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Abstract: Offshore wind farms (OWFs) are important infrastructure which provide an alternative
and clean means of energy production worldwide. The offshore wind industry has been continuously
growing. Over the years, however, it has become evident that OWFs are facing a variety of safety and
security challenges. If not addressed, these issues may hinder their progress. Based on these safety
and security goals and on a Bayesian network model, this work presents a methodological approach
for structuring and organizing expert knowledge and turning it into a probabilistic model to assess
the safety and security of OWFs. This graphical probabilistic model allowed us to create a high-level
representation of the safety and security state of a generic OWF. By studying the interrelations
between the different functions of the model, and by proposing different scenarios, we determined
the impacts that a failing function may have on other functions in this complex system. Finally,
this model helped us define the performance requirements of such infrastructure, which should be
beneficial for optimizing operation and maintenance.

Keywords: offshore wind farms; safety; security; Bayesian network

1. Introduction

The offshore wind industry provides a reduced-emissions form of energy production
that is continuously gaining importance. Its annual growth rate averaged 24% between
2013 and 2020 [1]. With the newly installed capacity of 6.1 GW offshore wind, the total
installed capacity reached 35.3 GW globally in 2020 [1,2]. The global offshore wind market
outlook illustrates this continuous importance of the wind industry: annual installations
of around 20 GW are expected in 2025, and up to 30 GW in installations are expected in
2030 [1]. Key government and industry bodies are setting their sights significantly higher
for offshore wind in 2050. In the EU, 450 GW is the target capacity for 2050, assuming
industrial clusters in the North Sea, Atlantic Ocean, Baltic Sea, and southern European
water areas [1]. As for global development, the Ocean Renewable Energy Action Coalition
(OREAC)—a global group of leading offshore wind development companies, technology
providers, and turbine suppliers—announced, in March 2019, their expectation of more
than 1400 GW of installed capacity worldwide within the next 30 years [3]. Furthermore, the
Global Wind Energy Council (GWEC) predicts more than 70 GW of offshore capacity will
be added worldwide in 2021–2025 [1]. In 2020, Europe had total offshore wind electricity
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production of 83 TWh, which corresponds to 2.9% of the EU’s total electricity consumption
in 2020 (2.797 TWh consumption in the EU) [4]. This trend also has economic implications,
reflected by the prediction that by 2030 offshore wind power shall be responsible for 8% of
the total ocean economy, adding USD 230 billion in value [5].

Besides the economic implications, offshore wind farms (OWFs) are confronted with
safety and security threats. These threats are recognized as risks relate to, but are not limited
to, (I) personal safety, (II) the environment, (III) assets, and/or (IV) organizations [6]. These
are the results, in part, of their harsh marine environment—e.g., distance to shore, weather
impact, access, and egress. Further, the considerable complexity of the assets and stakehold-
ers, and their role in power generation contribute to the safety and security threats and risks.
For example, during the operation and maintenance (O&M) phase, failing components
are recurring obstacles in OWFs, requiring well-established maintenance processes [7].
These failing components could be risks to the health and safety of employees on site. As
the O&M phase progresses, the risk of, e.g., material fatigue, increases. Consequently,
these processes are prone to further challenges in terms of safety and security. The earlier
(ideally during the planning phase) safety and security threats and their associated risks are
identified and classified, the higher the chances of reducing the risks to acceptable levels
by implementing measures. This can be done, for example, as part of a risk assessment,
and as part of further studies, such as hazard identification studies (HAZIDs) and hazard
and operability studies (HAZOPs). Inevitably, risks and measures undertaken must be
continuously examined for their effectiveness, and if necessary, improved.

Generally, a key performance indicator (KPI) is used as a performance metric for a
specific business activity [8]. It contains information relevant to the application context,
which is determined by specific stakeholder interests: e.g., operation, finance, maintenance,
and safety [9]. It is used to define goals or evaluate what has been achieved. KPIs can
be measured directly, are determined using performance indicators of the subsystems
involved and other factors, or are derived from expert surveys [9,10]. In order to achieve
clear statements and comparability, it is important that the measurement and formation
rules of KPIs are well defined. In the best case, a KPI is standardized, traceable over
time, and comprehensible in its meaning. Comparisons between achieved and target KPIs
provide stakeholders the information needed to assume that problems have occurred or
are emerging. The differences observed can be considered as key risk identifiers (KRIs),
describing the current risk profile of the system or organization [11]. This makes KPIs
attractive for evaluating and monitoring safety and security.

Meanwhile, KPIs are also widely used in the wind industry to define performance
metrics in contracts, for operations management, and in decision support systems. A com-
prehensive list of OWF KPIs is presented in [9,12]. There, KPIs are classified in terms of their
applications: OWF performance; maintenance; reliability; and health, safety, and environ-
ment (HSE). The International Electrotechnical Commission (IEC) has already developed
guidelines and standards that define KPIs for wind turbine design and operation [13,14].
In addition, several studies have discussed the use of KPIs for operations management
and maintenance of offshore and onshore wind turbines [12,15]. Safety-related KPIs dis-
cussed in [9,12,16,17] refer either to more technical aspects (reliability), to the occupational
safety of the O&M personnel (health, injury prevention), or to the handling of disruptive
environmental influences (weather). The relationships between safety and security re-
quirements and economic, environmental, and regulatory compliance requirements are
rarely discussed [16,18]. These interrelations become more important when the resilience of
OWFs as part of the transnational energy supply becomes the focus of an investigation [19].
In this study, the main stakeholder goals in OWFs were classified on a functional level,
the interrelations were elaborated using the functional resonance analysis method [20],
and Monte-Carlo simulations were performed to determine the functions of OWFs with
highest vulnerability potential. In [21], the authors proposed an extension of that model by
adopting Bayesian network (BN) analysis. That approach made the first steps in enabling
the exploration of cross-system interrelations.
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In this work, and based on the work presented by [19], we continue to improve
the BN-model presented in [21]. The aim is to end up with a more formal approach for
exploring relations within OWFs in terms of safety and security. Using the resulting model,
and with help of expert knowledge, one can determine how a failing function impacts
other functions in this complex system and can design changes—e.g., the hardening of
selected functions—influencing the system’s stability.

The rest of this work is structured as follows. Section 2 reviews the important items,
such as OWFs (see Section 2.1), BNs (see Section 2.2), the functional resonance analysis
method (FRAM; see Section 2.3), and the stakeholder view (see Section 2.4). Section 3
describes the methodology adopted in this work. Section 4 presents the expert knowledge
and stakeholder goals. The model is presented on Section 5. The results and implications
are discussed in Section 6. Conclusions are summarized in Section 7.

2. Preliminaries

This section presents relevant information that supports the understanding of this work.

2.1. Offshore Wind Farms

Offshore wind farms (OWFs) are complex cyber-physical systems, with the following
principal elements: Wind turbines, offshore substations (OSS), control and operation cen-
ters, and power and communication cables. Furthermore, OWFs can be characterized by
the interaction of several interdependent abstraction layers—energy conversion, physical
structures, automated control and protection, maintenance (O&M), and IT communica-
tion [22–24]. Between these individual layers, several types of flow exist, e.g., energy, data
and information, people, and components.

Due to the nature of the complexity of offshore wind farm projects, there are various
different stakeholders involved in each project. These stakeholders are, among others:
wind farm owner, operator, technology suppliers, O&M companies, logistics and transport
companies, authorities, fishery, shipping, etc. (see Section 2.4 for more details).

Many stakeholder groups have different interests, and therefore the operations-related
safety and security goals may differ between different stakeholder groups. Besides technical
safety and security goals, there are commercial, environmental, reputational, and supply
reliability-related aspects to consider for an offshore wind farm.

This paper outlines the methodology and processes used to determine and assess the
safety and security of offshore wind farms probabilistically (see Sections 3–5).

2.2. Bayesian Networks

BNs are probabilistic graphical models consisting of directed acyclic graphs. BNs are
suitable for taking an event that occurred and predicting the likelihoods of possible causes
contributing to it. In this formulation, the nodes of such a graph or network represent the
systems variables as probability distributions, and the edges represent their probabilistic
dependencies. In this description, a given node can be either independent or dependent. A
node is conditionally independent when it does not have any parent node. In the same way,
a node is conditionally dependent when it is a descendant of a parent node (for a more
detailed explanation about BNs, please see Section 3.1 of [21]).

BNs are usually used with discrete variables. At the same time, the probability of a
node (Ni) depends on whether it is independent or dependent. For an independent node, the
probability of failure P(Ni = S1) is given by a discrete value. The nodes are represented
by conditional probability distributions (CPDs), depending on their parent nodes. The
probability of a system of variables vi . . . vN to be in a given state S is the combined
probability of the single variables to be in that respective state:

Pr(S) =
N

∏
i=1

Pr(vi = xi|Par(vi)) (1)
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With the graph structure defined, the parametrizations of CPDs break down to con-
ditional probability tables (CPT), in which the probabilities have to be defined for each
combination of parent states. Given a system of discrete binary variables, a node with m
parents takes 2m parameters to fully define the conditional probabilities of each possible
case. This is usually achieved by fitting given data, or by using expert knowledge. In [25],
some approaches are presented to reduce the number of parameters required by defining
how exactly the parent states influence the probabilities.

BNs allow one to perform inference, i.e., to take into account incomplete and uncertain
evidence on observed variables, and thus dynamically update the marginal distributions of
the missing ones. This makes them especially useful for reasoning about the specific causes
of the observations, and for estimating their consequences. In the following sections, we
introduce step by step the concepts on which the BN model relies. Sections 3–4 introduce the
methodology and the stakeholders’ goals. Based on this, Section 5 presents the probabilistic
model.

2.3. FRAM

FRAM is a graph-based representation of the system of interest developed by Holl-
nagel [20]. It enables one to represent the system in terms of functions, which can be of
different types, such as technological, human, and organizational. FRAM has been applied
successfully in various domains—e.g., to study performance variabilities and incidents in
complex systems such as air traffic management [26,27], urban transport systems [28], and
vessel traffic services [29], and environmental aspects of a sinter plant [30].

FRAM is based on following four main principles:

• Functions fail and succeed in the same ways.
• Failure or success arises from the performance variability of functions.
• The variability of several functions can lead to non-linear behavior.
• Functional resonance is caused by unintended variability interactions of functions.

Each function consists of six so-called aspects, which enable the exchange of informa-
tion or material with other functions of the system (see Figure 1). These aspects are:

Figure 1. An example presentation of a FRAM model with two functions and information/material
exchange. I: input, O: output, P: precondition, R: resource, C: control, T: time.

• Input: something that is used by the function.
• Output: something that is produced by the function.
• Precondition: a state that is needed for the function to be executed.
• Resource: something that is consumed by the function.
• Control: something that controls execution of the function.
• Time: something that, e.g., delays the execution of the function in time.
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In the example presented in Figure 1, Function 1 outputs some information or material
that is used as input to Function 2.

2.4. Stakeholder View

The consideration of expert knowledge is mandatory for any safety and security as-
sessment of complex socio-technical systems (STSs). This includes that the actual behavior
of the STS needs to be properly understood with the help of experts. However, not only
does the view of the operator of the STS need to be considered; all kinds of stakeholders
have a legitimate interest in the STS. Additionally, their views can offer valuable insights.
Stakeholders can be defined as: “Persons or groups that have, or claim, ownership, rights,
or interests in a corporation, and its activities, past, present, or future.” They can be divided
into different groups of close (primary) or loosely (secondary) coupled parties [31].

Stakeholders can have aligned or opposed interests towards the system dependent
on their perspectives. Thus, it is important to refer to all kinds of stakeholders and to not
exclude any group. Most stakeholders support the system’s safety, but they could also have
an interest in sabotage or destruction. In times of global terrorism and evolving threats,
most of the safety objectives cannot be ensured without sufficient consideration of security
aspects [32]. The STS’s vulnerability against criminal and terrorist attacks can be decreased
by the implementation of defense mechanisms in the endangered system. This can include
means for protection, observation, and intervention [20,33]. The degree of fulfillment of
stakeholder interests can serve as a measure to quantify the safety and security level of the
infrastructure dependent on the corresponding perspective.

3. Methodology

This section outlines the proposed methodology of the expert-driven probabilistic
assessment of the safety and security of OWFs. The development of the methodology
was driven by the observation that the high complexity of socio-technical systems such
as OWFs, in combination with the assessment of safety and security, does not allow for
purely quantitative solutions, as discussed by [34]. Nevertheless, we believe that the access
to expert knowledge should be realized in a structured manner to provide an applicable
outcome of the assessment. It is important to note that this analysis is not meant to replace
a classical risk assessment. However, it offers the application of expert knowledge to
improve the assessment of the safety and security of this complex socio-technical system.

The first step of the proposed methodology is the survey and analysis of stakeholder goals,
which is a standard procedure for stakeholder assessment [35]. Therefore, the stakeholders
and experts were consulted for general goals and objectives in terms of safety and security
in OWF. Next, specific goals and related measures and sensor systems were identified. Due
to the complexity of these goals, measures and sensor systems are only described on a
high level (abstractly). Consequently, one has to understand the results produced by this
methodology as a qualitative measure of the safety and security aspects.

The following step is the expert-driven structuring, which focuses on determining
and characterizing the interrelations among specific goals, measures, and senors systems.
Therefore, the type of interrelation between each function is determined by applying the
categories (aspects) provided by FRAM (see also Section 2.3), i.e., input, output, precon-
dition, resource, control, and time. The following characterization was motivated by the
intention of this work to assess how failing elements and services of an OWF can impact
its safety and security. Therefore, for each function, a failure probability was defined. The
available options were restricted to a discrete set of values, i.e., low, medium, and high, to
acknowledge the high level of abstraction. Furthermore, the impact a failure of a function
has on the operability of the depending functions was weighted, too. Again, only a discrete
set of options existed.

In the third and final step, the generation of probabilistic model, the generated FRAM
model is transferred into a BN. This allows one to estimate impact of failing functions on
the safety and security of the whole system in probabilistic terms. Note, this analysis does
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not replace a classical risk assessment but offers the use of expert knowledge for simulating
and thus predicting possible critical situations.

4. Expert Knowledge and Stakeholder Goals

A widely applied strategy to assess global aspects such as the safety and security of
complex STS is the involvement of experts, who have specific knowledge about internal
processes, dependencies, failures, etc. Furthermore, such an assessment also requires the
consideration and harmonization of the views and goals of the stakeholders of the STS, as
outlined in Section 2.4.

This section presents our approach for structuring and organizing such knowledge
and goals for assessing the safety and security of OWF. The analysis and tables presented
in the subsequent subsections are based on the interrelations developed in Section 2 by [19].
Here we extend their work.

4.1. The Survey and Analysis of Stakeholder Goals

In the first step, the general safety and security goals of a OWF had to be identified.
With the help of experts and stakeholders, nine categories were defined, which are further
explained in Table 1 [9,12,16,36].

Table 1. General OWF safety and security goals.

# Safety and Security Goals Short Description

1 Accident prevention Avoidance of accidents between the plant and e.g., ships
2 Security Defense against e.g., attacks, vandalism
3 Compliance Respecting laws and regulations
4 Occupational safety Safety of people in the OWF
5 Environmental protection Protection of flora and fauna
6 Reputation Image of stakeholders
7 Plant safety Functioning of the OWF including O&M
8 Supply reliability Guarantee of energy supply
9 Finance Monetary interests

Next, the stakeholder groups had to be identified. Similarly to the discussions
in [35,37], generic OWF stakeholder groups, as listed in Table 2, can be defined. Fur-
thermore, the stakeholder interests must be related to the general safety and security goals
in OWF, as defined in Table 1.

Subsequent to this initial analysis, one can try to explore redundancies between the
general goals to reduce the complexity of further steps. In case of the identified goals, four
can be integrated within the remaining five; i.e., one can assume that the removed goals
are fulfilled when the others are fulfilled, too. The remaining general goals are: accident
prevention, security, occupational safety, plant safety, and environmental protection.

Table 2. OWF stakeholders and their direct interests (indicated by an X) in: (1) accident prevention,
(2) security, (3) compliance, (4) occupational safety, (5) environmental protection, (6) reputation, (7)
plant safety, (8) supply reliability, and (9) finances.

Stakeholder/Goal # 1 2 3 4 5 6 7 8 9

Owner X X X X X X X X X
Operator/Works manager X X X X X X X X X
Turbine supplier X X X X X X X
Maintenance provider X X X X X X
Logistic companies X X X
Grid connection X X X
Public authorities X X X X X X
Coast guard X X X X X
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Table 2. Cont.

Stakeholder/Goal # 1 2 3 4 5 6 7 8 9

Trade control X X X
Rescue forces X X X
Vessel and air traffic services X X X X
International organizations X X X X X
Insurance companies X X X X X X X X
Investors X X X X X X X X
Energy exchange market X X
Media X X X X
Society X X X
Environmental associations X X
Fishery X X X
Shipping X X

Stakeholders per goal 11 10 18 16 11 8 6 7 8

Next, the general goals were broken down into specific goals, which should be
achieved through adequate measures, and monitored and supervised via proper sensor
systems. Tables 3–7 list these measures and sensors.

Table 3. Specific goals and related measures and sensors for the general goal environmental protec-
tion.

Specific Goal Measure Sensor System

Protect plants Avoid pollutants Observe leakage, Observe water
quality

Protect water quality Avoid pollutants Observe leakage, Observe water
quality

Protect whales Bubble curtain
Observe population

Protect fish Avoid pollutants Observe leakage, Observe water
quality

Protect birds Observe population, Avoid colli-
sions plant/animal

Protect bats Observe population, Avoid colli-
sions plant/animal

Table 4. Specific goals and related measures and sensors for the general goal accident prevention.

Specific Goal Measure Sensor System

Safety plane Collision avoidance (Sonar transponder, Warning lights,
traffic control, guard vessel)

AIS

Safety helicopter Collision avoidance (Sonar transponder, Warning lights,
traffic control, guard vessel)

AIS

Safety ship Collision avoidance (Sonar transponder, Warning lights,
traffic control, guard vessel)

AIS

Safety ROV UXO clearance
Extreme weather measures Weather data

Safety submarine Collision avoidance (Sonar transponder, Warning lights,
traffic control, guard vessel)

AIS

UXO clearance
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Table 5. Specific goals and related measures and sensors for the general goal plant safety.

Specific Goal Measure Sensor System

Protect foundation UXO clearance
Collision avoidance (Sonar transpon-
der, Warning lights, traffic control,
guard vessel)

AIS

Protect tower (Protect foundation) Extreme weather measures Weather data

Protect rotor and nacelle (Protect tower) Avoid technical failure (regular
maintenance)

CMS

Lightning protection weather data
Extreme weather measures weather data
Avoid collisions plant/animals (Warning
lights)

Protect cable UXO clearance

Protect OSS Lightning protection weather data
Avoid technical failure (regular
maintenance)

CMS

Firefighting (fire detection) Heat detection, smoke detection
Collision avoidance (Sonar transpon-
der, Warning lights, traffic control,
guard vessel)

AIS

Protect converter station Lightning protection weather data
Avoid technical failure (regular
maintenance)

CMS

Firefighting (fire detection) Heat detection, smoke detection
Collision avoidance (Sonar transpon-
der, Warning lights, traffic control,
guard vessel)

AIS

Table 6. Specific goals and related measures and sensors for the general goal occupational safety.

Specific Goal Measure Sensor System

Safety of worker Collision avoidance (Sonar transpon-
der, Warning lights, traffic control,
guard vessel)

AIS

Firefighting (fire detection) Heat detection, smoke detection
Safe transfer (PPE, extreme weather
measures)

Weather data, people tracking

Measures helicopter (Landing area, safe
communication, firefighting)

EPIRB, CCTV, AIS

Measures climbing (PPE, trainings)
Measures diving (decompression cham-
ber, extreme weather measures)

Weather data

Rescue chain (Safe communication, ex-
treme weather measures)

PLB, CCTV, weather data

Telemedicine (Safe communication)

Shipwrecked men rescued Rescue chain (Safe communication,
extreme weather measures)

PLB, CCTV, weather data

Shelter
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Table 7. Specific goals and related measures and sensors for the general goal security.

Specific Goal Measure Sensor System

Safe communication IT-security

Safe data Prevent espionage (IT-security, access control)

Safe worker Repel attacks (access control)

Protect cable Repel attacks (access control)
Avoid manipulation (Access control)

Protect OSS Repel attacks (access control)
Avoid manipulation (Access control)

Protect converter station Repel attacks (access control)
Avoid manipulation (Access control)

4.2. Structuring Expert Knowledge

After having the relevant specific goals and the related measures and sensors at
hand, these must be structured and characterized. The proposed methodology employs
FRAM (see also Section 2.3) for this task, as this method provides a structured means for
representing the operation and dependencies of socio-technical systems [18].

In the first step, the measures, goals, and senor systems were transferred into FRAM
functions with the related aspects (see also Figure 1). Table 8 lists all identified high-level
functions that are relevant for fulfilling the safety and security goals in an OWF.

Table 8. A list of all functions with their respective probability of failure p and influencing factor
f . Values are either low (L), medium (M), or high (H) and presented in Table 9. ROV (remotely
operated vehicle), OSS (offshore sub-station), UXO (unexploded ordnance), PPE (personal protection
equipment), AIS (automated identification system), CMS (condition monitoring system) EPIRP
(emergency position-indicating radio beacon), CCTV (close-circuit television), PLB (personal life
beacon). Source: Table adapted from [19].

# Function Name p f # Function Name p f

1 Protect plants L L 33 Firefighting L H

2 Protect water quality M M 34 Fire detection L H

3 Protect whales L L 35 Safe transfer L H

4 Protect fish L L 36 Measures Helicopter L H

5 Protect birds L L 37 Measures climbing M M

6 Protect bats L L 38 Measures diving M M

7 Safety plane L H 39 Rescue chain L H

8 Safety helicopter M H 40 Telemedicine M M

9 Safety ship M H 41 Shelter L M

10 Safety ROV H L 42 Regular maintenance L H

11 Safety submarine L H 43 Traffic control L M

12 Protect foundation L H 44 Guard vessel M L

13 Protect tower L H 45 PPE M L

14 Protect rotor/nacelle M H 46 Landing area M L

15 Protect cable L H 47 Trainings L L

16 Protect OSS L H 48 Decompression chamber L L

17 Protect converter station L H 49 IT-security M H

18 Safety of worker M M 50 Prevent espionage L H
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Table 8. Cont.

# Function Name p f # Function Name p f

19 Shipwrecked men rescued L L 51 Repel attacks L H

20 Safe communication M M 52 Avoid manipulation L H

21 Safe data L M 53 Access Control L H

22 Avoid pollutants L H 54 Observe leakage L M

23 Bubble curtain L L 55 Observe water quality L M

24 Observe population L L 56 AIS L H

25 Avoid collision
plant/animal M M 57 Weather data M M

26 Collision avoidance L M 58 Heat detection L H

27 Sonar transponder L M 59 Smoke detection L H

28 Warning lights M M 60 CMS L M

29 Weather measures M M 61 EPIRB L H

30 UXO clearance L H 62 People tracking L M

31 Avoid technical failure M M 63 CCTV M M

32 Lightning protection L H 64 PLB M L

Next, interrelations between the functions and goals must be determined with the
help of experts and stakeholders. This includes also the definitions of the types of the
interrelation with respect to the FRAM aspects, i.e., input, output, precondition, resource,
control, and time [19,38,39]. Figure 2 depicts the extracted representations of all stakeholder
goals (goals 1–9; see Table 1), along with the sixty-four (64) functions, which are classified
as goals (functions 1–21), measures (functions 22–53), and sensor data analysis (function
54–64; see Tables 3–7).

In the next step, the interrelations and the actual functions must be characterized. As
discussed in Section 3, this characterization refers to the failure probability of a function
and the impacts failing parent functions may have on that probability. The latter is called an
inherent influencing factor. The failure probability pi of a function Fi defines the likelihood
that Fi fails in a given time, i.e., within one year.

As it regards the influencing factors, two types of interrelations have been defined:
(I) supportive dependence and (II) compulsory dependence. In case of (I), a function provides
services for other functions that have supportive character, but are not crucial for the actual
operation. In regard to the FRAM method, these services can be of following exchange
type: precondition, resource, control, output, and time (see Section 2.3). For interrelations
of type (II), a function provides a service that is essential for other functions. The related
FRAM type of exchange is: input. As discussed in Section 3, only a discrete set of options
exist for pi—i.e., low, medium, and high.

A supportive dependence means that a failure of the supporting function Fj increases the
failure probability pi of the function Fi, which receives its services though the influencing
factor f j,s. In other words, a failure of Fj amplifies the reasons responsible for a failure
of Fi. That means the new failure probability of Fi results from pi · f j,s. For example, a
failure in access control (function 53 in Table 8) does not directly lead to a failure of function
prevent espionage (function 50), but disturbs internal processes responsible for protecting
information and knowledge.

In contrast, a compulsory dependence means that a failure of the supporting function Fj
increases the probability that Fi fails by the value of the influencing factor f j,c. That means,
a failure of Fj has a direct impact on the service provision of Fi. Consequently, the new
failure probability of Fi results from pi + f j,c. For example, a failure of IT security (function
49) has direct impact on Safe communication (function 20).
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Figure 2. A graphical representation of all stakeholder goals (red), along with 64 functions, which
are classified in detailed goals (blue), measures (green), and sensor data analysis (gray).

5. The Transfer to a Probabilistic Model

This section presents the third and final step, i.e., the transfer of the functional model
to a probabilistic model (see also Section 3). From now on, the words node and function are
used indistinguishably. With the functional model and the relevant functions at hand, it is
time to define their failure probabilities and the parameterized interrelations. This informa-
tion must be used to analyze how the failure probabilities of functions are interconnected.
Therefore, BNs are employed, which enable this kind of analysis.

In a first step, the architecture of the functional model (see also Figure 2) is converted
into a BN one by transforming each function into a node Ni and the exchange connections
into edges of the BN. Each node can take one of two distinct states: S0, i.e., working, and
S1, i.e., broken.

In the second step, the probabilities of the nodes are defined. As already mentioned,
the probability of a given node depends on whether it is an independent or dependent one.
For the former case, the probability of failure (Pr(Ni = S1)) is given by:

Pr(Ni = S1) = pi (2)

where pi refers to the probability of failure of node Ni given in Table 8.
As for the dependent nodes, CPTs are generated for every node by combining the

inherent failure probability pi and the influencing factors.
As discussed in the previous section, a supportive dependence means that a failure

of a parent node Nj increases the inherent failure probability by a factor f j,s; i.e., Pr(Ni =
S1 |Nj = S1) = pi f j,s. In contrast, a compulsory dependence means that a failure of a parent
node Nj increases the probability that Ni enters the failure state S1, too, by the value f j,c, i.e.,
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Pr(Ni = S1 |Nj = S1) = pi + f j,c. Consequently, for each combination of parent states, the
respective row in the CPT can be computed in the following way:

Pr(Ni = S1) = pi ∏
j∈Sup
Nj=S1

f j,s + ∑
j∈Comp
Nj=S1

f j,c (3)

with Sup and Comp being the sets of supportive and compulsory relations between nodes,
respectively. In order to have a better understanding of Equation (3), Appendix A picks up
two exemplary cases of a network with two and three nodes, respectively, and shows their
explicit forms.

Having defined the probabilistic model (i.e., Equations (2) and (3)), the failure prob-
ability P(Ni = S1) of a node Ni can be obtained by considering the discrete values of
pi and fi of low, medium, and high, respectively, presented in Table 8. Table 9 lists the
respective numeric values according to supportive and compulsory dependence. Figure 3
shows the resulting BN model in the context of the safety and security of OWFs. The
network has a total of twenty seven independent nodes and thirty seven dependent nodes
(see also Section 4.1 of [21]). The edges are presented in different colors according to
their dependence. Compulsory dependence corresponds to the FRAM aspect: input (black).
Supplementary dependence consists on the following FRAM aspects: preconditions (red),
controls (orange), and resource (purple).

Figure 3. The Bayesian network model for assessing the safety and security in an OWF. This graphical
representation has the 64 nodes which are classified into goals (blue), measures (green), or sensor
data analysis (gray). The edges distinguish between compulsory and supplementary dependence. The
former belongs to the FRAM aspect: input (black). The latter represents the following FRAM aspects:
preconditions (red), controls (orange), and resource (purple).
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Table 9. Discrete values for function properties.

Parameter/Rating Low (L) Medium (M) High (H)

Failure probability p/year 0.005 0.015 0.02
Influence factor fs (supportive) 1.5 2 5

Influence factor fc (compulsory) 0.1 0.3 0.5

6. Results and Discussion

The BN model graph presented in Figure 3 represents how the availability of different
high-level nodes in a generic OWF impacts other nodes and the respective safety and
security goals. Thus, one can determine, for example, nodes with highest impact, the
consequences of improved or deteriorated failure probabilities, and the effect of the loss
of an individual node. This section explores the applicability of the implemented and
parameterized model.

6.1. Initial Model

In Section 5 we have introduced the probabilistic model. Based on Equations (2) and
(3), in combination with the definitions provided in Tables 8 and 9, and the respective
supplementary or compulsory dependence of the edges, we have determined the probability
failure values for the 64 nodes in our model. Figure 4 depicts the resulting failure distri-
bution P(Ni = S1) for each node in the network, with S1 is indicating the failure state.
The average failure probability of the network is P(Ni = S1) = 0.012± 0.007. Table 10
summarizes the five nodes with the highest P(Ni = S1)—protect rotor/nacelle (node 14 in
Table 8) is the most susceptible node.

Figure 4. Probability failure P(Ni = S1) value obtained in the model as a function of each of the
64 nodes. The x-axis indicates the nodes, which are identical to the functions listed in Table 8.

Table 10. The five nodes with the highest probability of failure P(S1) in the generic OWF.

# Node Name P(S1)

14 Protect rotor/nacelle 0.034

18 Safety of worker 0.031

17 Protect converter station 0.028

16 Protect OSS 0.028

10 Safety ROV 0.027
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The following sections explore scenarios in the context of the safety and security of a
generic OWF.

6.2. Variation of the Independent Nodes

In this scenario, it was assumed that the probability of failure of the independent nodes
was modified, i.e., decreased or increased by 20%. In Table 8, entries in column 1 marked
in boldface correspond to the independent nodes. There are 27 nodes in total. Figure 5 shows
the ratios of the resulting failure probabilities P(Ni = S1) with respect to initial model
defined in Section 6.1. The decreased and increased failure probabilities of the independent
nodes are clearly noticeable—i.e., the indicators with values of 0.8 and 1.2, respectively. The
failure probabilities of the dependent nodes varied in a range between 0.8 and 1.2. For some,
the variation was significant; for others, there were only slight changes.

Figure 5. Probability failure P(Ni = S1) value obtained in the model as a function of each of the
sixty-four nodes for two cases, namely: (i) when the independent nodes decreased by 20% (red stars)
and (ii) pi of the independent nodes increased by 20% (green triangles).

6.3. Loss of Selected Nodes

In this work, we also wanted to assess the stability of the developed model. In order
to do so, we have studied different scenarios where the integrity of the network was
compromised. This not only allowed us to explore cross-system interrelations, but also to
determine how the failing nodes impact others in this complex system. In this section we
present two main representative scenarios.

Figure 6 depicts the failure probabilities P(Ni = S1) of the network for a case when—
(i) AIS failed (panel a) and when (ii) warning lights, AIS, regular maintenance, and access
control lost their integrity (panel b). The results could be summarized as follows:

In case (i), the node AIS was set to fail with P(N56 = S1) = 1.0. This means that a
sensor data analysis node was set to fail (see Section 4.2). As a result, collision avoidance
(node 26) and measures helicopter (node 36) suffered the highest impacts: their proba-
bilities of failure were both about 0.5. Additionally, safety plane, safety helicopter, safety
ship, safety submarine, protect foundation, protect OSS, protect converter station, and safety of
worker (i.e., nodes 7, 8, 9, 11, 12, 16, 17, and 18, respectively) formed a second group with
P(Ni = 7, 8, 9, 11, 12, 16, 17 = S1) of about 0.2. The nodes protect tower and protect rotor/nacelle
(i.e., # 13 and 14, respectively) formed a separate group with P(Ni =13, 14 = S1) at about
0.1. Finally, the failure probabilities for the remaining nodes did not vary significantly; the
changes were in the order of a few percent when compared to those of the initial model.

As for the case (ii), the nodes warning lights, AIS, regular maintenance, and access control (i.e.,
nodes # 28, 42, 53, and 56) were set to fail with P(Ni = 28, 42, 53, 56 = S1) = 1.0. That means that
besides the sensor data analysis node AIS, we added three more nodes from the measures
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(see Section 4.2). As a result, measures helicopter (node 36) suffered the highest impact with a
probability of failure P(N36 = S1) of about 0.8. Subsequently, the nodes protect rotor/nacelle,
protect OSS, protect converter station, collision avoidance, avoid technical failure, and firefighting
(i.e., # 14, 16, 17, 26, 31, and 33, respectively) had new P(Ni = 14, 16, 17, 26, 31, 33 = S1) of about
0.5. This outcome shows that all aforementioned nodes lost their integrity in the network.

To continue with case (ii) of Figure 6, the nodes safety of worker and avoid collision
plant/animal (i.e., nodes 18 and 25, respectively) formed a second group with P(Ni = 18, 25 = S1)
of about 0.35. Additionally, protect birds, protect bats, safety plane, safety helicopter, safety ship,
safety submarine, protect foundation, and protect tower (i.e., nodes 5, 6, 7, 8, 9, 11, 12, and 13,
respectively) had a P(Ni = 5, 6, 7, 8, 9, 11, 12, 13 = S1) between 0.1 and 0.2. Interestingly, this last
group of nodes contributes to the detailed goals [19]. As for the remaining nodes, their failure
probabilities were not significantly impacted, as their measurements remained unchanged
compared to the initial model.

(a) Scenario (i) (b) Scenario (ii)

Figure 6. Probability of failure P(Ni = S1) for two scenarios, namely: (a) the node AIS fails and (b) the nodes warning lights
(W-L), AIS, regular maintenance (R-M), and access control (A-C) fail.

6.4. Discussion

The initial model (Section 6.1) was the outcome of the expert knowledge formulated
in a probabilistic BN model. The probability failure distribution of the system (Figure 3) is,
of course, governed by the discrete levels of low, medium, and high of pi and fi (Table 8)
and the compulsory and supportive dependence of the edges (Table 9). This model provides
an alternative representation of the functionality in a generic OWF where operators in the
O&M, or even stakeholders, can determine the performance of this complex system.

The different scenarios presented (Section 6.2 and 6.3) allowed us to study variations
of the initial model where the integrity of a selection of functions was lost. The results
clearly indicate the strength of this work. The implemented BN model enables decision
makers to explore the impacts of failure probabilities on the whole system, and based on
them, extract requirements for the implementation of each function.

7. Conclusions

Based on [19,21], this work developed a BN model for the high-level representation
of the safety and security state of a generic OWF. Here we proposed a compulsory and
supportive type of dependence in the probabilistic model. By studying the interrelations
between the functions, and by introducing different scenarios, we determined the impacts
that a failing function may have in this complex system. This work enables the extraction
of requirements to acquire the desired level of performance in a generic OWF, which in
turn will help one to assess its correct operation and maintenance.
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Abbreviations
The following abbreviations are used in this manuscript:

KPI Key Performance Indicator
KRI Key Risk Identifier
O&M Operation and Maintenance
FRAM The Functional Resonance Analysis Method
OWF Offshore Wind Farm
BN Bayesian Network
CPD Conditional Probability Distribution
CPT Conditional Probability Table
STS Socio-Technical System

Appendix A. Conditional Probability Table

Section 5 introduced the probabilistic model used for the BN formulation. In this
work, the probabilities of failure for the dependent nodes depend on whether the nodes
have compulsory or supportive dependence. Here we show Tables A1 and A2, which refer
to Equation (3) for the two types of dependence when a given network has only two or
three nodes. These tables show these two specific examples so that the reader may get
familiarized with our formulation.

Table A1. CPT rules for two nodes. The CPT of node N2 is shown.

blueSupplementary dependence

N1

N2

sup

N2
N1 S0 S1
S0 1− p2 p2
S1 1− ( f1,s p2) f1,s p2

Compulsory dependence

N1

N2

comp

N2
N1 S0 S1
S0 1− p2 p2
S1 1− ( f1,s + p2) f1,s + p2

Table A2. Exemplary CPT rules for three nodes. The CPT of node N3 is shown.

N1

N3

N2

sup comp

N3
N1 N2 S0 S1
S0 S0 1− p3 p3
S0 S1 1− ( f1,s + p2) f1,s + p2
S1 S0 1− ( f1,s p2) f1,s p2
S1 S1 1− ( f1,s p3 + f2,c) f1,s p3 + f2,c
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