
energies

Article

A Novel Deep Clustering Method and Indicator for Time Series
Soft Partitioning †

Alexandre Eid 1,2,* , Guy Clerc 1 , Badr Mansouri 2 and Stella Roux 3

����������
�������

Citation: Eid, A.; Clerc, G.;

Mansouri, B.; Roux, S. A Novel Deep

Clustering Method and Indicator for

Time Series Soft Partitioning. Energies

2021, 14, 5530. https://doi.org/

10.3390/en14175530

Academic Editor: Ahmed Abu-Siada

Received: 22 July 2021

Accepted: 30 August 2021

Published: 4 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 University Lyon, Université Claude Bernard Lyon 1, INSA Lyon, École Centrale de Lyon CNRS, Ampère,
UMR5005, 69622 Villeurbanne, France; guy.clerc@univ-lyon1.fr

2 Safran Electronics & Defense, 91344 Massy, France; badr.mansouri@safrangroup.com
3 Grenoble INP—Ensimag, UGA, 38400 Saint-Martin-d’Hères, France; stella.roux@grenoble-inp.org
* Correspondence: alexandre.eid@univ-lyon1.fr
† In Proceedings of the 2021 IEEE International Conference on Prognostics and Health Management (ICPHM

2021), Detroit, MI, USA, 7–9 June 2021.

Abstract: The aerospace industry develops prognosis and health management algorithms to ensure
better safety on board, particularly for in-flight controls where jamming is dreaded. For that, vibration
signals are monitored to predict future defect occurrences. However, time series are not labeled
according to severity level, and the user can only assess the system health from the data mining
procedure. To that extent, a clustering algorithm using a deep neural network core is developed. Time
series are encoded into pictures to be fed into an artificially trained neural network: U-NET. From the
segmented output, one-dimensional information on cluster frontiers is extracted and filtered without
any parameter selection. Then, a kernel density estimation finally transforms the signal into an
empirical density. Ultimately, a Gaussian mixture model extracts the latter independent components.
The method empowered us to reveal different degrees of severity faults in the studied data, with
their respective likelihoods, without prior knowledge. It was then compared to state-of-the-art
machine learning algorithms. However, internal clustering results evaluation for time series is an
open question. As the state-of-the-art indexes were not producing relevant results, a new indicator
was built to fulfill this task. We applied the whole method to an actuator consisting of an induction
machine linked to a ball screw. This study lays the groundwork for future training of diagnosis and
prognosis structures in the health management framework.

Keywords: semantic segmentation; time series; clustering; deep learning; kernel density estimation;
electromechanical actuator; data labeling; prognosis and health management; aeronautics

1. Introduction

According to the Maintenance Cost Technical Group (MCTG) from the International
Air Transport Association (IATA), USD 69 billion was spent on maintenance repair and
overhaul (MRO) in 2018 for a fleet count of 27,535 aircraft from 54 airlines. The aerospace
industry is shifting from hydraulic to electromechanical actuation, which could be prone to
seizure. Hence, it is mandatory to prevent actuator jamming at any cost during in-flight
control, where several ball-screws are used.

The Prognosis and Health Management (PHM) framework can be used to reduce
the amount of money spent on unscheduled MRO operations by developing methods to
forecast structural defects. Further, it can better anticipate this hazardous jamming event
by detecting any unusual behavior from either signal of vibration or electrical.

Nowadays, the PHM framework has moved from conventional-based health monitor-
ing (HM) to a deep learning approach. Therefore, the previously hand-designed features
extracted from raw data are automatically determined by the first layers of a deep neural
network (DNN). Additionally, in the extensive review of deep learning by [1], visualizing
time series behavior as pictures is an ongoing research topic. Time series dynamics can be

Energies 2021, 14, 5530. https://doi.org/10.3390/en14175530 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-1418-191X
https://orcid.org/0000-0001-7202-056X
https://doi.org/10.3390/en14175530
https://doi.org/10.3390/en14175530
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14175530
https://www.mdpi.com/journal/energies
http://www.mdpi.com/1996-1073/14/17/5530?type=check_update&version=3


Energies 2021, 14, 5530 2 of 19

extracted by the Gramiam Angular Field (GAF) representation of [2] or the Recurrence Plot
(RP) of [3]. These representations can be fed into a DNN for better classification of data. In
our work, a similar approach is used for visualizing time series behavior.

In [4], Jain defined clustering as “the unsupervised classification of patterns into
groups”. While this exploratory analysis technique is widely used in spatially organized
datasets, it is scarcely used in time series where data are organized by time. Hence, there
is a need to create a new method with its quality indicator. Several recent studies have
been presented, using clustering or pattern recognition to label data for further use in the
training of an artificial diagnosis structure. In [5], every deviation from the nominal state of
electrical machines is detected from a clustering algorithm. Plus, the operating conditions
can be inferred from the data group structure [6]. The association between a group and a
fault severity is clearly stated in [7]. Patterns found in this approach can be assumed to be
representative of several fault detection. This same hypothesis is followed here: a group of
data represents a certain fault severity. For the fuzzy clustering algorithm, Ref. [8] presents
another approach.

Further, finding a general indicator is challenging, as the clustering quality indexes
are specific to the fundamental hypothesis made in the research [9]. This article presents a
new method and a new quality indicator for clustering and quantifying the results for time
series data. First, the method will be outlined, and then it will be applied to time series.
The time series are vibration signals coming from an induction machine attached to a ball
screw. From it, many precursors of jamming defects are extracted. Finally, our method is
tested against several state-of-the-art algorithms in the discussion part, and all the results
are quantified with a newly created indicator.

2. Materials and Methods

The clustering method is applied to time series in a broad sense, i.e., indexed signals
by a timestamp. More generally, signals whose elements abide by a common precedence
relation are considered. Let T be such a signal. Practically, it represents the values of a
given sensor indexed by time, on a monitored system. n realizations of T for the system can
be gathered: {T1, T2, ..., Tn}. In order to assess system health, an ensemble of p statistical
and model-based parameters are extracted from each Ti∈J1;nK. Let Xj∈J1;pK ∈ Mn1(R) be
such parameter. Each one of them can be concatenated to form what is called a feature
matrix M ∈ Mnp(R).

In the following work, studied parameters are the chosen columns of the feature matrix

M. Let us choose for j ∈ J1; pK,Xj =
[

xj
1 xj

2 ... xj
n

]>
the jth descriptor.

A clustering method deals with data classification without prior knowledge. To do so,
it has to minimize an intra-class distance and maximize an outer-class one. Doing so, it
aggregates objects with similar properties and repels objects with heterogeneous ones. A
distance is used to compare its elements xi∈J1;nK between each other, allowing the extraction
of relevant clustering information from each Xj. It allows the extraction of groups with
similar characteristics. For that, the Euclidean distance presented in Equation (1) is chosen.

∀(x, y) ∈ R2, d(x, y) =
√

x2 − y2 (1)

By applying the distance to all the elements of Xi, a square distance matrix ∈ Mn(R)
can be obtained in Equation (2).

G
(
Xj
)
=


d(xj

1, xj
1) d(xj

1, xj
2) . . . d(xj

1, xj
n)

d(xj
2, xj

1) d(xj
2, xj

2) . . . d(xj
2, xj

n)
...

...
...

...
d(xj

n, xj
1) d(xj

n, xj
2) . . . d(xj

n, xj
n)

 (2)



Energies 2021, 14, 5530 3 of 19

The nearer the points are to each other, the lesser the value of the distance. Hence,
there are areas in the matrix filled with near zeros values if the original data present some
clustering behavior. The symmetry of the distance matrix enables groups of data to be
visually recognizable, and the Euclidean distance creates square shapes of near null values
along with the matrix diagonal. Let Gj∈J1;pK be the matrix associated with each Xj. Each
of them will be processed as one channel RGB image. At this stage, one fundamental
hypothesis is made:

Hypothesis 1. The studied system cannot regenerate itself.

Note that this hypothesis is commonly made in PHM, due in part to the nature of
the data available to the community. The famous C-MAPSS dataset from [10] and its
recent enhancement by [11] contain run-to-failure data from an aircraft engine, without
maintenance operations between several flight cycles. Furthermore, this hypothesis was
already clearly made in [12] (Hypothesis 12). Otherwise, one could face two configurations.
First, if the maintenance completely rejuvenates the system, the method still applies after
moving the origin of the time series before processing. However, if it is not the case, the
residual part of useful life gained after maintenance must be evaluated. The latter is out
of the scope of this work. Thus, with Hypothesis 1, every cluster found can be associated
with a fault severity degree. As the clustering is done on the time series, each new cluster
increases the severity value of the underlying default. The distance matrices defined in
Equation (2) are the stepping stone for extracting relevant clustering information. As
shown in Section 3, the processed data in our application are very noisy, and the tested
traditional signal processing techniques were not entirely effective in improving the signal
over noise ratio. Hence, the deep learning approach is chosen and applied with an image
processing technique. The matrices are considered to be images whose contrast will be
improved.

In this study, the computed Euclidean distances in the symmetric matrices make
square shapes appear on their diagonals. Detecting shapes in images can be done in
two steps:

• First, select a value for each class, and assign the latter values to every pixel in the
image. This process is called semantic segmentation. For example, the value 0 is
assigned to the wanted square shapes and 1 to the background.

• Secondly, build a structure to reveal the different square shapes and eliminate the noisy
background from images automatically, thus conserving only relevant information for
clustering. To that extent, deep neural structures are studied.

One drawback of such architectures is the need for a tremendous amount of training
data. In industry, and specifically in aeronautics, relevant training data are scarce and costly
to obtain. Consequently, Ref. [13] has developed an architecture, U-NET, for cell images
segmentation specialized in small data samples to alleviate this limitation. Note that the
dataset dimension should be compared with usual ensembles used for training state-of-the-
art neural network architectures. To give an order of magnitude, one could cite Microsoft’s
COCO dataset [14] and its 3× 106 images. The network U-NET is comprised of two main
parts, as seen in Figure 1. The left part of the configuration compresses input and extracts
deep features from it. The most profound features of all are processed through a bottleneck
set of layers. Its result is fed through the bottom of the right part to be decompressed.
Finally, depending on the number of classes to be segmented, either a sigmoid or a softmax
layer is used to transform each processed input pixel value into the likelihood of belonging
to a class. Each block has two convolution layers for the descending part, associated with a
ReLU activation ending with MaxPooling. For the ascending part, the symmetrical structure
is used made of ConvTranspose2d, an inverse convolution operation to up-sample its input,
as developed in Pytorch [15].



Energies 2021, 14, 5530 4 of 19

Figure 1. U-NET U-shaped architecture represented using algorithms from [16].

U-NET’s goal is to segment every distance matrix Gj∈J1;pK. As stated earlier, the
network has to learn to recognize square patterns alongside each matrix diagonal. Conse-
quently, it has to be trained to do so.

Like many industrial environments, aeronautics lacks an appropriate amount of high
sampled training data. An artificial dataset is generated to alleviate this problem. Four
types of training patterns are produced, all sharing the same underlying structure: a set of
squares with black ones along the diagonal.

The images from Figure 2 are randomly created by calculating the distance matrices
of constant continuous piecewise functions (CCPF), linear continuous piecewise functions
(LCPF), and adding Gaussian noise. The first row of Figure 2 represents input training
data, whereas the second row represents its associated mask. At the end of each forward
pass, the neural network compares its output to the mask and backpropagates the gradient
accordingly. The best training procedure is empirically determined. First, U-NET is trained
with clean square images (CCPF). Once the loss function is converged, the training of
U-NET is reinforced by fuzzy data (LCPF). The operation is then repeated, and Gaussian
noise is added to each input to further increase the neural network generalization capacity.
Finally, a new dataset is generated with a field-specific bias to help the convergence of the
training to the study goal. This bias comes from another fundamental hypothesis made in
this work:

Hypothesis 2. The aging process is a compounding effect and can only accelerate through time.



Energies 2021, 14, 5530 5 of 19

Figure 2. Distance matrices represented as images with several configurations, used for U-NET training with their associated
ground truth.

Similarly to Hypothesis 1, Hypothesis 2 is commonly made in literature. In [11],
several degradation models are applied to run-to-failure data. The abnormal one tends to
represent the behavior of several known damage propagation models, e.g., Arrhenius or
Coffin–Manson laws. Consequently, the last batch of training data is generated with one
constraint: squares alongside the matrix diagonal must have decreasing dimensions. The
latter part of the training reinforcement procedure is subsequently done.

Once U-NET is trained, it can produce segmented images from distance matrices.
The segmented output is a binary image, as all of its pixels take either the value 0 or 1.
However, as shown in Section 3, the neural network is still very noisy. Therefore, further
signal processing procedures should be applied to extract a piece of relevant clustering
information from it. The first attempt at data clustering can be directly extracted by looping
through the output matrices anti-diagonally. It is a first candidate of a cluster frontier signal.
The main idea is to recognize the area in each picture, where square shapes terminate.
Figure 3 visually illustrates the algorithm used to extract a first frontier cluster candidate.
The “anti-diagonal” term used previously refers to the direction of each red arrow.

Figure 3. Visual explanation of cluster frontier extraction—phase 1.

As detailed in Algorithm 1, the matrix indices are fetched and stored into a structure.
Note that looping through the matrix in such a way produces an object of size 2n− 1 bags of
items. Indeed, being of size n, the matrix upper left part is covered in n iterations, including
the maximum anti-diagonal size. It then remains at n− 1 iterations to get through the
lower right part of the matrix. The mean is calculated for each ensemble of matrix values
as stated in line 16, thus creating a resulting signal of size 2n− 1.



Energies 2021, 14, 5530 6 of 19

Algorithm 1 Cluster frontier extraction—phase 1

1: function GET INDICES OF MATRIX(n) . n is matrix size
2: declare indexArray of [1; 2n− 1] arrays . Initialize array of size 2n− 1
3: for i← 1 to n do . get indices for upper left part of the matrix
4: for j← 1 to i do
5: indexArray[i].append([i− j + 1; j])
6: for i← n− 1 to 1 do . get indices for other matrix part
7: for j← i to 1 do
8: indexArray[2n− i].append([j + 1; i− j + 2])
9: return indexArray

10:
11: function CALCULATE INTERMEDIATE SIGNAL(M) . Matrix M to process
12: declare resArray of [1; 2n− 1] floats
13: n← size(M) . M is a square matrix
14: indexArray← GET INDICES OF MATRIX(n)
15: for i← 1 to 2n− 1 do
16: resArray[i]←mean(M[indexArray[i]])
17: return resArray

The mean is chosen here because of the output pixel values. At the neural network
output, pixels belonging to square shapes are encoded to 0, whereas pixels depicted in the
image background are encoded to 1. By using the mean, a cluster frontier appears when
its value is shifted toward unity. On the opposite, the mean tending toward a null value
indicates the inside of a cluster.

The first phase of the cluster frontier extraction algorithm produces a signal with
values lying between 0 and 1. The ones representing the potential cluster frontiers, local
extrema, have to be found to detect and further refine the clustering boundaries. Each
peak in the created function represents a likely square contour in the segmented image.
However, standard filtering methods require the non-trivial setting of parameters, such
as the sliding window. The latter represents the number of points to which the filtering
algorithm is applied simultaneously. Hence, it controls the sensitivity of the algorithm to
local and global dynamics. An iterative procedure is created to avoid such shortcomings.
It consists of looping through the signal to be filtered with an increased window size for
each loop. Figure 4 represents the algorithm visually.

The idea of the procedure is to split the input signal into several sets of values of
increasing size throughout the loop. The minimum window is of size two, and it reaches
a size n at the last iteration to cover the signal as a whole. Since cluster boundaries are
detected for values approaching 1, the maximum is taken on each local window. An array
of size 2n− 1 is initialized to 0 before the loop beginning to store each maximum found at
its respective index in the input signal. Every time a maximum is locally found, it is added
to the null array. Consequently, during initial iterations, the algorithm amplifies the local
maxima, whereas in the end, it tends to amplify the more global ones. For further details
on how to realize this operation, Algorithm 2 is given.



Energies 2021, 14, 5530 7 of 19

Figure 4. Visual explanation of cluster frontier extraction—phase 2: batch peak detection.

Algorithm 2 Cluster frontier extraction—phase 2: Batch Peak Detection

1: function BATCH PEAK DETECTION(signalArray)
2: n← size(signalArray)
3: declare resArray of n floats
4: for i← 1 to n do . fill arrays with zeros and index for initialization
5: resArray[i]← 0
6: declare noWindowList of n integers
7: declare remainingSizeList of n integers
8: for i← 2 to n do . create array with all the windows and remaining sizes
9: noWindowList[i]← i

10: remainingSizeList[i]← n % i . % represents the modulus operator
11: for i← 0 to n− 1 do
12: noWindow← n // i
13: remainElmt← remainingSizeList[i]
14: if remainElmt 6= 0 then . suppose that language allows array broadcasting
15: tmpArray← signalArray[: −remainElmt].reshape(noWindow, i)
16: else
17: tmpArray← signalArray.reshape(noWindow, i)
18: declare indexStatValueList of unknown size of objects
19: declare indexMaxArray of unknown size of floats
20: for j← 0 to noWindow do . get an array
21: indexMaxArray← arg(tmpArray[i, :] == max(tmpArray[i, :]))
22: for k← 0 to size(indexMaxArray) do
23: indexStatValueList.append([j, indexMaxArray[k]) . track maxima and

their corresponding indexes (like chained list)
24: declare idxMaskArray of size m× l integers
25: for j← 1 to m× l do . local initialization
26: idxMaskArray[j]← 0
27: idxMaskArray.reshape(m, l)
28: for k, p← [1;noWindow]× [1; i] do . create mask
29: idxMaskArray[k, p]← 1
30: apply idxMaskArray to tmpArray
31: unfold tmpArray of size (noWindow, i) to (1, n)
32: for j← [1; m] do . Place maximum value at its corresponding index
33: resArray+ = tmpArray

return resArray



Energies 2021, 14, 5530 8 of 19

Finally, since the resulting array is still of size 2n− 1, the abscissa scale of the signal
is divided by a factor of two. This compensates the dilation generated by the method
explained in Algorithm 1. It is assumed that the uncertainty of two cycles is tolerated for the
health monitoring framework. The resulting signals are noted as f j∈J1;pK ∈ Mn1(R). Note
that the combination of Algorithms 1 and 2 does not require the choice of any threshold or
hyperparameter value.

At this stage of the method, the p time series are transformed into p distance matrices
Gj, and the neural network has segmented each matrix. From each output picture, p first
candidates to cluster boundaries signal are obtained, and every one of them is filtered
through the batch peak detection Algorithm 2. Hence, p new time series Fj are created.
These could be concatenated into a matrix F as represented in Equation (3).

F =


f11 f12 f13 · · · f1p
f21 f22 f23 · · · f2p
...

...
...

...
...

fn1 fn2 fn3 · · · fnp

 ∈ Mnp(R) (3)

The developed method assumes that each descriptor contributes to the clustering
result. Therefore, this information has to be fused to obtain a global final frontier signal.

The principle of kernel density estimation (KDE) [17] is used to do so. By considering
each column of F to realize a random process, the KDE can be applied to the entire
matrix. Consequently, the initial p descriptors are themselves considered random variables.
Once these hypotheses are made, the distribution of each f.j provides insight into their
respective theoretical probability density. With assumptions made about kernel functions,
as presented by [18] (Theorem 6.7), the KDE constructs an empirical density that converges
to its theoretical result. By considering the p temporal segments as realizations of several
independent and identically distributed random processes, it is coherent to sum all columns
of F defined in Equation (3) to obtain a vector as follows:

(yi)1≤i≤n =
p

∑
j=1

fij (4)

From [18] (Chapter 6, Equation (6.1)), the empirical density can be expressed in
Equation (5).

p̂(x) =
1

nh

n

∑
i=1

K
(

x− yi
h

)
(5)

K is a kernel function in Equation (5), applied to the centered variable of the sample
time series and scaled by a factor h. Even if the Gaussian kernel defined in Equation (6) is
not a computationally optimized one, it is chosen for its theoretical properties.

K(x) =
1√
2π

exp−
1
2 x2

(6)

The best property in this context is the ability to chose a simple bandwidth
parameter from the state of the art. As detailed in [19] (Equation (3.31)), the band-
width h of a Gaussian kernel can be expressed as h = 0.9An−1/5, with the constant
A = min(σ, inter-quartile range/1.34).

Finally, gathering all the steps in this Section 2, a function estimating the empirical
likelihood of cluster frontiers is created for the studied dataset.

3. Results

In this second part, the clustering method developed in Section 2 is applied to monitor-
ing vibration signals generated by an induction motor driving a ball screw. After presenting



Energies 2021, 14, 5530 9 of 19

the dataset used, several signals are selected to test the previous theoretical part. Finally,
our method is compared to other state-of-the-art clustering methods.

3.1. Dataset and Studied System

The dataset comes from four different electromechanical actuators, each made of an
asynchronous electrical machine and a ball screw. A controlled test bench is constructed
to monitor the vibration behavior of each actuator. The goal of the procedure is to detect
any precursor of a jamming defect in each ball screw of the different actuators. That is
why an accelerometer is placed on every monitored structure, as shown in Figure 5. This
configuration allows the collection of vibration signals coming from the longitudinal axis
of the actuation device.

Figure 5. Schematics of the instrumented actuator bench.

Every actuator is stressed through 1130 cycles, specially designed to emulate a realistic
environment. With this protocol, each one reaches the end of life at the last cycle. The
signal measured is sampled at 1 kHz, standardized, and normalized between 0 and 1.

3.2. Time Series Encoding

As stated in Section 2, p statistical and model-based descriptors are computed from
the raw data measured on the monitored actuator. Every descriptor Xj has 1130 samples.
Among all p features, four are chosen. They are referred to as {X1,X2,X3,X4}. Each is
standardized and normalized between 0 and 1. They are represented in Figure 6. The four
descriptors are selected to evaluate the method on signals that exhibit various dynamics
but are still coherent for extracting a health monitoring information extraction. Obviously,
from Figure 6, the features are rather noisy and not strictly monotonic. However, a general
ascending or descending trend is recognizable.

Figure 6. {X1,X2,X3,X4} collected on our actuator.

Using the Euclidean distance, four distance matrices {G1,G2,G3,G4} are calculated
from the previous four statistical features. They are presented in Figure 7.



Energies 2021, 14, 5530 10 of 19

Figure 7. Distance matrices {G1,G2,G3,G4} extracted from {X1,X2,X3,X4}.

In Figure 7, each pixel corresponds to one value of the distance matrix. Note that
pictures are colorized to better highlight symmetries, but they are in grayscale with original
values between 0 and 1. Here, the darker the pixel, the lower the represented distance.
Therefore, as stated in Section 2, potential clusters are represented as dark symmetrical
shapes along with each picture diagonal. Indeed, those are the areas where the distance
is minimal between points. Outside of it, the distance increases; hence a potential cluster
limit can be found. Moreover, horizontal and vertical stripes in the images come from the
noise of input data. To further illustrate the concept, at least two probable clusters in signal
four of Figure 7 can be seen.

3.3. Semantic Segmentation

U-NET is trained with an artificial dataset containing 3000 images. A glimpse of
its contents can be seen in Figure 2. The data are randomly split for the learning phase
and shuffled into 2250 training pictures and 750 testing ones. As presented in Section 2,
four types of artificial signals are equally present in the data set: signals with successive
constant stages, signals with successive linear stages, and an adaptation of those signals
with a white noise of ten percent. A study is carried out to determine the best learning
hyper-parameters. For the learning rate, the adaptive scheduler ReduceLROnPlateau from
package optim.lr_scheduler [15] with an initial value of 1× 10−4 is selected. After monitoring
the learning phase of U-NET with tensorboard [20], 200 epochs are sufficient to reach a stable
accuracy. Because of a limited GPU memory bandwidth, a batch size, and a hyperparameter
of 4 images for training is the maximum allowed. The input is an image of size 1130× 1130;
consequently, it rapidly saturates the VRAM during training. Finally the loss function used
is BCEWithLogitsLoss from the torch.nn package [15]. Note that the learning phase is done
only once.

The results of Figure 8 are obtained after 38 h of training on HPC resources with a
bi-Intel Xeon Silver 4215R, a bi-NVIDIA Quadro RTX 6000 with 24 GB of GDDR6 each and
192 GB of RAM. U-NET outputs binary images. Purple corresponds to null values and
yellow corresponds to ones.

Figure 8. Segmented {G1,G2,G3,G4} after U-NET inference phase.



Energies 2021, 14, 5530 11 of 19

From Figure 8, it is clear that U-NET’s training phase can be improved. Despite the
noisy results, the latter signal processing algorithms are designed to alleviate this problem.

3.4. Cluster Frontier Extraction—First Phase

By applying Algorithm 2 of Section 2 to each Gi of {G1,G2,G3,G4}, the signals in
Figure 9 are extracted.

Figure 9. Mean of the values (second row) of the segmented distance matrices (first row) on each anti-diagonal.

The segmented images being of size 1130× 1130, the temporary frontier signal is of
size 2× 1130− 1, thus of size 2259. As stated in Section 2, the local maxima of these signals
have to be found. If an anti-diagonal contains only yellow pixels, the signal will reach 1.

3.5. Cluster Frontier Extraction—Second Phase

The cluster frontier extraction, the batch peak detection Algorithm 2 of Section 2 is
applied to each signal obtained at the previous phase. This current phase consists of local
magnifying maxima in the signal to obtain the first discrete potential cluster boundaries.
The dimension of the batch peak detection results is then shrunk by a factor of 2 to obtain the
final signal of Figure 10. It now contains only 1130 values: one for each actuator cycle.

Figure 10. Frontier extraction (second row) from signal computed in Section 3.4 (first row) on each anti-diagonal.



Energies 2021, 14, 5530 12 of 19

From Figure 10, cluster frontiers are mainly concentrated after the 750th cycle. This be-
havior is consistent with motifs from Figure 7, where the discontinuity in signal essentially
occurs at the bottom right of each image.

3.6. Cluster Frontier Extraction—Third Phase

In order to obtain a continuous signal out of the frontier extraction from phase two,
a Gaussian kernel density estimation of scipy.stats.gaussian_kde with Silverman [19] band-
width method is used. Then, the four frontier extraction signals from Figure 10 are summed,
and a Gaussian kernel density estimation on this global frontier extraction is computed.
The Figure 11 is obtained.

Figure 11. Gaussian kernel density estimation computed with the frontier extraction results of all
four statistical parameters.

Each local maximum of the density function is likely to be a cluster frontier. Hence,
two cluster frontiers are detected in Figure 11: a first one at cycle 856, and a second at cycle
1029. It means that the data are likely to have three clusters. The first cluster is from cycles
0 to 855, which corresponds to the first degree of severity where the system is healthy. The
second cluster, from cycle 856 to cycle 1028, is where the system is in the second stage of
fault severity. The last cluster, starting at cycle 1029, is the third and worst stage of fault
severity.

The two independent components of the density estimation of Figure 11 are computed
in the first column of Figure 12. The mean and the 95% respective confidence interval of
each independent component are represented in second column of Figure 12.

Figure 12. Cluster frontiers with 95% confidence interval.

3.7. Clustering Results

In order to represent the clustering results on the four descriptors, each local maximum
of the density function is considered to be a cluster frontier. Figure 13 is obtained.



Energies 2021, 14, 5530 13 of 19

Figure 13. Clustering results of initial signals from Figure 6.

In Figure 13, each cluster has a different color corresponding to the health stage of the
actuator. The first cluster is green, the second cluster is orange, and the last cluster is red.
One can notice that the clusters obtained are coherent with the shapes of the signals.

4. Discussion

In this subsection, the clustering method is compared to other state-of-the-art algo-
rithms. The latter are summarized in Table 1. They are taken from the Python library
scikit-learn [21] except Kmeans, which comes from the tslearn [22] package.

Table 1. Clustering methods considered in our study.

Clustering Method Category Metric Function Name Parameters

metric = ’euclidean’
K-Means Partitioned

metric = ’dtw’
KMeans

max_iter = 200
n_jobs = −1

init = ’k-means++’
n_init = 10

K-medoids Paritional metric = ’euclidean’ KMedoids max_iter = 200
init = ’k-medoids++’

Mean Shift Partitional / MeanShift max_iter = 200
n_jobs = −1

metric = ’euclidean’
OPTICS Density-based

metric = ’minkowski’
OPTICS n_jobs = −1

min_samples = 3

metric = ’euclidean’
Agglomerative Hierarchical

metric = ’manhattan’
Agglomerative Clustering min_cluster_size = 50

cov = ’spherical’

cov = ’diag’

cov = ’full’
Gaussian Mixture Model Model-based

cov = ’tied’

GaussianMixture max_iter = 1000
n_init = 100



Energies 2021, 14, 5530 14 of 19

These methods were selected according to two criteria. The first is the ease of im-
plementation to our benchmark scope, as they are present in standard machine learning
libraries in Python. The second is the representativeness of the diversity of the clustering
algorithms. Indeed, according to [23] (Figure 6), they can be separated into six different
approaches. At least three of them have been studied: partitional, hierarchical, and model-
based. Each method in Table 1 was fed a data structure with five columns and 1130 lines.
Four of the columns were the concatenation of Xi∈J1;4K, and the fifth one was an index array
ranging from 0 to 1129 representing time. The same Xi of Figure 6 were used, allowing
each algorithm to be aware of the time precedence relation between points. Each clustering
method fits the data and then predicts the clustering labels. The labels are then stored in a
matrix to represent the clustering results.

Since the clustering methods use the four Xi to produce one clustering result, the
clustering outcome can only be represented for one signal. Figure 14 plots the clustered first
signal. The number of groups in data were chosen according to a new quality indicator.

Figure 14. Clustering results with state-of-the-art algorithms for X1.

In Figure 14, the majority of the methods have detected two clusters, except for
MeanShift and our clustering method UNET clustering. One detects four groups, whereas
ours provides three groups in the data, as seen previously in Figure 13. Regarding the
shape of signal X1, three clusters seem to be the optimal number embedded in the data.

To evaluate the accuracy of our method regarding the state of the art, a new clustering
indicator is created. Indeed, whereas indicators for spatial clustering are well known,
specific existing indicators to infer clustering quality for internal time series clustering are
scarce. The S_Dbw [24] can be cited to measure the compactness and the good separation
of clusters or the exhaustive review of [23] on time series clustering. Additionally, recently,
an invariance guided criterion was created by [25]. Nevertheless, these indexes can be
separated into two main groups: external and the internal ones [26]. Since class labels for
our data are unknown, one must count on information contained in the studied data as
stated in [26]. Eleven widely used indicators are compared. In this work, Silhouette [27],
the Davies–Bouldin separation measure [28], the Calinski Harabasz [29] indicator, the
conjunction of an inertia and temporal consistency measure from [12], and finally the
SD [30] and S_dbw [24] validity indexes are tested. None of them could manage to select
the right clustering result in Figure 14. As those are not fitted to the task, the new measure
should quantify relevant information according to the physics of the system. On the first
hand, as stated in fundamental Hypothesis 1, the studied system cannot be repaired during
its life cycle. Once the severity degree has increased, i.e., once a cluster frontier is crossed,
the system cannot go back to a previous, healthier stage. In other words, each class must
be time continuous. Temporal jumps in clusters are forbidden. Consequently, the indicator
must penalize any temporal inconsistency. At the second end, one can see in Figure 14



Energies 2021, 14, 5530 15 of 19

that good clustering is made when two consecutive groups do not share the same density
properties. This shape information also has to be captured.

Equation (7) presents the newly developed quality indicator for internal clustering of
time series.

χ =
1
m

m−1

∑
j=0

∣∣aj+1 − aj
∣∣, with (7)

aj =
σj
(
max yj −min yj

)
1

nj − 1

nj−1

∑
k=0
k∈J

tk+1 − tk

(8)

where m is the number of clusters found in the data, σj is the standard deviation of the jth
cluster, max yj −min yj is the range of the jth cluster, yj is its elements, tk is its respective
indexes, and nj is its number of points. Note that J is the ensemble of the point indexes in
cluster j. While the denominator of aj measures the temporal consistency, the numerator
measures the shape of the clusters.

Finally, the quality index χ deals with the variation between two consecutive groups
and not aj in itself. Note that the denominator in aj can never be null for time series. Indeed,
Figure 14 shows, for the new algorithm, that the first and third data partitions exhibit
similar dynamics. However, since the system cannot rejuvenate itself, those should be
considered two different groups. To recognize the better partitioning result, the value I
defined in Equation (7) has to be maximized.

The ideal number of clusters in Figure 14 is selected according to the results of the
Table 2. Note that the new clustering algorithm obtains the global maximum of the ar-
ray. For ease of reading, the maximum obtained for each algorithm is highlighted in
green, whereas the global maximum of the Table 2 is highlighted in dark green. Two
main trends can be extracted from these results. There are some indicator values in the
neighborhood of the global maximum 0.083: KMeans_euclidean, KMeans_dtw, KMedoids,
Agglomerative_euclidean, Agglomerative_manhattan and GMM_spherical. This result is co-
herent with the presented data, as these algorithms tend to cluster data similarly; thus, all
the partitioning algorithms have very similar indicator values. Moreover it seems that the
chosen distance does not have a significant impact on the results.

Table 2. Global indicator χ value depending on the clustering method and the number of clusters.

Number of Clusters

2 3 4 5 6 7 8
KMeans_euclidean 0.074 0.051 0.034 0.025 0.026 0.035 0.032

KMeans_dtw 0.074 0.051 0.036 0.025 0.026 0.035 0.031
MeanShift 0.040
KMedoids 0.074 0.051 0.034 0.026 0.027 0.037 0.032

OPTICS_euclidean 0.008
OPTICS_minkowski 0.008

Agglomerative_euclidean 0.073 0.050 0.024 0.020 0.018 0.019 0.017
Agglomerative_manhattan 0.074 0.051 0.038 0.032 0.027 0.030 0.027

GMM_spherical 0.074 0.051 0.034 0.025 0.026 0.034 0.032
GMM_tied 0.068 0.021 0.025 0.021 0.012 0.011 0.009
GMM_diag 0.041 0.027 0.027 0.023 0.013 0.011 0.011
GMM_full 0.049 0.034 0.026 0.023 0.028 0.023 0.021

UNET_clustering 0.083

To better grasp the idea of the indicator, two tables are separately given. Table 3
represents the contribution of the shape measure to χ, and Table 4 represents the temporal
consistency one. Practically, Table 3 contains the values of σj

(
max yj −min yj

)
, and Table 4



Energies 2021, 14, 5530 16 of 19

contains the values of 1
nj−1

nj−1

∑
k=0

tk+1 − tk for each clustering results. From that, one can

see that the shape part of the indicator is coherent with the results found in Figure 14, as
different clustering behavior obtains different values. From Equation (7), one could infer
that there is no temporal inconsistency. This is proved by the unit value of the denominator.
The problem with such methods as GMM_tied, GMM_diag, GMM_ f ull, OPTICS_euclidean
and OPTICS_minkowski is that their clusters are not time continuous. Hence, the value in
Table 4 is greater than one. Thus, the numerator of aj is divided by an amount greater than
one, which minimizes its value. This penalization is then propagated in the total calculus
of χ.

Table 3. Shape score σj

(
max yj −min yj

)
depending on the clustering method and the number of

clusters.

Number of Clusters

2 3 4 5 6 7 8
KMeans_euclidean 0.074 0.051 0.034 0.025 0.026 0.035 0.032

KMeans_dtw 0.074 0.051 0.036 0.025 0.026 0.035 0.031
MeanShift 0.040
KMedoids 0.074 0.051 0.034 0.026 0.027 0.037 0.032

OPTICS_euclidean 0.055
OPTICS_minkowski 0.055

Agglomerative_euclidean 0.073 0.050 0.024 0.020 0.018 0.019 0.017
Agglomerative_manhattan 0.074 0.051 0.038 0.032 0.027 0.030 0.027

GMM_spherical 0.074 0.051 0.034 0.025 0.026 0.034 0.032
GMM_tied 0.072 0.037 0.028 0.023 0.018 0.016 0.015
GMM_diag 0.061 0.042 0.030 0.026 0.039 0.035 0.031
GMM_full 0.068 0.036 0.028 0.025 0.040 0.037 0.033

UNET_clustering 0.083

The same formatting used in Table 2. Shades of green are used to highlight the minimal
value for each algorithm and the global minima of the table.

Table 4. Temporal consistency score depending on the clustering method and the number of clusters.

Number of clusters

2 3 4 5 6 7 8
KMeans_euclidean 1.000 1.000 1.000 1.000 1.000 1.000 1.000

KMeans_dtw 1.000 1.000 1.000 1.000 1.000 1.000 1.000
MeanShift 1.000
KMedoids 1.000 1.000 1.000 1.000 1.000 1.000 1.000

OPTICS_euclidean 2.785
OPTICS_minkowski 2.785

Agglomerative_euclidean 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Agglomerative_manhattan 1.000 1.000 1.000 1.000 1.000 1.000 1.000

GMM_spherical 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GMM_tied 1.075 1.310 1.197 1.268 1.919 1.804 1.789
GMM_diag 1.259 1.758 1.903 2.503 2.700 3.002 2.980
GMM_full 1.247 1.472 1.633 1.746 1.609 1.889 1.761

UNET_clustering 1.000

In Table 4, algorithms that do not produce any temporal inconsistencies have a minimal
value of one. Dark green is used to highlight the result of the developed method. For other
algorithms, shades of orange to red are used to highlight positive variation.



Energies 2021, 14, 5530 17 of 19

5. Conclusions

Prior work in time series partitioning for condition monitoring in aircraft systems did
not consider the temporal dimension of data, as illustrated by [7]. It used K-Nearest Neigh-
bors or the Support Vector Machine between others to cluster data without considering its
time precedence relation. The work of [12] is the most recent attempt, to our knowledge,
to partition time series while using and keeping time information. However, the latter
required the user to have prior knowledge of the data. By doing so, the risk is for the user
to add their own biases into the procedure. Moreover, as developed in [9], it is challenging
to find a cluster indicator that could assess the clustering quality algorithm, as it is highly
dependent on the hypotheses made in the research and the dataset used.

This study developed a new clustering method for time series with a deep neural
network core. The whole procedure consists of three main steps. First, temporal data are
encoded into pictures to be fed to the DNN. Then, the segmented images are processed with
consistent signal processing algorithms. Finally, the information from all the descriptors is
fused to obtain the general data partitioning profile.

The whole algorithm empowers us to find cluster frontiers with a likelihood measure
from a set of time series. It was designed specifically to consider the precedence relation
of elements and to avoid temporal consistency incoherence. It was applied to an indus-
trial dataset to assess its relevance. Note that the whole algorithm could be used with
multivariate time series, as the nature of the data is irrelevant to the results. Hence, the
automatic partitioning of time series without prior knowledge in a prognosis and health
monitoring context is possible. Although it requires more significant computing resources
than its counterpart to train the deep structure, this new approach is a real improvement
on traditional techniques since the neural network and the signal processing operations
following the image segmentation can cluster very noisy data, and the learning phase is
done only once. The better the deep structure training is, the better the clustering results
will be.

Furthermore, to quantify the results of this new method against state-of-the-art ma-
chine learning, a new indicator was created, alleviating the downsides of the usual in-
dicators for clustering. Whereas the state-of-the-art focuses on measuring the relative
shapes of the groups made by the clustering algorithm, ours can evaluate two properties:
the temporal consistency of clustering and the form of the cluster. We designed it with
our physical assumptions in mind; hence, it exhibits better results than its state-of-the-art
counterpart. A variant from the usual indicators can be found in [25], where the clustering
result invariance is quantified.

Finally, this whole method is a stepping stone to a more broad framework, aiming to
determine the remaining useful life of actuators in a PHM framework. Future work should
adapt this method without considering Hypothesis 2 or Hypothesis 1 to use the process in
a broader framework.

Author Contributions: Conceptualization, A.E., G.C. and B.M.; methodology, A.E., G.C. and B.M.;
software, A.E. and S.R.; validation, A.E.; formal analysis, A.E.; investigation, A.E.; resources, B.M.;
data curation, A.E.; writing—original draft preparation, A.E., G.C., B.M. and S.R.; writing—review
and editing, A.E., G.C. and B.M.; visualization, A.E. and S.R.; supervision, G.C. and B.M.; project
administration, G.C. and B.M.; funding acquisition, B.M. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the French agency for research and technologye (ANRT)
through the CIFRE grant 2018/0649, by Safran Electronics & Defense (Safran Group) and by labora-
toire Ampère CNRS—UMR5005 own funds.

Data Availability Statement: 3rd Party Data. Restrictions apply to the availability of these data.
Data was obtained from Safran Electronics & Defense and are not publicly available.

Acknowledgments: This work was supported by the PMCS2I from École Centrale de Lyon, France.

Conflicts of Interest: The authors declare no conflict of interest.



Energies 2021, 14, 5530 18 of 19

Abbreviations
The following abbreviations are used in this manuscript:

CCPF Constant Continuous Piecewise Function
DL Deep Learning
DNN Deep Neural Network
GDDR Graphics Double Data Rate
GPU Graphics Processing Unit
HPC High Performance Computing
IATA International Air Transport Association
MCTG Maintenance Cost Technical Group
MRO Maintenance Repair and Overhaul
KDE Kernel Density Estimation
LCPF Linear Continuous Piecewise Function
PHM Prognosis and Health Management
RAM Random Access Memory
VRAM Video Random Access Memory

References
1. Fink, O.; Wang, Q.; Svensén, M.; Dersin, P.; Lee, W.J.; Ducoffe, M. Potential, challenges and future directions for deep learning in

prognostics and health management applications. Eng. Appl. Artif. Intell. 2020, 92, 103678. [CrossRef]
2. Wang, Z.; Oates, T. Spatially Encoding Temporal Correlations to Classify Temporal Data Using Convolutional Neural Networks.

arXiv 2015, arXiv:1509.07481.
3. Hatami, N.; Gavet, Y.; Debayle, J. Classification of Time-Series Images Using Deep Convolutional Neural Networks. In

Proceedings of the Tenth International Conference on Machine Vision (ICMV 2017) 2018, Rome, Italy, 8–12 November 2018;
Volume 10696. [CrossRef]

4. Jain, A.K.; Murty, M.N.; Flynn, P.J. Data clustering: A review. ACM Comput. Surv. 1999, 31, 264–323. [CrossRef]
5. Hendrickx, K.; Meert, W.; Mollet, Y.; Gyselinck, J.; Cornelis, B.; Gryllias, K.; Davis, J. A general anomaly detection framework for

fleet-based condition monitoring of machines. Mech. Syst. Signal Process. 2020, 139, 106585. [CrossRef]
6. Perafán-lópez, J.C.; Sierra-pérez, J. An unsupervised pattern recognition methodology based on factor analysis and a genetic-

DBSCAN algorithm to infer operational conditions from strain measurements in structural applications. Chin. J. Aeronaut. 2020,
34, 165–181. [CrossRef]

7. Zaporowska, A.; Liu, H.; Zakwan, S.; Yifan, Z. A clustering approach to detect faults with multi-component degradations in
aircraft fuel systems. IFAC-PapersOnLine 2020, 53, 113–118. [CrossRef]

8. Chen, J.; Chen, S.; Liu, Z.; Luo, C.; Jing, Z.; Xu, Q. Health Monitoring of Landing Gear Retraction/Extension System Based on
Optimized Fuzzy C-Means Algorithm. IEEE Access 2020, 8, 219611–219621. [CrossRef]

9. Javed, A.; Lee, B.S.; Rizzo, D.M. A benchmark study on time series clustering. Mach. Learn. Appl. 2020, 1, 100001. [CrossRef]
10. Saxena, A.; Goebel, K. Turbofan Engine Degradation Simulation Data Set; NASA Ames Prognostics Data Repository: Washington,

DC, USA, 2008.
11. Arias Chao, M.; Kulkarni, C.; Goebel, K.; Fink, O. Aircraft Engine Run-to-Failure Dataset under Real Flight Conditions for

Prognostics and Diagnostics. Data 2021, 6, 5. [CrossRef]
12. Breuneval, R. Surveillance de L’état de Santé des Actionneurs Électromécaniques: Application à L’aéronautique. Ph.D. Thesis,

Université de Lyon, Lyon, France, 2017.
13. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015,

arXiv:1505.04597.
14. Lin, T.Y.; Maire, M.; Belongie, S.; Bourdev, L.; Girshick, R.; Hays, J.; Perona, P.; Ramanan, D.; Zitnick, C.L.; Dollár, P. Microsoft

COCO: Common Objects in Context. arXiv 2015, arXiv:1405.0312.
15. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:

An imperative style, high-performance deep learning library. In Advances in Neural Information Processing Systems 32; Wallach, H.,
Larochelle, H., Beygelzimer, A., dAlché Buc, F., Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2019;
pp. 8024–8035.

16. Iqbal, H. HarisIqbal88/PlotNeuralNet; Programmers: _:n2500 Original-Date: 2018-07-24T16:51:34Z. 2020. Available online:
https://doi.org/10.5281/zenodo.2526396 (accessed on 18 September 2020).

17. Parzen, E. On Estimation of a Probability Density Function and Mode. Ann. Math. Stat. 1962, 33, 1065–1076. [CrossRef]
18. Scott, D.W. Multivariate Density Estimation: Theory, Practice, and Visualization, 2nd ed.; Wiley Series in Probability and Statistics;

John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015. [CrossRef]
19. Silverman, B.W. Density Estimation for Statistics and Data Analysis; CRC Press: Boca Raton, FL, USA, 1986.
20. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:

Large-scale machine learning on heterogeneous systems. arXiv 2015, arXiv:1603.04467.

http://doi.org/10.1016/j.engappai.2020.103678
http://dx.doi.org/10.1117/12.2309486
http://dx.doi.org/10.1145/331499.331504
http://dx.doi.org/10.1016/j.ymssp.2019.106585
http://dx.doi.org/10.1016/j.cja.2020.09.035
http://dx.doi.org/10.1016/j.ifacol.2020.11.018
http://dx.doi.org/10.1109/ACCESS.2020.3042888
http://dx.doi.org/10.1016/j.mlwa.2020.100001
http://dx.doi.org/10.3390/data6010005
https://doi.org/10.5281/zenodo.2526396
http://dx.doi.org/10.1214/aoms/1177704472
http://dx.doi.org/10.1002/9781118575574.ch6


Energies 2021, 14, 5530 19 of 19

21. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

22. Tavenard, R.; Faouzi, J.; Vandewiele, G.; Divo, F.; Androz, G.; Holtz, C.; Payne, M.; Yurchak, R.; Rußwurm, M.; Kolar, K.; et al.
Tslearn, a machine learning toolkit for time series data. J. Mach. Learn. Res. 2020, 21, 1–6.

23. Aghabozorgi, S.; Seyed Shirkhorshidi, A.; Ying Wah, T. Time-series clustering—A decade review. Inf. Syst. 2015, 53, 16–38.
[CrossRef]

24. Halkidi, M.; Vazirgiannis, M. Clustering validity assessment: finding the optimal partitioning of a data set. In Proceedings of the
2001 IEEE International Conference on Data Mining, San Jose, CA, USA, 29 November–2 December 2001; pp. 187–194. [CrossRef]

25. Forest, F.; Mourer, A.; Lebbah, M.; Azzag, H.; Lacaille, J. An Invariance-guided Stability Criterion for Time Series Clustering
Validation. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January
2021; pp. 9296–9303. [CrossRef]

26. Liu, Y.; Li, Z.; Xiong, H.; Gao, X.; Wu, J. Understanding of Internal Clustering Validation Measures. In Proceedings of the 2010
IEEE International Conference on Data Mining, Sydney, Australia, 13–17 December 2010; pp. 911–916. [CrossRef]

27. Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987,
20, 53–65. [CrossRef]

28. Davies, D.L.; Bouldin, D.W. A Cluster Separation Measure. IEEE Trans. Pattern Anal. Mach. Intell. 1979, PAMI-1, 224–227.
[CrossRef]

29. Caliński, T.; Harabasz, J. A dendrite method for cluster analysis. Commun. Stat. 1974, 3, 1–27. [CrossRef]
30. Halkidi, M.; Vazirgiannis, M.; Batistakis, Y. Quality Scheme Assessment in the Clustering Process. In Proceedings of the European

Conference on Principles of Data Mining and Knowledge Discovery 2000, Lyon, France, 13–16 September 2000. [CrossRef]

http://dx.doi.org/10.1016/j.is.2015.04.007
http://dx.doi.org/10.1109/ICDM.2001.989517
http://dx.doi.org/10.1109/ICPR48806.2021.9412020
http://dx.doi.org/10.1109/ICDM.2010.35
http://dx.doi.org/10.1016/0377-0427(87)90125-7
http://dx.doi.org/10.1109/TPAMI.1979.4766909
http://dx.doi.org/10.1080/03610927408827101
http://dx.doi.org/10.1007/3-540-45372-5_26

	Introduction
	Materials and Methods
	Results
	Dataset and Studied System
	Time Series Encoding
	Semantic Segmentation
	Cluster Frontier Extraction—First Phase
	Cluster Frontier Extraction—Second Phase
	Cluster Frontier Extraction—Third Phase
	Clustering Results

	Discussion
	Conclusions
	References

