a better coverage of the failure domain by the training dataset
is obtained).

The Nkrig = 119 scenarios (simulated by the 4C code) are employed to train the
POD-based Kriging metamodels. The accuracy of the constructed metamodels is estimated
by: (i) a Leave-One-Out (LOO) assessment of the Normalized Root Mean Squared Error
(NRMSE) computed on the training set of Nkrig = 119 transients; and (ii) an NRMSE
evaluated on a test set of 38 scenarios never used during training (see Section 4.3): the
corresponding error values are 4.73% and 7.94%, respectively. The metamodel accuracy is
satisfactory, considering that: (i) the size of the training set (containing only 119 transients)
is quite small if referred to the dimensionality of the input space to map (M = 12) and
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to the functional nature of the outputs to be estimated (i.e., time-varying parameters);
and (ii) the POD-based Kriging metamodels are not used here for carrying out a detailed
thermal-hydraulic analysis for design purposes, but rather for quickly reproducing the
main features of the SMCCC behavior and creating a large database of scenarios, on
which the LOFA detection algorithms can rely. The metamodels thereby constructed have
allowed simulating NPOD = 700 new time-varying transients with a sharp reduction in the
computational burden with respect to the 4C code from an average of two days to about
1.1 s per simulation. The resulting (new) database is constituted by Ndata = 819 scenarios.

Figure 10 shows the POD-based Kriging prediction of the time evolution of the
critical output variables for a scenario different from the Ndata ones. The POD-based
Kriging metamodels can capture with satisfactory accuracy the time-varying behavior of
the three critical variables. However, some considerations are in order with respect to the
metamodel-based estimation of I/Icr (dashed line in Figure 10, bottom). The value of such
parameters becomes smaller than zero between 410 s and 534 s, which is not physical (in
fact, I/Icr ≥ 0 always); also, in the last 200 s of the transient I/Icr seems to start increasing
(instead of remaining equal to zero as in the reference solid curve produced by the 4C code).
Such deviations from the real, physical behavior can be explained only by the expected
regression errors introduced by metamodels trained with a very small-sized training set.
In this view, such discrepancies could be reduced by increasing the number of training
scenarios simulated by the 4C code (and correspondingly the computational cost of the
analysis). Additionally, it is important to acknowledge that the relatively small entity of
such non-physical deviations, combined with their very short duration with respect to
the mission time (τmiss = 3600 s), still allows to quite accurately capture the global trend
of the critical parameter over the time horizon of interest, on which the metamodel has
been trained.
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4.2. Step 2: Prototypical Transients and Components Failure Modes Identification

Employing the unsupervised procedure of Section 3.2 and Appendix B, all the Ndata =
Nkrig + NPOD = 819 (4C- and metamodel-based) scenarios are optimally grouped into
C = 9 clusters. The behaviors of the critical variables pCSM,in, Ths and I/Icr for the Ndata
scenarios, grouped in clusters, are sketched as dotted lines in Figures A2–A4, respectively,
of Appendix D. For each cluster, the “prototypical” transient (i.e., the transient with the
largest value of membership to the cluster) is also plotted (solid line) [79]. Cluster 4
is the most critical cluster showing the highest value of pCSM,in and Ths, which reach
0.8 MPa and 6.3 K, respectively. Notice that, however, the corresponding threshold limits
plim (i.e., 1.8 MPa) and Tcs (i.e., 7.3 K), respectively, are not overcome (in other words, Ths
does not exceed the current sharing temperature Tcs and the magnet does not lose its SC
properties). From the system safety viewpoint, these simulation results are encouraging,
since they show that in the present case (even in those configurations leading to a LOFA),
none of the scenarios are really critical for the CS module’s integrity.

Each cluster is characterized by different values of PLOFA,l(c) and of PFAIL,l(e|c), deter-
mined with Equation (11) and Equation (12) and sketched in Figures 11 and 12, respectively.

According to Figure 11, showing the probability of LOFA occurrence in time windows
of width equal to 300 s, a LOFA does not typically happen in configurations belonging to
Clusters 2 and 7; it is more frequent in the interval [0 s, 900 s] for Cluster 4, [600 s, 900 s]
for Cluster 5, [600 s, 1500 s] for Cluster 1, [1200 s, 1500 s] for Cluster 8 and [1500 s, 2100 s]
for Cluster 6. The LOFA event is instead distributed along the entire time horizon for
Clusters 3 and 9, with two peaks within [600 s, 900 s] and [1500 s, 1800 s], respectively, for
the former and a peak in [1200 s, 1500 s] for the latter.
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The conditional failure probability PFAIL,l(e|c) of each component e for Cluster 4 as
a function of time l is reported in Figure 12, by way of example and only for illustration
purposes. It can be inferred that if a LOFA occurs in a system configuration of Cluster
4, it will likely be due to an “early” failure (i.e., within [0, 600 s]) of either CP or CV1 or
CV2 or BV (or combinations of such components). These results are coherent with the
physics of the system and with the peculiar features of Cluster 4 (characterized by the
occurrence of a LOFA and by the highest values of the current sharing temperature Ths).
Based a deeper, more detailed analysis (not reported here for brevity) of the Ndata = 819
simulated scenarios, the following considerations can be made. Similar to ref. [28], the BV
being stuck open (in particular, at 50% of the nominal mass flow rate) is one of the most
frequent failures in Cluster 4 (probabilities of 16%–21% in time intervals [0 s, 300 s] and
[300 s, 600 s], respectively, as shown in Figure 12). As consequence of this failure, a smaller
flow rate of SHe is available to remove heat from the CSM, which produces an increase in
Ths. However, it is worth remembering that a LOFA cannot occur as the result of the only
failure of BV (stuck open at 50%). Actually, as revealed by a closer inspection of all the 819
scenarios produced, after the BV failure the LOFA usually verifies in Cluster 4 because one
component between the two CVs and the CP fails with the largest magnitude (i.e., CV1 or
CV2 fails, being stuck completely closed, or CP decreases its rotational speed until it stops).
Again, similar to ref. [28], other “prototypical” (and very frequent) failures in Cluster 4
cause a decrease in the helium mass flow rate available to remove heat from the CSM,
determining the Ths increase. Such failures typically occur, again, at an early time in the
accident scenario (i.e., within [0, 600 s]), yet with a smaller magnitude. In particular, the
CVs fail being stuck closed (at 50% of the nominal rate) (failure probability of 20%–23% in
time interval [0 s, 600 s]; see Figure 12), whereas the CP reduces its rotational speed (from
the nominal value to 75%–25%) (failure probability of 13–34% in time interval [0 s, 600 s];
see Figure 12). The conditional failure probabilities for the other clusters are not shown
here for brevity.
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In conclusion, the most relevant output of the algorithmic step reported above is the
identification of groups (i.e., clusters) and “prototypical configurations” of anomalous
system evolutions (Figures 11 and 12). The importance resides in the fact that these
prototypes can represent a basis for: (i) a prompt classification of new (evolving) transients
as ‘normal’ or ‘abnormal’ (see Section 4.3 below); (ii) the pinpointing of components that
are more likely to bring the system to critical states, and (iii) the subsequent scheduling and
prioritization of inspection/maintenance interventions on these critical components (as
highlighted, e.g., for CP, CV1, CV2 and BV with reference to Cluster 4). However, it must be
remembered that for inspection/maintenance prioritization purposes, the operator should
also take into account the likelihood of accident scenarios. In this work, scenarios have by
construction equal likelihood. Instead, in real situations, their probabilities/frequencies
can be very different; this obviously affects the components’ importance/criticality ranking
and, thus, the result of the related inspection/maintenance scheduling process.

4.3. Step 3: Timely LOFA Precursors Identification by OSSC

Firstly, the threshold values for the LOFA precursor identification algorithm, e.g.,
Vlim,LOFA,l , PLOFA,lim, Mlim,FAIL.l and PFAIL,lim(e) [l = 1, 2, . . . , L; e = CP, CV1, CV2, BV, SV1,
SV2] must be properly set using the Ndata = 819 training scenarios. Vlim,LOFA,l is obtained
with the Ndata scenarios following the pseudo-code of Figure 7 and its time evolution is
represented in Figure 13.

The coefficient S used to calculate Mlim,FAIL,l as in Equation (24) is set to
S = 9.81× 10−8 s−1, according to the “tuning” criterion reported at the end of Section 3.
The values of PLOFA,lim and of each PFAIL,lim(e) that are found to minimize the sum of false
positive and false negatives in the LOFA precursor identification on the Ndata training
scenarios are listed in Table 1.
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Table 1. Optimal values of PLOFA,lim and PFAIL,lim(e).

Limit Value

PLOFA,lim 19%
PFAIL,lim(CP) 8%

PFAIL,lim(CV1) 10%
PFAIL,lim(CV2) 3%
PFAIL,lim(BV) 5%
PFAIL,lim(SV1) 25%
PFAIL,lim(SV2) 8%

Then, the “tuned” LOFA precursor identification algorithm is tested on Ntest = 38
scenarios, different from the Ndata = 819 ones used for training.

As an example, we show the scenario “partial closure of BV at 0 s, CP speed at 75% at
1 s, complete closure of CV2 at 71 s and complete closure of CV1 at 72 s”. The corresponding
time evolutions of Mrel,l,cj and Vrel,l,cj (c = 1, . . . , C) are drawn in Figure 14 (left and right,
respectively). Differently from all the other clusters, the membership to Cluster 4 Mrel,l,4j
reaches a value very close to one (around 0.95) quite early in the transient (at about
t = 590 s: see Figure 14, left). Additionally, such an increase is very rapid, as testified by the
large positive peak in the discrete estimator of the derivative of the membership Mrel,l,4j
(i.e., Vrel,l,4j) at about t = 470 s (Figure 14, right). Thus, even a visual inspection of Figure 14
qualitatively suggests that the scenario under analysis most likely belongs to Cluster 4.

The quantitative information contained in Mrel,l,cj and Vrel,l,cj is rigorously elaborated
according to the algorithms shown in Figure 6 and in Figure 8 and the results are reported
in Figure 15. In particular, the values of Vrel,l,cj are used to calculate PLOFA,l,j (continuous
blue line in Figure 15, top), which is compared to PLOFA,lim (dashed line). The values of
Mrel,l,cj are instead employed to determine PFAIL,l,j(e) (thick continuous lines in Figure 15,
six bottom plots), which is compared to PFAIL,lim(e) (dashed lines).
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At 11.2 s, PLOFA,l,j overcomes PLOFA,lim with a consequent LOFA identification; notice
that the real time of LOFA occurrence (and detection) tLOFA,C1,j for the scenario analyzed
is 73.11 s. At 72.6 s, PFAIL,l,j(CV2) and PFAIL,l,j(BV) reach their corresponding limits, so
that the CV2 and the BV are identified as precursors. At 87.2 s, the CP is also identified as
a precursor because PFAIL,l,j(CP) overcomes PFAIL,lim(CP). Finally, PFAIL,l,j(CV1) reaches
PFAIL,lim(CV1) at 300 s and its failure is also correctly identified. Instead, the SV1 and
SV2 are considered “safe”, because their failure probability indicator remains below the
corresponding limit. In summary, the practical implications and benefits of using the
proposed algorithm on this new, developing example scenario are the following:
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• The LOFA is detected 61.9 s earlier than the real occurrence time tLOFA,C1,j = 73.11s.
This means that the online monitoring system developed is not only able to correctly
detect and diagnose the abnormal state of the system (i.e., the presence of a LOFA),
but also to predict it in advance: this allows the operators not only to implement the
necessary and proper actions to address the peculiar transient condition, but also to
have a sort of “grace period” to anticipate the system’s accidental evolution and avoid
more severe outcomes;

• CV2, BV, CP and CV1 are correctly identified as precursors (i.e., as root causes of the
accident scenario) 1.6 s, 72.6 s, 86.2 s and 218 s later than their failures, respectively: this
is important since it allows the operators to schedule specific and targeted maintenance
interventions only for these faulty components;

• Finally, SV1 and SV2 are correctly identified as functioning: this avoids unnecessary
inspections and interventions by the operators on safe components after the faulty
condition of the machine has been detected.

In Table 2, the results of the extensive analysis performed with the LOFA precursor
identification algorithm on the Ntest = 38 scenarios are summarized.

Table 2. LOFA identification results on Ntest = 38 scenarios.

Scenarios with LOFA 32
LOFA predicted in advance 24

LOFA not predicted in advance 8
Scenarios with NO LOFA 6

Correct identification NO LOFA 4
False positive LOFA 2

In 32 scenarios a LOFA occurs, whereas in six it does not. For the former ones, a
LOFA is detected by the proposed algorithm before tLOFA,C1,j in 24 scenarios and later in
the other eight; however, in these last eight scenarios, the LOFA often occurs when no
current flows into the CSM (i.e., in the time window [975 s, 1490 s]), and the CSM is not
endangered (obviously, the safety criterion based on the ratio (I/Icr) is very important
when the current is flowing in the magnet, because it “reacts” very quickly in case of an
anomaly. Instead, when there is no current flowing in the CSM (I ≈ 0 A), the ratio (I/Icr)
may seem to lose physical meaning and usefulness for LOFA detection purposes: this
is technically true, but it does not represent a problem from the safety viewpoint, since
the other two critical variables here monitored (pCSM,in and Ths) are still able to warn the
operator in case of abnormal behavior of the system). On the other hand, in four of the
six scenarios with no LOFA, no LOFA precursors are correctly discovered, while in the
other two a LOFA is detected even though it does not occur (namely, “false positives”). In
general, a LOFA is predicted in advance in most scenarios with a negligible number of false
positives in scenarios without a LOFA: globally, the elaborated method recognizes 95% of
the LOFA events and it can predict them in advance in 75% of the cases. This result can be
practically interpreted as follows. By applying the proposed algorithmic framework to the
cryogenic cooling circuit under analysis, in 95% of the cases we are able to correctly detect
a LOFA, which allows us to take the necessary and proper actions to address this peculiar
faulty condition. In addition, in 75% of the cases, we are also able to predict the LOFA
in advance on the basis of the time behavior of the monitored critical variables, which
provides us with a “time window” to anticipate the system accidental evolution and avoid
more severe outcomes.

In Table 3, the results of precursor identification for the 32 scenarios with LOFA are
reported. The first column (namely, “Correct precursor identification”) contains the number
of times a component actually fails in a given scenario and it is correctly identified as a
precursor by the proposed algorithm. The second column (namely, “False negatives”)
reports the number of times a component actually fails in a given scenario, but it is
incorrectly identified as safe. Conversely, the third column (namely, “Correct identification
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of normal operation”) shows the number of times a component works without failures
during its mission time, and it is correctly labelled as normally operating by our approach.
Finally, the fourth column (namely, “False positives”) contains the number of times a
component operates normally in a given transient, but it is erroneously classified as failed.

Table 3. Results of the precursor identification approach for the 32 scenarios with LOFA.

Component Correct Precursor
Identification False Negatives Correct Identification of

Normal Operation False Positives

CP 21 2 2 7
CV1 16 0 2 14
CV2 13 2 9 8
BV 14 2 3 13
SV1 1 1 25 5
SV2 2 2 20 8

It can be seen that about 80% of the precursors are identified correctly by the OSSC
algorithm, despite the large number of false positives for CP, CV1 and BV. This result
can be practically interpreted as follows. By applying the proposed online monitoring
technique to the SMCCC under analysis, we can correctly spot 80% of the failed components
(i.e., the root causes of the LOFA scenario), which allows us to schedule specific and
targeted maintenance interventions. In addition, it is worth mentioning that even if the
percentage of false positives is still high (i.e., 56%), this does not endanger the SMCCC,
because conservatively overestimating the number of failed components (and, thus, the
risk associated with the system). On the other side, it reduces its availability (due, e.g., to
unnecessary inspections following the precursor identification).

Comparing the results above to those obtained by some of the authors in ref. [48], we
observe a decrease from 67% to 33% in the erroneous LOFA identifications and a decrease
from 80% to 56% in the erroneous precursor identification after a LOFA: in other words, the
number of false positives has been reduced in a significant way (this is of paramount impor-
tance, since it dramatically decreases the number of unnecessary stops of the machine, each
of which requires months to cool down the magnets). On the other hand, the percentage of
times a LOFA is correctly identified in advance (with respect to its occurrence) has slightly
diminished from 79% to 75%, while the rate of correct precursor identifications has slightly
decreased from 83% to 80%, producing a slight increase in the “false negatives” (i.e., in the
failed components that are not correctly identified). Overall, the percentage decrease in
the “false positives” is much more significant than the increase in the “false negatives”:
in other words, the safety of the system analyzed is still satisfactorily guaranteed, but its
unavailability (due, e.g., to unnecessary inspection procedures) is strongly reduced with
respect to ref. [48]. A further increase in the accuracy of the metamodels and in the number
of database scenarios used to feed the SC, FCM and OSSC algorithm will be certainly
beneficial to an overall improvement of the proposed framework, both in terms of safety
and availability.

5. Conclusions

In this work, a computational framework for the identification of abnormal conditions
and of the corresponding precursors was proposed in three steps: (i) a “database” of
simulated accident scenarios is created by Monte Carlo Sampling (MCS) and Proper
Orthogonal Decomposition (POD)-based Kriging metamodels; (ii) the transients of the
database are grouped in clusters according to their similarity through Spectral Clustering
(SC) embedding the Fuzzy C-Means (FCM), in order to identify the principal patterns
of system evolution towards failure and the “prototypical” precursors; (iii) the Online
Supervised Spectral Clustering (OSSC) is employed to assign a new developing transient to
one of the clusters previously discovered, thus enabling the identification of the precursors
(i.e., failed components) of the abnormal conditions.
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For the first time, the devised method has been applied for the identification of
the Loss-of-Flow Accident (LOFA) Precursors in a simplified Superconducting Magnet
Cryogenic Cooling Circuit (SMCCC) that keeps one ITER Central Solenoid Module (CSM)
cooled. The new approach has been tested on Ntest = 38 accidental scenarios to verify its
robustness. Results have shown that 95% of the scenarios are correctly classified as “safe”
or “faulty” and 80% of LOFA precursors are correctly identified. On the other hand, 56% of
components that are not actually failed are identified as precursors (i.e., “false positives”).
In this respect, three considerations must be made. First, from the system point of view, an
important practical outcome of the analysis is the identification of groups (clusters) and
“prototypical configurations” of anomalous behavioral patterns of the system, which is
a basis for: (i) a prompt, online classification of new transients as ‘normal’ or ‘abnormal’
(in some cases, even for a prediction in advance of the anomalous system evolution);
(ii) the identification of those components that are more relevant in determining the overall
“health” state of the system and whose failure may drive the system into critical states
with high likelihood; and (iii) the scheduling and prioritization of inspection/maintenance
interventions on these important components. For example, for those scenarios belonging
to Cluster 4, it is advisable to start the inspection/maintenance actions from CP, CV1, CV2
and BV. Second, thanks to the larger database of prototypical accident scenarios created
by (fast-running) POD-based Kriging metamodels, the number of “false positives” has
been significantly reduced with respect to a previous version of the algorithm proposed
by some of the authors [48] (from 67% to 33% in the erroneous LOFA identifications and
from 80% to 56% in the erroneous precursor identification conditional to LOFA scenarios).
Third, a relatively high number of false positives does not endanger the SMCCC, because
it conservatively overestimates the number of failed components (and, thus, the risk
associated with the system). Due to the satisfactory results obtained, the proposed method
may guide prioritization actions for inspection and maintenance of the SMCCC components.
Additionally, notice that thanks to the use of metamodels, these satisfactory results have
been obtained at the expense of very few (i.e., around 120) runs of the detailed, long-running
simulation code.

Finally, in the future the following lines of research should be explored. The LOFA
precursor identification algorithm should be refined by an increase in the accuracy of the
POD-based metamodel together with an additional extension of the training database with
more simulations, to: (i) further increase, if possible, the rate of correct LOFA detections,
i.e., the percentage of scenarios correctly classified as “safe” or “faulty”; and (ii) most im-
portant, further reduce the number of “false positives” (actually, even if they do not impair
the safety of the machine, they may cause an unacceptable unavailability level, due to the
very long times—several months—typically needed to cool down the magnets at each stop).
Additionally, the proposed approach should be adapted to larger-sized systems with more
components, more severe operating conditions, and diversified accident scenarios (besides
the LOFA). In this view, the sensitivity of its performance and generalization properties
should be systematically tested also with respect to the numerous free parameters, on
which our algorithms (POD-based metamodels, SC, FCM and OSSC) rely. The deployment
of our algorithmic framework may boost the reliability, availability and maintainability
of the plant, representing the basis for undertaking the proper prevention and mitigation
strategies in the analysis of plants with a large volume of monitored signals.
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ퟏ

        퓾        (퓧))  (A7)
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Appendix A. Kriging Metamodels 
Kriging metamodels are stochastic regression algorithms, which allow predicting an output 

푌 (퓧) = ℳℳ (퓧) from an input 퓧 ∈ 풟풳 ⊂ ℝ  (with 푀 the number of input elements in 퓧, and 
풟풳 , the domain of    퓧     [39,73]. In Kriging metamodels, the residuals are correlated by mean 
of gaussian process like shown in Equation (A1): 

ℳℳ (퓧) = 휷풌 퓱(퓧)  + 휎 풵(퓧, 휔 ) = 풩 휷풌 퓱(퓧); 휎 풵(퓧, 휔 )  (A1)
The first term of ℳℳ  is the mean value (i.e., trend) of the linear regression model and it 

contains the regression coefficients 휷 = [훽 , 훽 , … , 훽 ] and the basis function 퓱 = [풽 , 풽 , … , 풽 ] 
where 푃 is the degree of the truncation of 퓱(퓧). The second term is constituted by the variance of 
the gaussian process  휎 , a constant value, and by the zero mean unit variance 풵(퓧, 휔 ) of the 
gaussian process that depends on the input 퓧 and on the probability space 휔 . The value 휔  relies 
on the correlation function ℛ(퓧, 퓧 ; 휽 ), depending on the distance between two input samples 퓧 
and 퓧′ and the hyperparameters 휽 . 

Each ℳℳ (푘 = 1, … , 푁 ) meta-model is built with the DOE made by the ensemble of the inputs 
퓧 = {퓧 , 퓧 , … , 퓧 } and the ensemble of the outputs 퓨 = {풴 , 풴 , … , 풴 } both constituted 
by 푁  elements. Consequently, to the assumption of the gaussian process, the k-th element output 
prediction 푌 (퓧) = ℳℳ (퓧) for a general 퓧 input and all the true model responses      퓨              of 
the DOE follows the gaussian distribution in Equation (A2): 
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where: 
퓗     is the information matrix, whose generic term is (푖 = 1, … , 푁 ; 푝 = 1, … , 푃) 

ℋ = 풽 (퓧 )  (A3)
퓡           is the correlation matrix, whose generic term is (푖, 푗 = 1, … , 푁 ) 

ℛ = ℛ 퓧 , 퓧 ; 휽  (A4.)
퓻             (퓧) is vector of cross-correlations between the configuration 퓧 and each one of the 

DOE and its generic term is (푖 = 1, … , 푁 ) 
퓇 (퓧)  = ℛ(퓧, 퓧 ; 휽 ) (A5
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where: 
퓗     is the information matrix, whose generic term is (푖 = 1, … , 푁 ; 푝 = 1, … , 푃) 

ℋ = 풽 (퓧 )  (A3)
퓡           is the correlation matrix, whose generic term is (푖, 푗 = 1, … , 푁 ) 

ℛ = ℛ 퓧 , 퓧 ; 휽  (A4.)
퓻             (퓧) is vector of cross-correlations between the configuration 퓧 and each one of the 

DOE and its generic term is (푖 = 1, … , 푁 ) 
퓇 (퓧)  = ℛ(퓧, 퓧 ; 휽 ) (A5

Consequently, the mean Kriging value 휇  at the 퓧 point and its Kriging variance 휎  are  

  
 

휇 (퓧) = 퓱(퓧)휷 + 퓻 (퓧)퓡 (퓨 − 퓗휷 ) (A6)

휎 (퓧) = 휎  (1 − 퓻 (퓧)퓡 퓻 (퓧) + 퓾 (퓧) 퓗 퓡 ퟏ퓗
ퟏ
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and 휷 = 퓗 퓡 퓗 퓗 퓡 퓨  (A9)

, ωk)) (A1)

The first term ofMMk is the mean value (i.e., trend) of the linear regression model
and it contains the regression coefficients βk = [βk1, βk2, . . . , βkP] and the basis func-
tion
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퓗  is the information matrix, whose generic term is ( 푖 =
1, … , 푁 ; 푝 = 1, … , 푃) 
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퓡  is the correlation matrix, whose generic term is ( 푖, 푗 =
1, … , 푁 ) 

ℛ = ℛ 퓧 , 퓧 ; 휽  (A4.)

퓻 (퓧) is vector of cross-correlations between the configuration 
퓧 and each one of the DOE and its generic term is (푖 = 1, … , 푁 ) 
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퓇 (퓧)  = ℛ(퓧, 퓧 ; 휽 ) (A5

Consequently, the mean Kriging value 휇  at the 퓧 point and its Kriging variance 휎  are  
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of gaussian process like shown in Equation (A1): 
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term is constituted by the variance of the gaussian process σ2

k , a constant value, and by
the zero mean unit variance Z(
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ble of the inputs
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The first term of ℳℳ  is the mean value (i.e., trend) of the linear regression model and it 

contains the regression coefficients 휷 = [훽 , 훽 , … , 훽 ] and the basis function 퓱 = [풽 , 풽 , … , 풽 ] 
where 푃 is the degree of the truncation of 퓱(퓧). The second term is constituted by the variance of 
the gaussian process  휎 , a constant value, and by the zero mean unit variance 풵(퓧, 휔 ) of the 
gaussian process that depends on the input 퓧 and on the probability space 휔 . The value 휔  relies 
on the correlation function ℛ(퓧, 퓧 ; 휽 ), depending on the distance between two input samples 퓧 
and 퓧′ and the hyperparameters 휽 . 

Each ℳℳ (푘 = 1, … , 푁 ) meta-model is built with the DOE made by the ensemble of the inputs 
퓧 = {퓧 , 퓧 , … , 퓧 } and the ensemble of the outputs 퓨 = {풴 , 풴 , … , 풴 } both constituted 
by 푁  elements. Consequently, to the assumption of the gaussian process, the k-th element output 
prediction 푌 (퓧) = ℳℳ (퓧) for a general 퓧 input and all the true model responses      퓨              of 
the DOE follows the gaussian distribution in Equation (A2): 

푌 (퓧)
 퓨

~풩 휷 퓱(퓧) 
퓗휷

; 휎
1 퓻 (퓧)

퓻 (퓧) 퓡
 (A2)

where: 
퓗     is the information matrix, whose generic term is (푖 = 1, … , 푁 ; 푝 = 1, … , 푃) 

ℋ = 풽 (퓧 )  (A3)
퓡           is the correlation matrix, whose generic term is (푖, 푗 = 1, … , 푁 ) 

ℛ = ℛ 퓧 , 퓧 ; 휽  (A4.)
퓻             (퓧) is vector of cross-correlations between the configuration 퓧 and each one of the 

DOE and its generic term is (푖 = 1, … , 푁 ) 
퓇 (퓧)  = ℛ(퓧, 퓧 ; 휽 ) (A5

Consequently, the mean Kriging value 휇  at the 퓧 point and its Kriging variance 휎  are  

  
 

휇 (퓧) = 퓱(퓧)휷 + 퓻 (퓧)퓡 (퓨 − 퓗휷 ) (A6)

휎 (퓧) = 휎  (1 − 퓻 (퓧)퓡 퓻 (퓧) + 퓾 (퓧) 퓗 퓡 ퟏ퓗
ퟏ

        퓾        (퓧))  (A7)

with 퓾 (퓧) = 퓗 퓡 퓻 (퓧) −        퓱           (퓧) (A8)

and 휷 = 퓗 퓡 퓗 퓗 퓡 퓨  (A9)
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prediction 푌 (퓧) = ℳℳ (퓧) for a general 퓧 input and all the true model responses      퓨              of 
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where: 
퓗     is the information matrix, whose generic term is (푖 = 1, … , 푁 ; 푝 = 1, … , 푃) 
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Consequently, the mean Kriging value 휇  at the 퓧 point and its Kriging variance 휎  are  

  
 

휇 (퓧) = 퓱(퓧)휷 + 퓻 (퓧)퓡 (퓨 − 퓗휷 ) (A6)
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and 휷 = 퓗 퓡 퓗 퓗 퓡 퓨  (A9)
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where 푃 is the degree of the truncation of 퓱(퓧). The second term is constituted by the variance of 
the gaussian process  휎 , a constant value, and by the zero mean unit variance 풵(퓧, 휔 ) of the 
gaussian process that depends on the input 퓧 and on the probability space 휔 . The value 휔  relies 
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by 푁  elements. Consequently, to the assumption of the gaussian process, the k-th element output 
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where: 
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퓇 (퓧)  = ℛ(퓧, 퓧 ; 휽 ) (A5

Consequently, the mean Kriging value 휇  at the 퓧 point and its Kriging variance 휎  are  

  
 

휇 (퓧) = 퓱(퓧)휷 + 퓻 (퓧)퓡 (퓨 − 퓗휷 ) (A6)

휎 (퓧) = 휎  (1 − 퓻 (퓧)퓡 퓻 (퓧) + 퓾 (퓧) 퓗 퓡 ퟏ퓗
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with 퓾 (퓧) = 퓗 퓡 퓻 (퓧) −        퓱           (퓧) (A8)

and 휷 = 퓗 퓡 퓗 퓗 퓡 퓨  (A9)
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prediction 푌 (퓧) = ℳℳ (퓧) for a general 퓧 input and all the true model responses      퓨              of 
the DOE follows the gaussian distribution in Equation (A2): 
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 (A2)

where: 
퓗     is the information matrix, whose generic term is (푖 = 1, … , 푁 ; 푝 = 1, … , 푃) 

ℋ = 풽 (퓧 )  (A3)
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ℛ = ℛ 퓧 , 퓧 ; 휽  (A4.)
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DOE and its generic term is (푖 = 1, … , 푁 ) 
퓇 (퓧)  = ℛ(퓧, 퓧 ; 휽 ) (A5

Consequently, the mean Kriging value 휇  at the 퓧 point and its Kriging variance 휎  are  

  
 

휇 (퓧) = 퓱(퓧)휷 + 퓻 (퓧)퓡 (퓨 − 퓗휷 ) (A6)

휎 (퓧) = 휎  (1 − 퓻 (퓧)퓡 퓻 (퓧) + 퓾 (퓧) 퓗 퓡 ퟏ퓗
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with 퓾 (퓧) = 퓗 퓡 퓻 (퓧) −        퓱           (퓧) (A8)

and 휷 = 퓗 퓡 퓗 퓗 퓡 퓨  (A9)
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prediction 푌 (퓧) = ℳℳ (퓧) for a general 퓧 input and all the true model responses      퓨              of 
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where: 
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휎 (퓧) = 휎  (1 − 퓻 (퓧)퓡 퓻 (퓧) + 퓾 (퓧) 퓗 퓡 ퟏ퓗
ퟏ

        퓾        (퓧))  (A7)

with 퓾 (퓧) = 퓗 퓡 퓻 (퓧) −        퓱           (퓧) (A8)

and 휷 = 퓗 퓡 퓗 퓗 퓡 퓨  (A9)

) =MMk(

1 
 

Appendix A. Kriging Metamodels 
Kriging metamodels are stochastic regression algorithms, which allow predicting an output 

푌 (퓧) = ℳℳ (퓧) from an input 퓧 ∈ 풟풳 ⊂ ℝ  (with 푀 the number of input elements in 퓧, and 
풟풳 , the domain of    퓧     [39,73]. In Kriging metamodels, the residuals are correlated by mean 
of gaussian process like shown in Equation (A1): 

ℳℳ (퓧) = 휷풌 퓱(퓧)  + 휎 풵(퓧, 휔 ) = 풩 휷풌 퓱(퓧); 휎 풵(퓧, 휔 )  (A1)
The first term of ℳℳ  is the mean value (i.e., trend) of the linear regression model and it 

contains the regression coefficients 휷 = [훽 , 훽 , … , 훽 ] and the basis function 퓱 = [풽 , 풽 , … , 풽 ] 
where 푃 is the degree of the truncation of 퓱(퓧). The second term is constituted by the variance of 
the gaussian process  휎 , a constant value, and by the zero mean unit variance 풵(퓧, 휔 ) of the 
gaussian process that depends on the input 퓧 and on the probability space 휔 . The value 휔  relies 
on the correlation function ℛ(퓧, 퓧 ; 휽 ), depending on the distance between two input samples 퓧 
and 퓧′ and the hyperparameters 휽 . 

Each ℳℳ (푘 = 1, … , 푁 ) meta-model is built with the DOE made by the ensemble of the inputs 
퓧 = {퓧 , 퓧 , … , 퓧 } and the ensemble of the outputs 퓨 = {풴 , 풴 , … , 풴 } both constituted 
by 푁  elements. Consequently, to the assumption of the gaussian process, the k-th element output 
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the DOE follows the gaussian distribution in Equation (A2): 

푌 (퓧)
 퓨

~풩 휷 퓱(퓧) 
퓗휷

; 휎
1 퓻 (퓧)

퓻 (퓧) 퓡
 (A2)

where: 
퓗     is the information matrix, whose generic term is (푖 = 1, … , 푁 ; 푝 = 1, … , 푃) 

ℋ = 풽 (퓧 )  (A3)
퓡           is the correlation matrix, whose generic term is (푖, 푗 = 1, … , 푁 ) 

ℛ = ℛ 퓧 , 퓧 ; 휽  (A4.)
퓻             (퓧) is vector of cross-correlations between the configuration 퓧 and each one of the 

DOE and its generic term is (푖 = 1, … , 푁 ) 
퓇 (퓧)  = ℛ(퓧, 퓧 ; 휽 ) (A5
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퓇 (퓧)  = ℛ(퓧, 퓧 ; 휽 ) (A5
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퓗  is the information matrix, whose generic term is ( 푖 =
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Kriging metamodels are stochastic regression algorithms, which allow predicting an output 

푌 (퓧) = ℳℳ (퓧) from an input 퓧 ∈ 풟풳 ⊂ ℝ  (with 푀 the number of input elements in 퓧, and 
풟풳 , the domain of    퓧     [39,73]. In Kriging metamodels, the residuals are correlated by mean 
of gaussian process like shown in Equation (A1): 

ℳℳ (퓧) = 휷풌 퓱(퓧)  + 휎 풵(퓧, 휔 ) = 풩 휷풌 퓱(퓧); 휎 풵(퓧, 휔 )  (A1)
The first term of ℳℳ  is the mean value (i.e., trend) of the linear regression model and it 

contains the regression coefficients 휷 = [훽 , 훽 , … , 훽 ] and the basis function 퓱 = [풽 , 풽 , … , 풽 ] 
where 푃 is the degree of the truncation of 퓱(퓧). The second term is constituted by the variance of 
the gaussian process  휎 , a constant value, and by the zero mean unit variance 풵(퓧, 휔 ) of the 
gaussian process that depends on the input 퓧 and on the probability space 휔 . The value 휔  relies 
on the correlation function ℛ(퓧, 퓧 ; 휽 ), depending on the distance between two input samples 퓧 
and 퓧′ and the hyperparameters 휽 . 

Each ℳℳ (푘 = 1, … , 푁 ) meta-model is built with the DOE made by the ensemble of the inputs 
퓧 = {퓧 , 퓧 , … , 퓧 } and the ensemble of the outputs 퓨 = {풴 , 풴 , … , 풴 } both constituted 
by 푁  elements. Consequently, to the assumption of the gaussian process, the k-th element output 
prediction 푌 (퓧) = ℳℳ (퓧) for a general 퓧 input and all the true model responses      퓨              of 
the DOE follows the gaussian distribution in Equation (A2): 
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where: 
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퓻             (퓧) is vector of cross-correlations between the configuration 퓧 and each one of the 

DOE and its generic term is (푖 = 1, … , 푁 ) 
퓇 (퓧)  = ℛ(퓧, 퓧 ; 휽 ) (A5

Consequently, the mean Kriging value 휇  at the 퓧 point and its Kriging variance 휎  are  
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gaussian process that depends on the input 퓧 and on the probability space 휔 . The value 휔  relies 
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by 푁  elements. Consequently, to the assumption of the gaussian process, the k-th element output 
prediction 푌 (퓧) = ℳℳ (퓧) for a general 퓧 input and all the true model responses      퓨              of 
the DOE follows the gaussian distribution in Equation (A2): 
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where: 
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DOE and its generic term is (푖 = 1, … , 푁 ) 
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where 푃 is the degree of the truncation of 퓱(퓧). The second term is constituted by the variance of 
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prediction 푌 (퓧) = ℳℳ (퓧) for a general 퓧 input and all the true model responses      퓨              of 
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ℛ = ℛ 퓧 , 퓧 ; 휽  (A4.)
퓻             (퓧) is vector of cross-correlations between the configuration 퓧 and each one of the 

DOE and its generic term is (푖 = 1, … , 푁 ) 
퓇 (퓧)  = ℛ(퓧, 퓧 ; 휽 ) (A5

Consequently, the mean Kriging value 휇  at the 퓧 point and its Kriging variance 휎  are  
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The first term of ℳℳ  is the mean value (i.e., trend) of the linear regression model and it 
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where 푃 is the degree of the truncation of 퓱(퓧). The second term is constituted by the variance of 
the gaussian process  휎 , a constant value, and by the zero mean unit variance 풵(퓧, 휔 ) of the 
gaussian process that depends on the input 퓧 and on the probability space 휔 . The value 휔  relies 
on the correlation function ℛ(퓧, 퓧 ; 휽 ), depending on the distance between two input samples 퓧 
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퓧 = {퓧 , 퓧 , … , 퓧 } and the ensemble of the outputs 퓨 = {풴 , 풴 , … , 풴 } both constituted 
by 푁  elements. Consequently, to the assumption of the gaussian process, the k-th element output 
prediction 푌 (퓧) = ℳℳ (퓧) for a general 퓧 input and all the true model responses      퓨              of 
the DOE follows the gaussian distribution in Equation (A2): 
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풟풳 , the domain of    퓧     [39,73]. In Kriging metamodels, the residuals are correlated by mean 
of gaussian process like shown in Equation (A1): 

ℳℳ (퓧) = 휷풌 퓱(퓧)  + 휎 풵(퓧, 휔 ) = 풩 휷풌 퓱(퓧); 휎 풵(퓧, 휔 )  (A1)
The first term of ℳℳ  is the mean value (i.e., trend) of the linear regression model and it 

contains the regression coefficients 휷 = [훽 , 훽 , … , 훽 ] and the basis function 퓱 = [풽 , 풽 , … , 풽 ] 
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gaussian process that depends on the input 퓧 and on the probability space 휔 . The value 휔  relies 
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Each ℳℳ (푘 = 1, … , 푁 ) meta-model is built with the DOE made by the ensemble of the inputs 
퓧 = {퓧 , 퓧 , … , 퓧 } and the ensemble of the outputs 퓨 = {풴 , 풴 , … , 풴 } both constituted 
by 푁  elements. Consequently, to the assumption of the gaussian process, the k-th element output 
prediction 푌 (퓧) = ℳℳ (퓧) for a general 퓧 input and all the true model responses      퓨              of 
the DOE follows the gaussian distribution in Equation (A2): 
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푌 (퓧) = ℳℳ (퓧) from an input 퓧 ∈ 풟풳 ⊂ ℝ  (with 푀 the number of input elements in 퓧, and 
풟풳 , the domain of    퓧     [39,73]. In Kriging metamodels, the residuals are correlated by mean 
of gaussian process like shown in Equation (A1): 

ℳℳ (퓧) = 휷풌 퓱(퓧)  + 휎 풵(퓧, 휔 ) = 풩 휷풌 퓱(퓧); 휎 풵(퓧, 휔 )  (A1)
The first term of ℳℳ  is the mean value (i.e., trend) of the linear regression model and it 

contains the regression coefficients 휷 = [훽 , 훽 , … , 훽 ] and the basis function 퓱 = [풽 , 풽 , … , 풽 ] 
where 푃 is the degree of the truncation of 퓱(퓧). The second term is constituted by the variance of 
the gaussian process  휎 , a constant value, and by the zero mean unit variance 풵(퓧, 휔 ) of the 
gaussian process that depends on the input 퓧 and on the probability space 휔 . The value 휔  relies 
on the correlation function ℛ(퓧, 퓧 ; 휽 ), depending on the distance between two input samples 퓧 
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퓧 = {퓧 , 퓧 , … , 퓧 } and the ensemble of the outputs 퓨 = {풴 , 풴 , … , 풴 } both constituted 
by 푁  elements. Consequently, to the assumption of the gaussian process, the k-th element output 
prediction 푌 (퓧) = ℳℳ (퓧) for a general 퓧 input and all the true model responses      퓨              of 
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Consequently, the mean Kriging value 휇  at the 퓧 point and its Kriging variance 휎  are  
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풟풳 , the domain of    퓧     [39,73]. In Kriging metamodels, the residuals are correlated by mean 
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ℳℳ (퓧) = 휷풌 퓱(퓧)  + 휎 풵(퓧, 휔 ) = 풩 휷풌 퓱(퓧); 휎 풵(퓧, 휔 )  (A1)
The first term of ℳℳ  is the mean value (i.e., trend) of the linear regression model and it 

contains the regression coefficients 휷 = [훽 , 훽 , … , 훽 ] and the basis function 퓱 = [풽 , 풽 , … , 풽 ] 
where 푃 is the degree of the truncation of 퓱(퓧). The second term is constituted by the variance of 
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Kriging metamodels are stochastic regression algorithms, which allow predicting an output 

푌 (퓧) = ℳℳ (퓧) from an input 퓧 ∈ 풟풳 ⊂ ℝ  (with 푀 the number of input elements in 퓧, and 
풟풳 , the domain of    퓧     [39,73]. In Kriging metamodels, the residuals are correlated by mean 
of gaussian process like shown in Equation (A1): 

ℳℳ (퓧) = 휷풌 퓱(퓧)  + 휎 풵(퓧, 휔 ) = 풩 휷풌 퓱(퓧); 휎 풵(퓧, 휔 )  (A1)
The first term of ℳℳ  is the mean value (i.e., trend) of the linear regression model and it 

contains the regression coefficients 휷 = [훽 , 훽 , … , 훽 ] and the basis function 퓱 = [풽 , 풽 , … , 풽 ] 
where 푃 is the degree of the truncation of 퓱(퓧). The second term is constituted by the variance of 
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gaussian process that depends on the input 퓧 and on the probability space 휔 . The value 휔  relies 
on the correlation function ℛ(퓧, 퓧 ; 휽 ), depending on the distance between two input samples 퓧 
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Each ℳℳ (푘 = 1, … , 푁 ) meta-model is built with the DOE made by the ensemble of the inputs 
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by 푁  elements. Consequently, to the assumption of the gaussian process, the k-th element output 
prediction 푌 (퓧) = ℳℳ (퓧) for a general 퓧 input and all the true model responses      퓨              of 
the DOE follows the gaussian distribution in Equation (A2): 
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Kriging metamodels are stochastic regression algorithms, which allow predicting an output 

푌 (퓧) = ℳℳ (퓧) from an input 퓧 ∈ 풟풳 ⊂ ℝ  (with 푀 the number of input elements in 퓧, and 
풟풳 , the domain of    퓧     [39,73]. In Kriging metamodels, the residuals are correlated by mean 
of gaussian process like shown in Equation (A1): 

ℳℳ (퓧) = 휷풌 퓱(퓧)  + 휎 풵(퓧, 휔 ) = 풩 휷풌 퓱(퓧); 휎 풵(퓧, 휔 )  (A1)
The first term of ℳℳ  is the mean value (i.e., trend) of the linear regression model and it 

contains the regression coefficients 휷 = [훽 , 훽 , … , 훽 ] and the basis function 퓱 = [풽 , 풽 , … , 풽 ] 
where 푃 is the degree of the truncation of 퓱(퓧). The second term is constituted by the variance of 
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gaussian process that depends on the input 퓧 and on the probability space 휔 . The value 휔  relies 
on the correlation function ℛ(퓧, 퓧 ; 휽 ), depending on the distance between two input samples 퓧 
and 퓧′ and the hyperparameters 휽 . 

Each ℳℳ (푘 = 1, … , 푁 ) meta-model is built with the DOE made by the ensemble of the inputs 
퓧 = {퓧 , 퓧 , … , 퓧 } and the ensemble of the outputs 퓨 = {풴 , 풴 , … , 풴 } both constituted 
by 푁  elements. Consequently, to the assumption of the gaussian process, the k-th element output 
prediction 푌 (퓧) = ℳℳ (퓧) for a general 퓧 input and all the true model responses      퓨              of 
the DOE follows the gaussian distribution in Equation (A2): 
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where: 
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DOE and its generic term is (푖 = 1, … , 푁 ) 
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Appendix A. Kriging Metamodels 
Kriging metamodels are stochastic regression algorithms, which allow predicting an output 

푌 (퓧) = ℳℳ (퓧) from an input 퓧 ∈ 풟풳 ⊂ ℝ  (with 푀 the number of input elements in 퓧, and 
풟풳 , the domain of    퓧     [39,73]. In Kriging metamodels, the residuals are correlated by mean 
of gaussian process like shown in Equation (A1): 

ℳℳ (퓧) = 휷풌 퓱(퓧)  + 휎 풵(퓧, 휔 ) = 풩 휷풌 퓱(퓧); 휎 풵(퓧, 휔 )  (A1)
The first term of ℳℳ  is the mean value (i.e., trend) of the linear regression model and it 

contains the regression coefficients 휷 = [훽 , 훽 , … , 훽 ] and the basis function 퓱 = [풽 , 풽 , … , 풽 ] 
where 푃 is the degree of the truncation of 퓱(퓧). The second term is constituted by the variance of 
the gaussian process  휎 , a constant value, and by the zero mean unit variance 풵(퓧, 휔 ) of the 
gaussian process that depends on the input 퓧 and on the probability space 휔 . The value 휔  relies 
on the correlation function ℛ(퓧, 퓧 ; 휽 ), depending on the distance between two input samples 퓧 
and 퓧′ and the hyperparameters 휽 . 

Each ℳℳ (푘 = 1, … , 푁 ) meta-model is built with the DOE made by the ensemble of the inputs 
퓧 = {퓧 , 퓧 , … , 퓧 } and the ensemble of the outputs 퓨 = {풴 , 풴 , … , 풴 } both constituted 
by 푁  elements. Consequently, to the assumption of the gaussian process, the k-th element output 
prediction 푌 (퓧) = ℳℳ (퓧) for a general 퓧 input and all the true model responses      퓨              of 
the DOE follows the gaussian distribution in Equation (A2): 

푌 (퓧)
 퓨
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; 휎
1 퓻 (퓧)
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 (A2)

where: 
퓗     is the information matrix, whose generic term is (푖 = 1, … , 푁 ; 푝 = 1, … , 푃) 

ℋ = 풽 (퓧 )  (A3)
퓡           is the correlation matrix, whose generic term is (푖, 푗 = 1, … , 푁 ) 

ℛ = ℛ 퓧 , 퓧 ; 휽  (A4.)
퓻             (퓧) is vector of cross-correlations between the configuration 퓧 and each one of the 

DOE and its generic term is (푖 = 1, … , 푁 ) 
퓇 (퓧)  = ℛ(퓧, 퓧 ; 휽 ) (A5

Consequently, the mean Kriging value 휇  at the 퓧 point and its Kriging variance 휎  are  
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gaussian process that depends on the input 퓧 and on the probability space 휔 . The value 휔  relies 
on the correlation function ℛ(퓧, 퓧 ; 휽 ), depending on the distance between two input samples 퓧 
and 퓧′ and the hyperparameters 휽 . 

Each ℳℳ (푘 = 1, … , 푁 ) meta-model is built with the DOE made by the ensemble of the inputs 
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by 푁  elements. Consequently, to the assumption of the gaussian process, the k-th element output 
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where: 
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where: 
퓗     is the information matrix, whose generic term is (푖 = 1, … , 푁 ; 푝 = 1, … , 푃) 
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ℛ = ℛ 퓧 , 퓧 ; 휽  (A4.)
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DOE and its generic term is (푖 = 1, … , 푁 ) 
퓇 (퓧)  = ℛ(퓧, 퓧 ; 휽 ) (A5

Consequently, the mean Kriging value 휇  at the 퓧 point and its Kriging variance 휎  are  
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In order to obtain theMMk Kriging meta-model, some steps are necessary: (i) Choose
the trend basis function
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j; θk
)

; (iii) Set the hyperparameters θk, necessary for the evaluation of

the gaussian variance σ2
Ŷk and of the regression coefficients βk, or choose a method to find

the optimum θk.
In this work, ordinary Kriging metamodels are developed, which means that the trend

basis βk
T
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where ξ is an ellipsoidal function. Precisely, a “3/2 Matérn” correlation function (A12) is
used in the Gaussian Process:

R(ξ) =
(

1 + ξ
√

3
)

e−ξ
√

3 (A12)

A Kriging optimization method is needed to calculate the hyperparameters θk neces-
sary for the definition of σ2

k . For this purpose, the K-fold cross validation embedding the
Hybrid Genetic Algorithm (HGA) is adopted to find the minimum value of the optimization
function (A13):
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Kriging metamodels are stochastic regression algorithms, which allow predicting an output 

푌 (퓧) = ℳℳ (퓧) from an input 퓧 ∈ 풟풳 ⊂ ℝ  (with 푀 the number of input elements in 퓧, and 
풟풳 , the domain of    퓧     [39,73]. In Kriging metamodels, the residuals are correlated by mean 
of gaussian process like shown in Equation (A1): 

ℳℳ (퓧) = 휷풌 퓱(퓧)  + 휎 풵(퓧, 휔 ) = 풩 휷풌 퓱(퓧); 휎 풵(퓧, 휔 )  (A1)
The first term of ℳℳ  is the mean value (i.e., trend) of the linear regression model and it 

contains the regression coefficients 휷 = [훽 , 훽 , … , 훽 ] and the basis function 퓱 = [풽 , 풽 , … , 풽 ] 
where 푃 is the degree of the truncation of 퓱(퓧). The second term is constituted by the variance of 
the gaussian process  휎 , a constant value, and by the zero mean unit variance 풵(퓧, 휔 ) of the 
gaussian process that depends on the input 퓧 and on the probability space 휔 . The value 휔  relies 
on the correlation function ℛ(퓧, 퓧 ; 휽 ), depending on the distance between two input samples 퓧 
and 퓧′ and the hyperparameters 휽 . 

Each ℳℳ (푘 = 1, … , 푁 ) meta-model is built with the DOE made by the ensemble of the inputs 
퓧 = {퓧 , 퓧 , … , 퓧 } and the ensemble of the outputs 퓨 = {풴 , 풴 , … , 풴 } both constituted 
by 푁  elements. Consequently, to the assumption of the gaussian process, the k-th element output 
prediction 푌 (퓧) = ℳℳ (퓧) for a general 퓧 input and all the true model responses      퓨              of 
the DOE follows the gaussian distribution in Equation (A2): 
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where: 
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퓇 (퓧)  = ℛ(퓧, 퓧 ; 휽 ) (A5

Consequently, the mean Kriging value 휇  at the 퓧 point and its Kriging variance 휎  are  
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prediction 푌 (퓧) = ℳℳ (퓧) for a general 퓧 input and all the true model responses      퓨              of 
the DOE follows the gaussian distribution in Equation (A2): 
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풟풳 , the domain of    퓧     [39,73]. In Kriging metamodels, the residuals are correlated by mean 
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ℳℳ (퓧) = 휷풌 퓱(퓧)  + 휎 풵(퓧, 휔 ) = 풩 휷풌 퓱(퓧); 휎 풵(퓧, 휔 )  (A1)
The first term of ℳℳ  is the mean value (i.e., trend) of the linear regression model and it 
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where 푃 is the degree of the truncation of 퓱(퓧). The second term is constituted by the variance of 
the gaussian process  휎 , a constant value, and by the zero mean unit variance 풵(퓧, 휔 ) of the 
gaussian process that depends on the input 퓧 and on the probability space 휔 . The value 휔  relies 
on the correlation function ℛ(퓧, 퓧 ; 휽 ), depending on the distance between two input samples 퓧 
and 퓧′ and the hyperparameters 휽 . 
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퓧 = {퓧 , 퓧 , … , 퓧 } and the ensemble of the outputs 퓨 = {풴 , 풴 , … , 풴 } both constituted 
by 푁  elements. Consequently, to the assumption of the gaussian process, the k-th element output 
prediction 푌 (퓧) = ℳℳ (퓧) for a general 퓧 input and all the true model responses      퓨              of 
the DOE follows the gaussian distribution in Equation (A2): 
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The first term of ℳℳ  is the mean value (i.e., trend) of the linear regression model and it 
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퓧 = {퓧 , 퓧 , … , 퓧 } and the ensemble of the outputs 퓨 = {풴 , 풴 , … , 풴 } both constituted 
by 푁  elements. Consequently, to the assumption of the gaussian process, the k-th element output 
prediction 푌 (퓧) = ℳℳ (퓧) for a general 퓧 input and all the true model responses      퓨              of 
the DOE follows the gaussian distribution in Equation (A2): 
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where: 
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For each k-th output, the meta-model MMk is trained Niter = 100 times and the
one with the lowest Leave-One-Out (LOO) error will be theMMk chosen to mimic the
behaviour of the k-th output. The LOO error is evaluated with Equation (A15):

LOO =
1

Nkrig

Nkrig

∑
i=1

(MMk(
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퓧 = {퓧 , 퓧 , … , 퓧 } and the ensemble of the outputs 퓨 = {풴 , 풴 , … , 풴 } both constituted 
by 푁  elements. Consequently, to the assumption of the gaussian process, the k-th element output 
prediction 푌 (퓧) = ℳℳ (퓧) for a general 퓧 input and all the true model responses      퓨              of 
the DOE follows the gaussian distribution in Equation (A2): 
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prediction 푌 (퓧) = ℳℳ (퓧) for a general 퓧 input and all the true model responses      퓨              of 
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with 퓾 (퓧) = 퓗 퓡 퓻 (퓧) −        퓱           (퓧) (A8)

and 휷 = 퓗 퓡 퓗 퓗 퓡 퓨  (A9)
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2
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Appendix B. Spectral Clustering (SC) Embedding the Fuzzy C-Means (FCM)

Spectral Clustering (SC) embedding the Fuzzy C-Means (FCM) let to cluster N objects
through the following steps [28] (the flowchart of the algorithm is represented in Figure A1
for the sake of clarity):

• Step (1): The matrix
=
Y

k
[N, L] is built for each k-th variable considered, collecting at

each row all the N transients associated with that variable for the L time length and
its generic element is yk

il (i = 1, 2, . . . , N; l = 1, 2, . . . , L) referring to the i-th scenario
at the l-th time.

• Step (2): The matrix
=
Y

k
[N, L] is normalized in the range [0.2, 0.8] obtaining the matrix

=
Y

k

n[N, L], whose generic element is yk
n,il

• Step (3): The Euclidean pointwise distance δij between an i-th object and a j-th one
(j = 1, 2, . . . , N) is determined as in Equation (A16):

δij =
Z

∑
k=1

L

∑
l=1

∣∣∣yk
n,il − yk

n,jl

∣∣∣ (A16)

• Step (4): The generic element wij of the similarity matrix
=
W[N, N] is obtained from δij

as follows in Equation (A17):

wij = e−F×δ2
ij (A17)

with F = 1.7× 10−9 [6].

The similarity wij can assume values between 0 and 1: if it is close to 1, the i-th and
the j-th objects considered are very similar; instead, if it is near 0, the two objects are
very different.

• Step (5): The matrix
=
Lsym[N, N], that is the Normalized Laplacian matrix associated

with
=
W, is computed. Then, to obtain the optimal number C of groups in which the

N transients must be clustered, the eigenvalues λ1, λ2, . . . , λN of
=
Lsym[N, N] and

their associated eigenvectors
→
u 1,

→
u 2, . . . ,

→
u N are extracted. Following the eigengap

heuristic theory, C is set equal to the number of eigenvalues λ1, λ2, . . . , λC that are
significantly smaller than λC+1 [75]. Each eigenvector

→
u c (c = 1, . . . , C) constitutes the

c-th column of the matrix
=
U[N, C], that is normalized calculating the matrix

=
T[N, C],

whose generic element

1 
 

퓗  is the information matrix, whose generic term is ( 푖 =
1, … , 푁 ; 푝 = 1, … , 푃) 

ℋ =              풽            (퓧 )  (A3) 

퓡  is the correlation matrix, whose generic term is ( 푖, 푗 =
1, … , 푁 ) 

ℛ = ℛ 퓧 , 퓧 ; 휽  (A4.)

퓻 (퓧) is vector of cross-correlations between the configuration 
퓧 and each one of the DOE and its generic term is (푖 = 1, … , 푁 ) 

퓇                      (퓧)  = ℛ(퓧, 퓧 ; 휽 ) (A5)
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∑ 푢 ,

 (A22
) 

 

ic (i = 1, 2, . . . , N , c = 1, 2, . . . , C) is determined as follow
in Equation (A18):

1 
 

퓗  is the information matrix, whose generic term is ( 푖 =
1, … , 푁 ; 푝 = 1, … , 푃) 
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퓡  is the correlation matrix, whose generic term is ( 푖, 푗 =
1, … , 푁 ) 

ℛ = ℛ 퓧 , 퓧 ; 휽  (A4.)

퓻 (퓧) is vector of cross-correlations between the configuration 
퓧 and each one of the DOE and its generic term is (푖 = 1, … , 푁 ) 

퓇                      (퓧)  = ℛ(퓧, 퓧 ; 휽 ) (A5)

 

퓉        , =
푢 ,

∑ 푢 ,

 (A22
) 

 

ic =
uic√

∑C
c=1 u2

ic

(A18)

• Step (6): The matrix
=
T, which contains the features extracted of the N objects, is fed to

the FCM code [28] to group them in C clusters.
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Appendix C. Supervised Spectral Clustering: Projection in Eigenspace

The similarity vector W l,j must be projected in the eigenspace coordinates, contained
in the vector Tl, j[1, C], to find the membership degree Ml,cj respect to the c-th cluster at
l-th time step: indeed, the value Ml,cj can be estimated comparing Tl, j[1, C] and Ac[1, C],
containing the eigenspace coordinates of the prototypical cluster c (Equation (17)).

Firstly, the vector Ul,j[1, C] is computed evaluating each element ul,jc (c = 1, 2, . . . , C),
as in Equation (A19):
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ul,jc =
dl,j
−1/2

1− λc
W l, j D−1/2 →u c (A19)

with dl,j =
Ndata

∑
i=1

wl,ji (A20)

where λc and
→
u c are the c-th eigenvalue and eigenvector of the matrix

=
Lsym of Section 3.2, re-

spectively, and
=
D is the Degree matrix

=
D[Ndata, Ndata], which is a diagonal matrix composed

by each element di (i = 1, . . . , Ndata) determined with Equation (A21) with the elements of

the similarity matrix
=
W of Section 3.2:

di =
Ndata

∑
j=i

wij (A21)

Then, Ul,j is normalized, determining Tl, j[1, C], whose generic element

1 
 

퓗  is the information matrix, whose generic term is ( 푖 =
1, … , 푁 ; 푝 = 1, … , 푃) 

ℋ =              풽            (퓧 )  (A3) 

퓡  is the correlation matrix, whose generic term is ( 푖, 푗 =
1, … , 푁 ) 

ℛ = ℛ 퓧 , 퓧 ; 휽  (A4.)

퓻 (퓧) is vector of cross-correlations between the configuration 
퓧 and each one of the DOE and its generic term is (푖 = 1, … , 푁 ) 

퓇                      (퓧)  = ℛ(퓧, 퓧 ; 휽 ) (A5)
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l,jc(c = 1, . . . , C)
is given by Equation (A22):
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퓧 and each one of the DOE and its generic term is (푖 = 1, … , 푁 ) 
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Appendix D. Nine Clusters of the Three Critical Variables Transient Scenarios,
Generated by POD-Based Kriging Metamodels
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