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Abstract: This study presents a novel switching scheme for three-level neutral point clamped
(NPC) inverters. The proposed switching method independently drives the upper- and lower-arm
elements of the inverter based on the polarity information of the reference current. The proposed
switching scheme does not require the inclusion of dead-time for each switching, except when the
current polarity changes. Therefore, unlike the conventional inverter switching method, dead-time
compensation is not needed, and the possibility of an arm-short accident is prevented. In this study, a
switching procedure is detailed, and the operation mode analysis of the proposed switching scheme
is presented. The effectiveness of the proposed switching method is verified experimentally by
application to a grid-connected inverter that requires inverter current control.

Keywords: current control; inverters; pulse width modulation; photovoltaic system

1. Introduction

Three-level inverters are widely used for medium- and large-capacity inverters. As
three-level inverters have good performance and efficiency, they also have complex circuits
and controls. In the case of a three-level inverter having a neutral point, the voltage applied
to the switching element is halved compared to that of a two-level inverter. In addition,
since the three-level inverter has a smaller current ripple than the two-level inverter, it
is advantageous as a grid-connected inverter, where the problem of harmonics included
in the output current is important. Therefore, studies on three-level inverters have been
continuously investigated [1,2]. In the case of H-bridge-type power converters, which are
driven by a conventional complementary switching method, when the switching elements
of the upper- and lower-arm are turned on simultaneously, an arm-short of the DC link
occurs. Therefore, in order to prevent an arm-short, dead-time must be inserted into
all switching signals. For the perfect prevention of an arm-short, sufficient dead-time
is required. However, when the dead-time is inserted, output waveform distortion is
generated due to errors generated during the dead-time. Therefore, various studies have
investigated dead-time compensation, such as extracting and compensating harmonics
generated by dead-time or adjusting the effective application time according to the current
direction [3,4]. The dead-time compensation in the three-level neutral point clamped (NPC)
inverter is also compensated by analyzing the dead-time effect similar to the dead-time
compensation used in the two-level inverter [5–10].

Furthermore, dead-time elimination methods have been proposed, which do not need
to insert the dead-time according to the current polarity [11–13]. In these cases, there is a
problem in accurately detecting the polarity of the actual current. An alternative switching
method capable of operating without dead-time by driving a switching device according
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to the polarity of the reference current in the two-level inverter has been proposed [14].
This method is useful for the current control system.

In the case of a three-level NPC inverter, a study that eliminates the dead-time by
dividing the switching modes according to the polarity of the voltage reference and the
polarity of the actual current has been proposed [15,16]. However, if the polarity of the
actual current cannot be accurately detected, there is a possibility of an arm-short when the
current polarity is switched.

A method using the voltage of the IGBTs has also been proposed to detect the actual
current polarity accurately, but it has a disadvantage in that an additional circuit must be
added in parallel to the IGBTs [17].

In the current study, a new switching method for a three-level NPC inverter is pro-
posed. Since the proposed switching method independently switches the upper- and
lower-arm elements based on information on the polarity of the reference current rather
than the actual current, sensing of the actual current is not involved; therefore, the proposed
method is easily applicable. Moreover, the possibility of an arm-short does not exist, and
dead-time compensation is not required.

The detailed switching strategy and operation mode analysis of the proposed switch-
ing method are described, and the effectiveness of the proposed switching method is
verified by applying it to a 1 MW grid-connected photovoltaic power generation system.

The authors state that this paper is based on a preliminary version [18] presented at
the RTUCON conference in Riga, Latvia, in 2019.

2. 3 Phase Three-Level NPC Inverter

Figure 1 shows the circuit of a typical NPC three-level inverter; as shown in the figure,
four switches and two clamping diodes constitute one arm. A clamping diode is connected
to the neutral point Z between the DC link capacitors depending on the operating switching
state and is used to clamp the output voltage to zero.
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Figure 1. Circuit of a typical NPC three-level inverter.

Table 1 depicts the switching mode of the conventional switching method and the
on/off state of the switch according to the inverter output voltage. In switching mode P,
the two upper switches are turned on so that the voltage VAZ between point A and neutral
point Z becomes +E1. In switching mode N, the two sub-switches are turned on so that VAZ
becomes E2. In switching mode O, switches S2 and S3 are turned on, and the output voltage
across the clamping diode is zero. Switch pairs S1 and S2 operate in a complementary
manner with S3 and S4.
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Table 1. Switching mode of the conventional switching method.

Switching
Mode

Switching Signal Expected Inverter Terminal Voltage
VAZS1 S2 S3 S4

P On On Off Off E1
O Off On On Off 0
N Off Off On On −E2

Figure 2 shows the waveform of the switching signal of the phase opposition dispo-
sition (POD) modulation scheme, which is a conventional carrier-based switching signal
scheme. It can also be generated via other PWM methods, including space vector PWM.
Whichever method is used, when S1, S2, and S3 are operated simultaneously, an arm-short
occurs as shown in Figure 3a. Alternatively, an arm-short occurs when S2, S3, and S4 are
turned on simultaneously (Figure 3b). In rare cases, an arm-short is possible when all the
switching elements are turned on (Figure 3c).
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As previously mentioned, when an H-bridge-type power converter is driven using
the conventional PWM switching method in a complementary manner without dead-time,
a short-circuit occurs in the DC link. Therefore, the dead-time needs to be included to
prevent an arm-short, as depicted in Figure 4. In the figure, Dap and Dan are reference
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signals, tp and tn are the turn-on time of S1 and S4, respectively, and td is the dead-time.
S1~S4 are switching signals, and G1~G4 are gate signals with the dead-time. As a result, it
can be observed that the modulation error occurs in the output voltage during dead-time,
compared to the ideal case, which necessitates compensation to reduce the voltage error
and harmonics caused because of the dead-time.
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Figure 4. Waveforms of the conventional switching signal with dead-time and the output
terminal voltage.

3. Proposed Switching Scheme

In this study, we present a novel switching method of three-phase NPC three-level
inverters that selects a switching device using the polarity information of the reference
current. The grid-connected PV system or motor driving system is controlled by the current
control method.

Therefore, the selection of switching elements can be used for the information about
the reference current polarity rather than the actual current.

Figure 5 shows the proposed switching signal generation scheme. The method of
generating the primary switching signals S1, S2, S3, and S4 is the same as the conventional
POD modulation method:

S1 =

{
1 when Vcmd ≥ Vcp

0 when Vcmd < Vcp,
(1)

S4 =

{
1 when Vcmd ≤ Vcn

0 when Vcmd > Vcn,
(2)

S2 =

{
1 when Vcmd > Vcn
0 when Vcmd ≤ Vcn

= S4 ,
(3)

S3 =

{
1 when Vcmd < Vcp
0 when Vcmd ≥ Vcp

= S1 ,
(4)
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where Vcmd is the output voltage command, and Vcp and Vcn are carrier signals.
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The switching devices are determined for each operation mode according to the
reference current polarity, as follows:

S1
′ = CRP & S1, (5)

S2
′ = CRP & S2 = CRP & S4, (6)

S3
′ = CRP & S1, (7)

S4
′ = CRP & S4, (8)

where

CRP =

{
1 when Current Re f erence ≥ 0
0 when Current Re f erence < 0.

(9)

Dead-time DP and DN are determined for gate signals G1 and G4, respectively. DP is
the dead-time from the negative-going transition (NGT) of S3, whereas DN is the dead-time
from the NGT of S2

′. Although DP and DN are determined, they are not always adopted.
Therefore, the final gate signal can be obtained as follows:

G1 = DP & S1
′ = DP&CRP & S1, (10)

G2 = S2
′ = CRP & S4, (11)

G3 = S3
′ = CRP & S1, (12)

G4 = DN & S4
′ = DN & CRP&S4. (13)

Figure 6 depicts the hardware implementation of the proposed switching scheme. In
the conventional switching method, the hardware for inserting the dead-time includes four
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one-shot and four AND-gates. In the hardware implementation of the proposed method,
two one-shots are reduced, and two AND-gates and one NOT-gate are added, simplifying
the circuit.
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Table 2 shows the status of the switching elements in the conduction mode for the
proposed switching method. Mode O in the conventional switching method (Table 1) is
divided into modes PO and NO according to the polarity of the voltage and current. In
addition, a new mode OO is presented in which all the switches are turned off.

Table 2. Conduction mode.

Conduction
Mode

Switch Status Terminal Voltage
VAZ/VBZ/VCZQ2 Q2 Q3 Q4

PP On On Off Off E1
PO Off On Off Off 0
OO Off Off Off Off E1 (I < 0)/−E2 (I > 0)
NO Off Off On Off 0
NN Off Off On On −E2

The current path of each conduction mode for phase A is shown in Figure 7. From
Figure 7, only Q1A and Q2A are turned on when the current is positive, and only Q3A and
Q4A are turned on when the current is negative. Therefore, dead-time is no longer required,
except when the polarity of the reference current is changed.

Table 3 depicts the operation mode according to the conduction mode, which is
determined by the output voltage polarity and the reference current polarity. Table 4 shows
the conduction mode from phase X to phase Y, i.e., when the XY line current is positive.
Here, X and Y denote A and C, respectively. According to the conduction mode of each
phase, a total of nine modes are possible.

Table 3. Operation mode.

Operation
Mode

Current
Reference
Polarity

Voltage
Polarity

Conduction
Mode

Mode-I Positive Positive PP/PO
Mode-II Positive Negative PO/OO
Mode-III Negative Negative NN/NO
Mode-IV Negative Positive NO/OO
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Table 4. Conduction mode from phase A to phase C.

A-C
Conduction

Mode

Conduction
Mode of
Phase A

Conduction
Mode of
Phase C

A-C
Line to Line

Voltage

Mode-1 PP NN E1 + E2
Mode-2 PP NO E1
Mode-3 PP OO 0
Mode-4 PO NN E2
Mode-5 PO NO 0
Mode-6 PO OO −E1
Mode-7 OO NN 0
Mode-8 OO NO −E2
Mode-9 OO OO −E1 − E2
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Figure 7. Current path of each conduction mode for phase A: (a) PP mode; (b) PO mode; (c) OO
mode (iA > 0); (d) NN mode; (e) NO mode; (f) OO mode (iA < 0).

In Equations (10) and (13), the dead-time for switching Q1 and Q4 is determined when
the polarity of the reference value is changed. The determined dead-time may or may not
be applied depending on the switching conditions. Even if the dead-time is applied, it is
shorter than the determined dead-time, and is applied just once when the polarity of the
reference current is changed. Moreover, during this time, no dead-time compensation is
required in the current control system as the actual current is near zero.

However, if the polarity of the reference current is changed before the polarity of
the actual current, the current discontinuity may occur near-zero current in the proposed
switching scheme, as depicted in Figure 8; hence, the proposed switching method is not
recommended for systems where the output current is not significant compared to the
ripple current caused by switching.
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4. Experimental Results

An experiment was conducted to confirm the effectiveness of the proposed switching
scheme by applying it to a 1 MW grid-connected photovoltaic (PV) system, as shown in
Figure 9. The 1 MW PV inverter is a multi-central type, with two 500 kW inverter panels in
parallel. Each inverter panel consists of four 125 kW power stacks connected in parallel,
and the same switching signals drive each power stack. Figure 10 displays the image of the
1 MW PV inverter system used in the experiment. Table 5 shows the detailed specifications
of the 1 MW grid-connected PV inverter proposed in this study.
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Table 5. Specification of the 1 MW PV inverter system.

Item Value

Input

PV voltage (max) 1000 V
Operation voltage range 550–1000 V

MPPT voltage range 550–1000 V
PV current (max) 1652.8 A

Output

Power 1000 kW
Frequency 60 Hz (59.3–60.5)

Voltage 340 V (3Φ3W)
Current (max) 1698 A

ETC
Operating temperature −20–50 ◦C

IP degree IP44
Cooling Forced air

Figure 11 displays the image of the 125 kW power stack, and Figure 12 presents the
circuit for one of the arms. The ratings of the main components of the 125 kW power stack
and 500 kW inverter panel are shown in Tables 6 and 7, respectively.
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Figure 12. Schematic of one of the arms of the 125 kW power stack.

Table 6. Ratings of the major parts for the 125 kW Power stack.

Item Value

DC CT 300 A
DC link capacitor 1000 µF/700 V ×3P2S

IGBT Module (upper) 650 V/400 A ×3 EA
IGBT Module (lower) 650 V/400 A ×3 EA

AC Fuse 700 V/300 A
AC CT 300 A
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Table 7. Rating of the major parts for the 500 kW inverter panel.

Item Value

Power stack 125 kW × 4P
DC Fuse 630 A, 1000 V × 2P
DC SPD 1000 V/40 kA

DC EMI Core Nano crystal/200 mm
DC Switch 1000 A/1000 V

Filter inductor 0.1 mH/1000 A
Filter capacitor 40 µF/450 V × 4P

MC 1260 A/1000 V

The total harmonic distortion (THD) measurement results indicate that the proposed
switching method has lesser THD than the conventional switching method with dead-time
compensation. This may be because the adopted dead-time compensation method may
be not perfect. If the dead-time compensation is perfect, there are no differences in the
harmonic characteristics, but this is nearly impossible.

Figures 13 and 14 depict the experimental results obtained using the conventional
switching method and the proposed switching scheme, respectively. Figures 13a and 14a
show the waveforms of the grid voltage and the output current of the inverter system,
whereas Figures 13b and 14b depict the gate signals. In this case, the grid voltage and
inverter output current are in phase, so the power factor of the grid is in unity. However,
the inverter output current is slightly lagged from the inverter output voltage due to the
filter inductance between the inverter output stage and the grid; thus, mode of operation
II (Table 3) exists in the vicinity of the change in polarity of the current from positive
to negative. Comparison of the current waveforms shows that there is no difference
between the proposed switching method and the conventional switching method with
dead-time compensation.
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Figure 13. Experimental results in the case where the power factor is controlled at 1.0 using the
conventional switching method: (a) waveforms of the output voltage and current; (b) waveforms of
the gate signal.
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Figure 14. Experimental results in the case where the power factor is controlled at 1.0 using the
proposed switching scheme: (a) waveforms of the output voltage and current; (b) waveforms of the
gate signal.

Figures 15 and 16 show the experimental waveforms when the power factor of the
system was controlled to 0.9, whereas Figures 17 and 18 show the experimental waveforms
when the power factor was controlled to −0.9. The power factor was controlled through
d-axis current control. This shows that the proposed switching method implements well,
whether the current is lagging or leading. Therefore, when the proposed switching method
is adopted, the possibility of an arm-short is eliminated, and dead-time compensation is
not required.

Figure 19 is an enlarged waveform of the output current and gate signal when the
power factor is 1.0. However, the inverter output current is slightly lagged from the
output voltage due to the filter inductance between the grid and the inverter output stage.
Therefore, it can be observed that operation mode II (Table 3) exists at the instant wherein
the polarity of the current changes from positive to negative.

Figures 20 and 21 show the experimental results when the phase of the output current
is controlled to be the same as the phase of the grid voltage when the PV output voltage
is 750 V, the grid voltage is 340 V, and the inverter output power is 1 MW. In Figure 20,
the conventional switching method with dead-time compensation is used, whereas in
Figure 21, the proposed scheme is used. It can be observed that there are no differences
in the experimental result of the conventional switching method that requires dead-time
compensation and the proposed switching scheme. This proves that arm-short accidents
can be prevented with the proposed switching scheme, and dead-time compensation is no
longer required.
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Figure 15. Experimental results in the case where the power factor is controlled at 0.9 (lag) using the
conventional switching method: (a) waveforms of the output voltage and current; (b) waveforms of
the gate signal.
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Figure 17. Experimental results in the case where the power factor is controlled at −0.9 (lead) using 

the conventional switching method: (a) waveforms of the output voltage and current; (b) waveforms 

of the gate signal. 
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Figure 16. Experimental results in the case where the power factor is controlled at 0.9 (lag) using the
proposed switching scheme: (a) waveforms of the output voltage and current; (b) waveforms of the
gate signal.
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Figure 17. Experimental results in the case where the power factor is controlled at −0.9 (lead) using
the conventional switching method: (a) waveforms of the output voltage and current; (b) waveforms
of the gate signal.
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Figure 18. Experimental results in the case where the power factor is controlled at −0.9 (lead) using 
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Figure 19. Magnified waveforms of the current and gate signals in the case of a unity power factor 

at the grid: (a) waveforms of the conventional switching method; (b) waveforms of the proposed 

switching scheme. 
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Figure 18. Experimental results in the case where the power factor is controlled at −0.9 (lead) using
the proposed switching scheme: (a) waveforms of the output voltage and current; (b) waveforms of
the gate signal.
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Figure 19. Magnified waveforms of the current and gate signals in the case of a unity power factor
at the grid: (a) waveforms of the conventional switching method; (b) waveforms of the proposed
switching scheme.
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Figure 20. Experimental results of the conventional switching method: (a) current waveforms; (b) 
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Figure 21. Experimental results of the proposed switching scheme: (a) current waveforms; (b) THD 
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Figure 20. Experimental results of the conventional switching method: (a) current waveforms;
(b) THD of the current; (c) harmonic analysis.
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Figure 21. Experimental results of the proposed switching scheme: (a) current waveforms; (b) THD 
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Figure 21. Experimental results of the proposed switching scheme: (a) current waveforms; (b) THD
of the current; (c) harmonic analysis.

The THD measurement results indicate that the THD of the proposed switching
method is lesser than that of the conventional switching method with dead-time compen-
sation. This may be because the adopted dead-time compensation method is not perfect. If
dead-time compensation is perfect, there are no differences in the harmonic characteristics,
but this is nearly impossible.

Figure 22 shows the result of measuring the efficiency of the power, and it was
measured to be 98% at the 1 MW rated output. Since the proposed method only reduces the
gate drive power to half compared to the conventional method, the efficiency improvement
is not significant.
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5. Conclusions

A novel switching scheme that independently drives the upper- and lower-arm el-
ements of an inverter using the polarity information of the reference current instead of
the polarity information of the actual current was proposed in this study. The proposed
switching scheme does not require the inclusion of dead-time for every switching signal,
except at the instant at which the reference current polarity changes. Therefore, dead-time
compensation is not required with the proposed switching scheme. In addition, it prevents
arm-short circuit accidents and reduces the gate drive power to half. However, the pro-
posed switching scheme can be applied only to a current control system because it requires
the polarity information of the reference current. The switching procedure was detailed,
and an operation mode analysis of the proposed switching scheme was presented. An
experiment was performed to verify the effectiveness of the proposed switching scheme
by applying it to a multi-central type 1 MW grid-connected inverter system. The obtained
results established that with the proposed switching scheme, arm-short accidents can be
prevented, and dead-time compensation is no longer required.
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