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Abstract: Fluid flow modeling of naturally fractured reservoirs remains a challenge because of the
complex nature of fracture systems controlled by various chemical and physical phenomena. A
discrete fracture network (DFN) model represents an approach to capturing the relationship of
fractures in a fracture system. Topology represents the connectivity aspect of the fracture planes,
which have a fundamental role in flow simulation in geomaterials involving fractures and the rock
matrix. Therefore, one of the most-used methods to treat fractured reservoirs is the double porosity-
double permeability model. This approach requires the shape factor calculation, a key parameter
used to determine the effects of coupled fracture-matrix fluid flow on the mass transfer between
different domains. This paper presents a numerical investigation that aimed to evaluate the impact
of fracture topology on the shape factor and equivalent permeability through hydraulic connectivity
(f ). This study was based on numerical simulations of flow performed in discrete fracture network
(DFN) models embedded in finite element meshes (FEM). Modeled cases represent four hypothetical
examples of fractured media and three real scenarios extracted from a Brazilian pre-salt carbonate
reservoir model. We have compared the results of the numerical simulations with data obtained
using Oda’s analytical model and Oda’s correction approach, considering the hydraulic connectivity f.
The simulations showed that the equivalent permeability and the shape factor are strongly influenced
by the hydraulic connectivity (f ) in synthetic scenarios for X and Y-node topological patterns, which
showed the higher value for f (0.81) and more expressive values for upscaled permeability (kx-
node = 0.1151 and ky-node = 0.1153) and shape factor (25.6 and 14.5), respectively. We have shown
that the analytical methods are not efficient for estimating the equivalent permeability of the fractured
medium, including when these methods were corrected using topological aspects.

Keywords: carbonate reservoir; fracture network topology; shape factor; permeability

1. Introduction

Naturally fractured reservoirs (NFRs) are composed of various lithologies such as
shales, sandstones, carbonates, and igneous rocks and correspond to over 30% of the global
production [1]. Within this group, fractured carbonate reservoirs represent an important
part of the world’s oil and gas reserves (e.g., the Campos and Santos Basins in Brazil
and the Kwanza Basin in Angola) [2,3]. Characterization and numerical simulation of
naturally fractured reservoirs represent a challenge because of their complex evolution
(diagenesis, geomechanics) and the effect of the coupled fracture-matrix relationship on
the fluid flow [4–8].
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Mathematical modeling of fluid flow and transport in a fractured reservoir also repre-
sents a challenging task. First, the acquisition of fracture systems attributes (e.g., aperture,
length, orientation, spatial distribution, and topology) is complex because of the need to
integrate various scales and limited sampling through subsurface datasets (e.g., seismic,
well logs, and cores) [9–11]. The scale of the fracture systems is an important aspect to be
considered in the fluid flow analysis of naturally fractured reservoirs because it affects
the connectivity of the fracture network (spacing, orientation, clustering, and fracture
intensity), as discussed by Nelson [12], Laubach [13], Berkowitz et al. [14], Roy et al. [15],
Laubach et al. [16], Sahu and Roy [17], and Silva et al. [18], among others. Second, the
main challenges are posed by the anisotropic nature of fracture systems controlled by stress
distribution and the rock heterogeneities [19] and the dual porosity phenomenon when the
rock matrix and the surrounding fractures behave as separated media with variable grades
of interaction [20]. Large fractures represent a crucial aspect in fractured systems because
it is often necessary to model them explicitly due to their singular effect in numerical
models [21].

There are different ways of modeling an NFR. One is the approach of equivalent con-
tinuous medium, which assumes that the fluid flow in the geological medium, including
fractures, can be simulated in a representation of a porous medium with the classical equa-
tions of flow and transport Another approach is the discrete fracture network model (DFN),
which considers the representation of fractures in the model, and the flow simulation con-
siders their influences. The main differences to flow simulation between dual-porosity and
discrete fracture models are related to time flow behavior during the early phases of simu-
lation because the saturation is modeled with different efficiency [22]. A third approach to
simulate an NFR is called hybrid-dimensional modeling and involves the discretization of
major faults and fractures, with the matrix and small fractures represented as a continuous
medium [23]. The main objective is to facilitate mesh generation. DFN models allow better
prediction of fluid flow and transport phenomena than continuum models [24,25]. An
advantage of the discrete fracture technique is that it can explicitly consider the effects of
discrete fractures on reservoir fluid flow [26–28]. Thus, DFN models have become popular
due their practical applications [28]. The fluid flow through NFRs is highly heterogeneous,
as flow develops through the matrix and fractures because to the hydraulic head gradi-
ent [29–31]. Fluid flow in the rock matrix is limited by the matrix permeability and if the
fracture network allows, pressure gradients will form in each block [32,33]. Thus, the per-
meability of the NFRs is not an intrinsic property but changes strongly with the sampling
and scale of characterization [34]. Embedding fractures as discontinuities in finite element
mesh (FEM) can adequately represent the behavior of natural fractures in a hydraulic [18]
and hydromechanical numerical analysis [35,36]. This technique allows us to estimate
equivalent permeability in naturally fractured media. The advantage of using DFN models
to compute the equivalent permeability of fractured rocks through numerical analysis is
linked to the upscaling approach, which allows reaching computational efficiency and
generating reliable input data for double porosity-permeability models. The upscaling
process is achieved with the replacement of the fracture network with homogeneous grid
blocks, and the average flow can be adequately estimated [18,36–41].

The main objective of this work is to investigate the impact of fracture systems ge-
ometry, based on analysis of topology, in the fluid flow in naturally fractured media. Two
fracture systems can exhibit the same geometrical elements regarding orientation and trace
length but present different node (where fracture planes terminates or cross other fractures)
arrangements [42]. The fracture topology can have different impacts on the flow [41–44].
The hydraulic connectivity (f ) is related to the fracture topology. This variable allows
obtaining an analytical value of equivalent permeability for the fractured medium using
Oda’s [45] methodology, which considers discontinuous rock masses as homogeneous,
anisotropic porous media.

The double porosity approach is a computationally efficient and usually adopted
method to simulate the flow in the fracture-matrix system. The formulation of double
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porosity-permeability involves the determination of fluid transfer between the matrix and
the fracture, related to the shape factor as previously mentioned, and this approach has
been evaluated by several authors [46–53]. Although several strategies have been evaluated
to enhance the predictions of fracture-matrix exchange in double porosity-permeability
models, most commercial formulations are based on the initial model of fractured reser-
voirs as proposed by Warren and Root [46,54]. For irregular fracture networks, which
are more realistic, there is not a unique geometric method to estimate the shape factor.
Performing numerical simulation of models with discrete fractures aims to predict the flow
behavior [55]. Thus, we have performed numerical simulations to compare the effect in the
flow patterns regarding the application of the shape factor. We have used hypothetical and
real scenarios with different fracture topologies (I-nodes, Y-nodes, and X-nodes) to provide
a realistic investigation of the problem.

Our results showed the impact created by the arrangements of fracture nodes on the
fluid transfer term between the rock matrix and the fracture network, which is directly
related to the capacity of the fluid flow in the system, the shape factor, and the equivalent
permeability. The contribution of this paper is related to the proposition of an integrated
methodology that considers the adoption of topological pattern analysis for computing
the hydraulic connectivity number, regarding the influence of this parameter for the
numerical and analytical upscaling process of equivalent permeability and dual porosity
dual permeability shape factor for naturally fractured reservoirs.

2. Mathematical Formulation

The methodology adopted used DFN-based models to obtain equivalent permeability
fields and the shape factor and compared with solutions obtained for flow properties using
Oda’s model. This procedure considered the hydraulic connectivity (f ) to estimate the
influence of each topological configuration. The shape factor was also analyzed considering
the hydraulic connectivity f from the topological analysis. The mathematical form of the
flow equation for double porosity-permeability systems is presented in Equation (1), as
proposed by Lewis and Schrefler [56].

As mentioned above, the shape factor and equivalent permeability are input values for
numerical simulation of the double porosity-permeability model. In Equation (1), the term
(α) refers to the fluid transfer term between the fractures and the rock matrix in a naturally
fractured medium and is related to the shape factor. Permeability is defined within the
source term in Equation (1) and is presented in more detail in Equations (2) and (3) (ki).

φi
∂ρf i
∂t

+∇·[ρf iqi] + (−1)i+1α = 0 i = 1, 2, (1)

qi = −Ki∇Pi, (2)

Ki =
ki

µ
, (3)

where φ is the porosity, ρf is the fluid density, q is the fluid flux vector, P is the pressure
and µ is the fluid viscosity.

Below, we describe each of the stages of the methodology.

2.1. Topological Characterization of Fracture Network

An NFR may involve several fracture sets, which may or may not intersect each other,
and fractures can be described by a variety of geometrical attributes [28]. The geometry of
the fractures and the relationships between individual fractures or fracture sets control the
flow properties [41]. Regarding the importance of fracture connections, the term topology
refers to the spatial relationships between fracture planes, and the topological analysis
can improve the analytical estimation of effective permeability in fracture networks [41].
Topology defines the connections between fractures in a discretized fracture network
model as node counting and branch analysis. The proportions of abutting Y-, crossing X-,
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and isolated I-nodes provide topological classification and node type counting (Figure 1).
Topology analysis can determine the dimensionless intensity, frequency, orientation, and
length of fractures. Sampling proportions of various types of nodes provides a topological
classification that can estimate the conductivity effect of the network [42] (Figure 1).
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Sævik and Nixon [41] presented an innovative analytical method for the estimation of
effective permeability using topological parameters. They focused on analytical upscaling
to create a functional relationship between the effective permeability and the fracture
parameters.

The hydraulic connectivity f is the ratio between the actual effective permeability
of the network (upscaling) and the theoretical upper bound as defined by Oda [45]. In
this framework, the connectivity f considers the value of 1 (f = 1) in an idealized case
of fractures defined by two parallel planes, a classical representation of rock fractures
in numerical models [28]. For other idealized fracture geometries, f is a function of the
fracture intensity, defined as the total trace length per sampling area [41].

The value of hydraulic connectivity f is computed by conducting a numerical simula-
tion of fluid injection through the grid. The equivalent permeability obtained by numerical
simulation was also processed through Oda’s analytical method to define f. The topological
connectivity parameters were calculated and plotted with parameter f. We have assumed
that the hydraulic connectivity f is zero below the percolation threshold.

Using the maximum operator, the equation can be written as follows:

f = max(0,
2.94·

(
4nx + 2ny

)
4nx + 2ny + ni

− 2.13), (4)

where nx is the number of nodes X, ny is the number of nodes Y and ni is the number of I
type nodes.

2.2. Discrete Fracture Model and Finite Element with Embedded Discontinuities

We used the mathematical development of the continuous approximation of embed-
ded discontinuities proposed by Beserra et al. [35], which was also applied by Silva et al. [18].
This approach was implemented in the CODEBRIGHT in-house software [57,58], a finite
element-based code to perform numerical analysis of fluid flow in deformable porous
media in a fully coupled scheme. The embedding process, which considers the triangular
element with three nodes from the domain (length, band, and width), is divided into
two parts, isolating node 1 from nodes 2 and 3, as shown in Figure 2a. Darcy’s flow into
the discontinuity is decomposed in a tangential and normal component as is shown in
Figure 2b.
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The formulation adopted in the present work considers that the fluid flow in a fracture
occurs in its direction. Therefore, we considered only the tangential component. Darcy’s
law can be written for continuum (qΩ) as follows:

qΩ = −KΩ∇p, (5)

where KΩ is the permeability tensor of the continuous part, and Darcy’s law for fracture
(qs) is

qs = −Ks∇p, (6)

where Ks = ks/µ.
The finite elements approach considers that the flow at the fracture will occur over

the entire element thickness. As presented by Silva et al. [18], to ensure that the element
transmissivity in the fracture direction is the same as the transmissivity of the embed-
ded fracture, the fracture permeability Ks is multiplied by the ratio h/le. The resulting
Equation is:

qs = − h
le

Kst⊗ t∇p, (7)

where t is the discontinuity direction, h is the thickness of incorporated discontinuity, and
le is the element size.

Because a fracture in a porous medium represents a preferred path for flow toward
discontinuity, it induces anisotropy in the direction of the fracture throughout the medium.
As a result, an effective permeability tensor for the element is given by:

q = −Kef∇p (8)

Kef =

(
KΩ +

h
le

Kst⊗ t
)

(9)

Two different permeability variation laws are adopted, one for the continuum portion
and the other for the fracture. Estimation of intrinsic fracture permeability ks can be
performed through models that consider fractures with rough walls or filled with proppant
material. We used the law of parallel plates in the models built for this research [35,59].

ks = ko

(
h
ho

)2
(10)

where ko is the permeability in the continuum portion, h is the fracture thickness, and ho
the initial fracture aperture.
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For the rock matrix, we adopted the isotropic permeability law, described as follows:

k = ko

(
φ

φo

)A
(11)

where φo is the initial porosity, φ is the porosity calculated after perturbations induced by
rock deformation, and A is a parameter to be determined experimentally [36,60].

The continuity equation that governs the fluid flow in the porous media, considering
a rigid medium and without gravitational effect, is given by:

φ
∂ρf
∂t

+∇·[ρfq] = 0 (12)

where φ is the host rock porosity and q is the fluid flux vector given by Equation (8).
The fluid density is related to pore pressure according to the following expression:

ρf = ρf0eβ(p−p0) (13)

where ρf0 is the reference density, β is the fluid compressibility, p is the pressure, and p0 is
the reference pore pressure.

2.3. Calculation of Shape Factor for Dual-Porosity—Permeability Models

The finite element method with embedded discontinuities allowed monitoring the
fracture flow rate by applying the fluid flow Equation in the rock matrix to derive the shape
factor that best corresponds to the simulation results.

Assuming that the matrix is a homogeneous and isotropic medium, φm represents the
porosity, βm the compressibility, km the permeability tensor, and µ the viscosity, a general
expression of the Equation for matrix pressure, pm(x,t), is given by:

φmβm
∂pm(x,t)

∂t +∇·qm = 0 em Ω× (0, T)
qm = −km

µ ∇pm(x, t)
pm(x, t) = p f for Γm f × (0, T)

qm·n = 0 for ΓN × (0, T)
pm(x, t) = pm,0 in Ω× (t = 0)

(14)

Considering the domain border Ω given by ∂Ω = Γm f ∪ ΓN where Γmf represents the
matrix-fracture interface, ΓN is the boundary on which the null flow is imposed, and n is
the normal vector of ΓN outside the domain Ω, pf is the fracture pressure, and pm,0 is the
initial matrix pressure.

Zimmerman et al. [59] developed two equivalent expressions to calculate the shape
factor, one based on the mean matrix pressure and the other with flow defined by ∂Ω. Thus,
the following expression is adopted to introduce the shape factor α(t):

∇pm(x, t)·n ≈
pm(t)− p f

δt
(15)

where pm(t) is the measure of pm(x,t) on domain Ω:

pm(t) =
1
|Ω|

∫
Ω

pm(x, t)dΩ (16)

The parameter δt in Equation (15) measures the penetration depth of perturbation
into pm(x,t) caused by pf. Thus, the expression to calculate the shape factor is given by:

α(t) =

∣∣∣Γm f

∣∣∣
|Ω|δt

(17)



Energies 2021, 14, 5488 7 of 25

where |Γmf| denotes the area Γmf, and α(t) is the transient shape factor.
We have adopted an expression to obtain the shape factor as a function of mean

pressure pm, using the Gauss theorem and the balanced Equation (4), described as follows:

α(t) =
φmβmµ

km

(
pm(t)− p f

) ∂pm(t)
∂t

(18)

In the limit t→ ∞, the stationary value of such a parameter is obtained.

α∞ = lim
t→∞

α(t) (19)

As α∞ is a geometric parameter, it does not depend on pf or the hydrodynamic
properties of the matrix.

2.4. Oda Tensor Approach for Equivalent Permeability Estimation

Oda [45] proposed an analytical method to compute equivalent fracture permeability,
which is widely used in DFN upscaling due to its efficiency [61,62]. For a grid cell with
known fracture areas, Ak, and transmissivities, Tk, obtained from the DFN model, an
empirical tensor that considers only fracture geometry can be calculated as follows:

F =
1
V

N

∑
k = 1

fk AkTkn⊗ n (20)

where F is the fracture tensor, V is the grid cell volume, N is the total number of fractures in
a grid cell, fk is the hydraulic connectivity for fracture k (generally assumed to equal to 1),
Ak is the area of fracture k, Tk is the transmissivity of fracture k, and n is the components of
a unitary normal to the fracture.

Oda’s permeability tensor is derived from F by assuming that F expresses fracture flow
as a vector along the fracture’s unit normal. Assuming that fractures are impermeable in a
parallel direction to their unit normal F must be rotated into planes of permeability [63].

k =
1

12
(tr F I− F) (21)

where k is the permeability tensor, F is the fracture tensor, I is the identity matrix, and tr F
is the sum of the main diagonal of the fracture tensor. According to Elfeel [64], a limitation
to the application of Equation (21) is that fractures of any length will contribute to the
permeability value, including if fractures do not allow percolation in a cell.

3. Modeling of Studied Cases

The characteristics of models, four synthetic cases, and three real scenarios of a Brazil-
ian pre-salt reservoir, used to perform the proposed methodology are described below.

3.1. Artificial Fractured Media

The synthetic 2D sections analyzed in this work were created based on scenarios
presented and tested by Silva et al. [18]. We have adopted changes in their models regarding
the dimensions and fracture characteristics as the apertures. The scenarios consider four
different topological patterns with different intensities and distribution of fractures that
allowed the analyses of the impact of the topology on the shape factor and validating the
results they present for the equivalent permeability (Figure 3).
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The quantification of topological fracture node types for each scenario (Figure 3) is
presented in Table 1.

Table 1. Quantity of fracture node type connections of synthetic scenarios 1, 2, 3, and 4.

Section Node I Node X Node Y Node XYI

Fractures 115 9 26 24

Pattern I 230 - - 11

Pattern X - 13 - 14

Pattern Y - - 34 15

For all cases, the fracture intensity was calculated according to the method proposed
by Dershowitz and Einstein [24], which defines measures of fracture abundance by Pxy,
where x is the dimension of the sampling region and y the dimension of the measured
feature (e.g., Sanderson and Nixon [42]).

We used the P22 sampling technique (area of fractures per sampling area) to cal-
culate the relationship between the topology of the fractures and the equivalent per-
meability. The dimensionless intensity calculated from the P22 analysis is given by
P22 = NLL2

C/A = P21·Lc, and it has dimensions [L−0] where Lc is the characteris-
tic length and is defined as the arithmetic mean of the line lengths. We used a MATLAB®

script to build the FEM (parameterized meshes). After loading the fracture coordinates
(endpoints) and apertures, the script allows the extraction of the fracture permeability
using the parallel plate theory (Equation (10)). We consider the matrix as isotropic and of
low permeability, which simulates a tight reservoir scenario.

The simulation of hydraulic phenomena consisted of the injection of a single fluid-
phase (water) on the left side of the models and fluid production on the right side of the
domain. The fluid injection pressure was 55 Mpa, and the production pressure is 54.9 Mpa,
leading to a pressure gradient of 0.1 MPa. The simulation was also conducted for all
scenarios considering a vertical flow, using the same pressure values (Figure 4).
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Figure 4. Synthetic models with I-, Y-, and X-node combinations and boundary conditions were used
in the numerical simulation. (a) The horizontal fluid flow and (b) vertical flow.

For the simulations, we considered a single-phase flow governed by a nonlinear form
of Darcy’s law, the equivalent permeabilities computed from DFNs, and a flow-based
upscaling approach.

Thus, the numerical simulation was conducted to obtain the shape factor. In the FEM
used for simulations, the fractures were considered as flow lines. The shape factor was
calculated numerically using the discrete fracture model for all flow states until reaching
its pseudo-stationary value.

3.2. Real Fractured Reservoir Case: Brazilian Pre-Salt

The real case analyzed in our study is adapted from Falcão et al. [36]. They developed
several DFN models for a carbonate reservoir from the Brazilian pre-salt interval (Figure 5).
Figure 5 shows the model used to extract fracture distribution examples (bidimensional
sections) used in this work. The Santos Basin pre-salt cluster is located in ultra-deep
waters, 2000 m approximately, and 290 km offshore from the Rio de Janeiro coast. This
cluster represents a prominent regional sequence covered by a continuous evaporitic
sequence. The reservoirs are mainly composed of carbonate rocks, laminites, stromatolites,
coquinas, and spherulites. Pre-salt development presents many challenges like water
depths, reservoir heterogeneities, oil with the content of CO2 in the gas phase, and drilling
challenges because of variable salt layer [65].

Figure 6 shows the three bidimensional scenarios, horizontal sections (slices), extracted
from the tridimensional cell from the pre-salt reservoir model shown in Figure 5c. Each 2D
section (200 × 200 m) presents a different fracture intensity and spatial arrangement. We
have adopted the fracture parameters and coordinates used to compose the 2D sections after
the original work of Falcão et al. [36]. The first 2D model, section 1, possesses 54 fracture
planes (Figure 6a), the second, section 2, possesses 22 fractures (Figure 6b), and the third
case, section 3, 75 fractures (Figure 6c). The building of the FEM created from the sections
shown in Figure 6 followed the same procedures used to build the FEM from the artificial
models shown in Figures 3 and 5.
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sample used for the extraction of 2D sections used in this study.
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Table 2 shows topological pattern values of each section shown in Figure 6. These
values are used in Equation (4) for the calculation of the hydraulic connectivity value f.

Table 2. Quantity of fracture node type connections of sections 1, 2, and 3 extracted from the Brazilian
pre-salt reservoir model cell (Figure 5).

Section 1 Section 2 Section 3

Fractures 54 22 75

Pattern I 43 29 77

Pattern X 79 12 123

Pattern Y 12 3 23

4. Results
4.1. Artificial Scenarios

Figure 7 shows the results for the three artificial cases regarding the equivalent per-
meability calculated with the horizontal flow simulation (direction x). Oda’s method
overestimates the equivalent permeability because it assumes that all the fracture planes
cross the entire sample. Permeability calculated using the Oda method with the hydraulic
connectivity f reached a better result, similar to the numerical simulation for the sections
with Y- and X-nodes. The calculation of permeability with (f ) for the I-nodes case resulted
in negative values (not shown in the graph) because the values of nx and ny are zero, which
resulted in inconsistent outputs, and the 0 value is assumed.
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Figure 7. Equivalent permeability output obtained through the methods tested regarding the simula-
tion of horizontal flow in the synthetic cases (Figure 3).

It indicates that Oda’s method cannot compute the equivalent permeability for the
situation of topology dominated by I-nodes, which has no connection between fracture
planes. The corrected Oda’s method presented reliable results for the cases dominated
by X- and Y-nodes. The same aspect was demonstrated by Madden [66], that the geomet-
ric mean of heterogeneous bodies could be used to predict the physical properties of a
homogenized matrix.

Figure 8 shows the results obtained for the equivalent permeability values obtained
through the vertical flow simulation (y-direction). Results are close to those obtained for the
horizontal flow (Figure 7) and agree with Silva et al. (2021). This similarity occurs because
the arrangement does not affect the flow pattern in the two situations (Figures 7 and 8).
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Figure 8. Equivalent permeability output obtained through the methods tested regarding the simula-
tion of vertical flow in the synthetic cases (Figure 3).

Figure 9 presents the shape factor behavior during the simulation for the synthetic
scenarios. The significant impact of the I-node-dominant topology is shown, and the related
curve reaches the pseudo-stationary state first, followed by the X-node and Y-node curves
(Figure 9). This effect demonstrates that the lack of fracture connections dramatically affects
the fluid transmissibility through the matrix.
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Figure 9. Computation of shape factor behavior with time for the synthetic scenarios.

The shape factor is defined when the curves flatten parallel to the X-axis. The building
of synthetic cases has considered similar dimensionless fracture intensities based on the
P22 distribution. This condition is important to assure that similar fracture areas with
different element distributions would be compared.

Figure 10 presents the dimensionless fracture intensity P22 percentage defined for
each synthetic case (Figure 10a) and the final shape factor value calculated for each case
(after reaching the pseudo-stationary state) (Figure 10b). The case dominated by the X-
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node pattern shows the highest value of shape factor as expected because of the higher
connectivity relationships. A similar response is observed for Y-node dominated topo-
logical patterns, while for combined (XYI) and dominated I-nodes scenarios, the values
are low. It leads to the evidence that the fracture crossing predominance induces a more
considerable matrix-fracture transfer and can impact the fluid flow for the dual-porosity
dual permeability media.
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Figure 10. Computation of shape factor behavior with time for the synthetic scenarios.

Figure 11 shows the result of a cross-correlation between the computed equivalent per-
meability and shape factor for each case. The patterns dominated by X-nodes and Y-nodes
show slightly higher equivalent permeability, which demonstrates the negative impact
caused by I-nodes in the X-Y-I pattern (Figure 11), and that the shape factor, regardless of
the fracture intensity, affects the permeability anisotropy [67].
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Figure 11. Cross-correlation between computed equivalent permeability and computed shape factor
of synthetic cases.

Table 3 shows the properties of the synthetic cases and results obtained through the
simulation: the equivalent permeability, factor f, and the shape factor. It demonstrated that
the lower shape factor values resulted from the influence of the I-node terminations.
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Table 3. Summary of synthetic cases characteristics and the computed equivalent permeability and
shape factor related to their hydraulic connectivity f.

Section Node I Node X Node Y Node XYI

Fractures 115 9 26 24

Pattern I 230 - - 11

Pattern X - 13 - 14

Pattern Y - - 34 15

Hydraulic Connectivity f 0.0 0.81 0.81 0.48

Matrix k (mD) 0.1 0.1 0.1 0.1

Keq x–Numerical (mD) 0.0107 0.1151 0.1153 0.1154

Keq x–Oda’s (mD) 0.0506 0.1390 0.1490 0.1406

Keq x–f correction (mD) 0.0 0.1126 0.1149 0.0670

Shape Factor 6.54 25.6 14.5 4.64

4.2. Numerical Simulation of Real Fractured Reservoir Scenarios of Brazilian Pre-Salt Interval

Figures 12 and 13 show the results of equivalent permeability computed through
Oda’s method, and Oda’s method corrected with hydraulic connectivity and numerical
simulation for horizontal and vertical flow for the three real cases (Figure 6). For the
horizontal flow situation, Oda’s method yielded higher values of equivalent permeability,
and it overestimated the numerical simulation results, which showed slightly lower values
(Figure 12). Application of the Oda method corrected with the hydraulic connectivity f
resulted in the lowest values for the equivalent permeability, compared to the numerical
simulation. This effect results from the influence of I-node fractures, and the opposite is
observed for Oda’s analytical solution (Figure 12). De Dreuzy [68] demonstrated a signifi-
cant coupling between flow heterogeneities at the fracture scale and flow heterogeneities at
the network scale that cannot be solved through the hydraulic connectivity approach, as
observed in real cases presented here. For section 2, the value of hydraulic connectivity
f was 0 due to the high number of I-node fractures compared to the X- and Y-node types
(Figure 6b). Thus, Equation (4) becomes negative, which implies a lack of coherency.
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Figure 12. Equivalent permeability output obtained through the methods tested regarding the
simulation of horizontal flow in the three real cases from the pre-salt reservoir model (Figure 6).
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Figure 13. Equivalent permeability output obtained through the methods tested regarding the
simulation of vertical flow in the three real cases from the pre-salt reservoir model (Figure 6).

Figure 13 presents the results for the calculation of permeability regarding the vertical
flow scenario. The results showed higher values, in certain cases, more than the double
extracted with each method, compared to the horizontal flow scenario (Figure 12). It
occurs because the fracture planes are aligned with the flow direction. Values computed
for sections 1 and 3 show a significant difference between the numerical and analytical
results obtained with Oda’s model. As observed with the synthetic cases, this effect occurs
because this method assumes that the fracture planes cross the entire model area. After the
application of the correction factor to the topological aspect, the result becomes close to the
numerical solution. Again, this result shows the influence of the I-node fractures in the
transmissibility phenomena.

Figures 14 and 15 show the cross-correlation of the computed equivalent permeability
and the hydraulic connectivity f calculated with the topological analysis for the horizontal
and vertical flow scenarios, respectively, for the three real cases treated. For the horizontal
flow scenario, results obtained with Oda’s method are the closest to the result reached with
numerical simulation. For this specific scenario, the hydraulic connectivity does not help
to achieve a reliable solution. However, the value of hydraulic connectivity f is efficient to
demonstrate the impact of the topological I-nodes in the three real cases analyzed.

For the vertical flow scenario, sections 1 and 3 show a similar correlation for the factors
analyzed, and section 2 presents a remarkable difference relate to the connectivity effect
(Figure 15). As observed for the horizontal flow scenario, the hydraulic connectivity f has
a similar pattern because it does not depend on the direction of the flow in the fractured
medium.

Figure 16 shows the shape factor calculated as a function of time for the three real
2D sections. The curves show the influence of fracture density on fluid transfer between
the fracture network and the matrix. For section 2, which has only 23 fractures, it takes
longer to reach a pseudo-stationary state. As observed above, the lack of coherence for
the connectivity factor for section 2 prevents a better comparison of correlation with other
parameters.
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Figure 14. Cross-correlation plot between computed equivalent permeability and the hydraulic
connectivity factor found through the topological analysis regarding the horizontal flow for the three
bidimensional sections modeled after the pre-salt reservoir.
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Figure 15. Cross-correlation plot between computed equivalent permeability and the hydraulic
connectivity factor found through the topological analysis regarding the vertical flow for the three
2D sections modeled after the pre-salt reservoir.
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Figure 16. Graph showing prediction of shape factor behavior with time for the three real sections
after the pre-salt reservoir model.

Figure 17 presents a cross-correlation, a comparison between the dimensionless frac-
ture intensity P22 (the relationship between the area of fractures over the area of the
section) Figure 17a, and the shape factor related to the topology patterns of fracture net-
works for the three 2D sections derived from the pre-salt reservoir model Figure 17b. The
section 3 presents the higher fracture intensity and the lower shape factor (Figure 17). The
section 2, dominated by I-node endings, shows the higher shape factor and the lower
fracture intensity.
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Figure 17. (a) Comparison between fracture density, P22 (relationship of fracture area over the matrix
area), (b) Computed shape factor for the three 2D sections extracted from the pre-salt reservoir model.

Figure 18 shows cross-correlation between the shape factor value at its stationary state
and the calculated hydraulic connectivity f for each 2D section. Section 3 presents lower
values for these two parameters, due to the influence of I-node fracture endings. However,
section 3 presents the highest fracture intensity, as shown in Figure 17. Section 2 presents
zero value for the shape factor due to the lack of connectivity caused by the dominance
of I-node fractures, and the lack of coherence prevented correlation. Section 1 presents a
higher connectivity shape value and, relatively, the higher shape factor of the three sections.
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Figure 18. Cross-correlation between computed shape factor and hydraulic connectivity f for the
three 2D sections of the pre-salt reservoir model.

Figure 19 shows the correlation between computed equivalent permeability and the
shape factor calculated from the topological scenarios with X- and Y-node types. Sec-
tion 3 presents a lower shape factor but higher equivalent permeability. Section 2 shows
markedly higher values of shape factor but slightly lower equivalent permeability val-
ues than section 3. Section 2 also presents the highest shape factor but relatively lower
equivalent permeability to sections 1 and 3.
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Figure 19. Cross-correlation between equivalent permeability and the shape factor regarding the X-
and Y-node types fractures for the three real scenarios of the pre-salt reservoir model.

Table 4 shows the properties of the three 2D sections extracted from the pre-salt reser-
voir model and results obtained through the simulation: the equivalent permeability, factor
f, and the shape factor. This integration highlights the relationship between the topological
patterns and the resulting equivalent permeability. It also points to the importance of
defining both the number of connections between fracture planes and the number of I-node
types present in the DFN because it controls the permeability effect and the interaction of
fluid between fractures and rock matrix.
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Table 4. Summary of real cases characteristics and the computed equivalent permeability and shape
factor related to their hydraulic connectivity f.

Section 1 Section 2 Section 3

Fractures 54 22 75

Pattern I 43 29 77

Pattern X 79 12 123

Pattern Y 12 3 23

Hydraulic Connectivity f 0.48 0.0 0.44

Matrix k (mD) 343.28 343.28 343.28

Keq x–Numerical (mD) 369.44 375.21 410.45

Keq x–Oda’s (mD) 407.37 409.56 464.52

Keq x–f correction (mD) 195.51 0.0 205.27

Keq y–Numerical (mD) 544.67 385.64 586.92

Keq y–Oda’s (mD) 705.02 488.73 913.90

Keq y–f correction (mD) 338.36 0.0 403.85

Shape Factor 0.1964 0.2766 0.0689

We present a ternary diagram in Figure 20a that shows the percentage of each topology
pattern for the three sections studied. Figure 20b shows a bar chart with the value for the
hydraulic connectivity factor for the same sections. The hydraulic connectivity f tends to
be higher in the sections with a higher percentage of X- and Y-nodes. However, it does not
indicate higher equivalent permeability fields, and the definition of topological aspects
may be essential to constraining hydraulic simulations in fractured media.
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Figure 20. (a) Ternary diagram with the relationship between the topological patterns I, Y, X, used
to classify the DFNs according to their connectivity and (b) Comparison of hydraulic connectivity
between sections.

The results showed the main effects of topology variations in upscaled permeabil-
ity tensor estimation and shape factor, considering a low and fixed matrix permeability
(e.g., tight reservoir). This work provided an analysis of fracture patterns influence (type
and degree of connections) in the cell scale used in reservoir simulation.

5. Discussion

There are many advancements since the early works on the numerical modeling of
geological scenarios. Jing and Stephansson [44] showed that applying a mathematical
formulation to represent fractured rocks cannot be arbitrary, and it must relate to the topo-
logical properties of the fracture network. Haddad et al. [69] showed that the heterogeneity
of fractured reservoirs profoundly affects the rate of mass transfer between the fracture
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system and matrix blocks. One of the heterogeneity sources is related to the variable
fracture intensity.

In this study, we successfully used embedded discontinuities in FEM-based models,
regarding real and artificial scenarios, of fractured porous media to execute flow simula-
tions. A similar approach was also successfully used for real cases in Brazilian pre-salt
reservoirs by Falcão et al. [36].

Performing numerical simulation with the incorporated discontinuities has demon-
strated reliability for fluid flow simulation in fractured media, including coupled simu-
lations [70–76]. This method presents an alternative to the classical techniques based on
the use of interface elements. It also represents an alternative for analysis that requires
the repeated rewiring of the geometry, as observed in discrete fracture methods in which
fractures are represented explicitly in the model [77,78]. The approach allows represent-
ing fractures with lines and surfaces [79]. This technique also presents the advantage of
reducing the computational costs and simplifies the discretization process of fractured
media [35] and directly includes the fracture contribution into the matrix without any
spatial portioning.

The artificial and real case models treated here were built with the FEM method,
and the flow simulations performed allow calculating the equivalent permeability and the
shape factor for all the scenarios. The 2D real scenarios were built from a cell extracted from
a larger DFN model of a reservoir from the Brazilian pre-salt interval [36]. Three horizontal
slices were acquired from a 3D cell and provided three bidimensional sections with proper
fracture sets. The simulations allowed us to evaluate the impact of fracture topology and
highlight aspects of the computation of equivalent permeability and shape factor in the
fractured medium. Fracture topology handles the generalization of spatial relationships as
the connectivity and continuity of fracture planes. It refers to properties that are unchanged
by the continuous transformation of the space in which the fractures are embedded, the
deformation (strain) of the geometrical properties (lengths and angles), a concept familiar in
many areas of geology [18,42]. Topological analysis of NFRs is fundamental to predict the
hydraulic connectivity f, which involves the fracture network and the rock matrix in classi-
cal dual-porosity problems. Besides the numerical simulation, we used Oda’s analytical
method, and the correction applied to this method according to Sævik and Nixon [41]. The
correction considers the fracture system connectivity and fractures characteristics using the
quantification of topological fracture node types. Although these authors do not compare
results with Oda’s original method, several authors have made advances in this analytical
method and shown the need to consider other representative parameters to represent the
permeability tensor of fractured media more realistically [78,80,81]. Fumagalli et al. [78]
implemented the embedded discrete fractures technique and compared the simulations
with Oda’s method used in a commercial simulator. Their results showed the accuracy of
the embedded fracture models compared to the analytical method.

Considering the correction to Oda’s method provided by the topological analysis,
the hydraulic connectivity f is used to represent a new parameter in the general equation
of Oda’s tensor. Results obtained through simulation for the synthetic cases with X-
and Y-nodes were similar to the values obtained with the corrected Oda method. This
outcome demonstrates the importance of analyzing the hydraulic connectivity f to estimate
equivalent permeability [43,82].

Silva et al. [18] presented a numerical tool for fracture modeling, which was tested in
synthetic bidimensional models of fractured media. They analyzed the capacity of FEM
models with embedded discontinuities to calculate upscaled equivalent permeability and
the influence of topological patterns in the flow. These authors analyzed the influence of
topological patterns in the equivalent permeability. They concluded that the fracture inten-
sity, connectivity, and topology pattern play an important role in the upscaled permeability.
These authors demonstrated the reduced equivalent permeability of fracture networks
dominated by I-nodes, due to the lack of connectivity, compared to networks with X- and
Y-node patterns, as was also found by the present study.
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Lahiri [83] performed the calculation of the effective permeability of a fracture network
and used topological connectivity through analytical expressions, considering fractal and
multifractal distributions. The author concluded that the permeability of fracture systems
increases rapidly with the growth in length of the branch segments. Longer branch
segments in fracture networks play a critical role in determining the permeability of the
fractured reservoir. We found similar results in the calculation of equivalent permeability
through topology analysis of the real cases. Larger branches of fracture systems tend to
have more connectivity with other fracture planes, but I-node fractures tend to form short
planes.

The shape factor was first introduced by Barenblatt et al. [84]. In this approach,
the matrix and the fractures are divided into two continuum systems: The fractures are
considered the main global flow paths (fractures have high permeability and low storage
capacity), while the rock matrix is the main fluid storage sink (the matrix blocks present
high storage and low permeability). The two systems are connected, and they interact
either directly or indirectly with the global connection neighboring fractures. The concept
of double porosity was extended and applied to reservoir engineering by Warren and
Root [46], mainly for pressure test analysis. They developed a method based on the general
premise that fractures are evenly spaced and allow for variations in fracture width to satisfy
real anisotropy conditions in a naturally fractured reservoir. The fracture-matrix transfer
term, governed by shape factor, cannot be represented by pseudo-steady-state. Rather, it
involves transient periods of variable magnitude depending on the considered flow case.
Furthermore, the shape factor is not just a value. The deficient concept of the pseudo-state
transfer assumption explains why a certain controversy developed around the definition
of the shape factor [85]. The fracture-matrix transfer problem involves a time convolution
between fracture flow conditions. The actual flow occurs within the matrix medium.

Certain works have developed transient methodologies to obtain the shape factor,
regarding the time effect, and a real representation of the fracture matrix interaction regard-
ing the production or injection processes in the reservoir [23,47,51–53,86–90]. Rostami [91]
demonstrated that the shape factor is a function of time, and its value could be different for
regular and irregular shapes.

The analysis performed in this study considered a novel approach to obtain the
shape factor as a function of time and compared the equivalent permeability computed
through numerical simulation with analytical methods corrected with topological analysis
in bidimensional artificial and real scenarios. The most relevant result demonstrated
the influence of the I-node topology feature on the flow in fractured media. Fracture
networks dominated by I-node types hinder the transfer effect between the fractures and
the rock matrix, and the impact in the equivalent permeability can be relevant, despite the
fracture density. Thus, the arrangement of fractures that influences the topological nodes
and the hydraulic connectivity can provide a simplified and fastened estimate of fluid
control parameters (permeability and shape factor) for numerical simulations of fractured
reservoirs.

6. Conclusions

Numerical simulations were successfully performed to obtain the effective perme-
ability regarding artificial and real cases with dual-porosity in fractured media built with
FEM models. The results were compared with data obtained through analytical methods,
corrected with topological analysis of fracture systems (I-nodes, Y-nodes, and X-nodes).

Results showed the impact of connection between the fractures and the behavior of
properties directly related to flow, such as permeability. The analysis demonstrated the
relationship between the fracture topology and shape factor. Fractured media dominated
by I-node terminations result in smaller shape factors than systems composed by other
fracture node types. This finding is directly related to the lack of connectivity.

Simulations performed on the scenarios showed that in fractured systems with fewer
X- and Y-nodes than I-nodes, the equation used to define the fracture connectivity f will
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return negative results. This finding prevented the further extraction of properties such as
equivalent permeability or the shape factor regarding the hydraulic conductivity f of the
medium.

The results presented demonstrated the direct relationship of the shape factor with
the geometry of the fractures and the fracture intensity aspect and evidenced the impact of
these variables on the shape factor.

The comparative analysis demonstrated that the analytical methods are satisfactory to
estimate equivalent permeability of idealized fractured systems. These represent artificial
cases in terms of the fracture density and the connectivity factor. However, the test with
real scenarios, a DFN from a pre-salt reservoir, demonstrated that the analytical methods
are not efficient to estimate the equivalent permeability of the fractured medium, including
with the corrected analytical method by using topological analysis.

The study reinforces the contribution of the fracture topology theory in obtaining
input parameters for double porosity and double permeability models such as permeability
and shape factor.

As a recommendation for the work evolution, one can consider the variable aperture
and cement filling due to diagenetic effects in fractures, which is crucial to reproduce realis-
tic models. The adoption of a coupled hydro-mechanical approach should be considered in
further developments to establish the effect of fractured media (matrix rock and fractures)
and stress-strain in the upscaled process need to be analyzed.
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