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Abstract: To sustain the complexity of growing demand, the conventional grid (CG) is incorporated
with communication technology like advanced metering with sensors, demand response (DR), energy
storage systems (ESS), and inclusion of electric vehicles (EV). In order to maintain local area energy
balance and reliability, microgrids (MG) are proposed. Microgrids are low or medium voltage
distribution systems with a resilient operation, that control the exchange of power between the main
grid, locally distributed generators (DGs), and consumers using intelligent energy management
techniques. This paper gives a brief introduction to microgrids, their operations, and further, a review
of different energy management approaches. In a microgrid control strategy, an energy management
system (EMS) is the key component to maintain the balance between energy resources (CG, DG,
ESS, and EVs) and loads available while contributing the profit to utility. This article classifies the
methodologies used for EMS based on the structure, control, and technique used. The untapped
areas which have scope for investigation are also mentioned.

Keywords: renewable energy sources; microgrid; energy management system; communication
technologies; microgrid standards

1. Introduction

Over the last few decades, with an increasing population, the world has gone through
an exponential consumption of energy which has led to the depletion of conventional
resources like coal, crude oil, and natural gas. The exploitation of these resources has
a severe impact on the environment with an increase in greenhouse gases [1,2]. To mit-
igate these effects, a policy has been adopted by different countries to introduce non-
conventional/renewable sources to support the fields of electrification and transportation.
In electrification, the existing power grid uses conventional sources for generation and lacks
power quality. The poor power quality of supply leads to load shedding and blackouts,
thereby interrupting the day-to-day activities of the consumers. The conventional grid uses
one-third of the total generation fuel to convert into electricity and, with an eight percent
loss in transmission lines of the generated electricity, is used to meet the peak demand that
also has a five percent probability of occurring, with reduced reliability [3]. Conventional
generation does not utilize the heat produced by itself for any application. These drawbacks
of the conventional grid could be compensated with penetration of renewable sources
at local areas or distributed generation (DG) there by reducing the transmission losses
and maximum utilization of the output including heat generated [4–6]. Integration of dis-
patchable energy sources like wind and PV introduces the problem of intermittent power
generation as they generally depend on climatic and meteorological conditions. A hybrid
energy system consisting of storage elements and renewable energy sources is used for the
continuous supply of power. The future power grid needs to be intelligent to maintain a
reliable supply of economical and sustainable power for consumers [7–10]. To overcome
the existing challenges in the grid, a smart grid needs to be adopted which controls the
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complex process of power exchange and plans as well for the growing energy demand.
The future grid requires the support of communication technologies and local microgrids
(MG) for efficient control of the system. The integration of renewable energy resources at
the load side requires a two-way flow of power and data with the capability of adapting to
management applications that can leverage the technology [11]. During a fault condition,
the local microgrid isolates itself from the main grid, creating a standalone/islanding mode
of supply to the consumers [12,13]. This feature is known as plug and play, which allows
the local generation to meet the demand by balancing the energy available. The microgrid
consists of a microgrid control center (MGCC) and local controllers (LCs) to balance the
energy demand. The microgrid takes the inputs from forecasted parameters (weather,
generation, and market prices) to meet the uncertain load demand and also participates in
the energy market. The MGCC is supported by communication technologies and equipped
with processing algorithms to overcome the challenges in the generation–demand bal-
ance [14–17]. The energy management in microgrids controls the power supply of storage
elements, demand response, and local controllers/local generation sources. Figure 1 shows
a typical structure of a microgrid.

Figure 1. Structure of a typical microgrid.

The contributions of this paper are shown as below:

• This paper provides a brief introduction about the architecture of microgrids, different
classifications in microgrids, components of a microgrid, communication technologies
used, standards available for the implementation, and auxiliary services required.

• This paper provides a review of the recent analysis of the different energy management
strategies consisting of classical, heuristic, and intelligent algorithms. The article
analyzes each approach and its applications in that methodology.

• The paper addressed applications in energy management which include forecasting,
demand response, data handling, and the control structure.

• This article provides insight on areas in which the scope of research and their contri-
bution to energy management is in the nascent stage.

The energy management strategies proposed for the microgrid in the paper are struc-
tured into six sections. Section 1 is the introduction to microgrids and energy management.
Section 2 provides a brief overview of microgrid elements, architecture, classification,
and communication. Section 3 gives an overview of different control structures in energy
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management. Section 4 provides reviews on different numerical algorithms used in energy
management strategies in microgrids based on the classification, control, and methods of
approach. Remarks on each paper for different controls of the EMS application are given.
Section 5 discusses the support infrastructure of microgrids for their efficient operation.
Section 6 provides the conclusion of the paper.

2. Overview of Microgrid
2.1. Microgrid Components

A microgrid is a small or medium distribution system comprised of smart infras-
tructure capable of maintaining equilibrium in demand–supply while providing security,
autonomy, reliability, and resilience. Sourced distributed generations (DGs) like photo-
voltaics (PV), wind turbines (WT), microturbine (MT), fuel cells (FC), and energy storage
units (ESU) are expected to deliver electricity without interference from the main grid.
This high penetration of DGs can cause challenges in the performance of power system
stability in large areas. To minimize the risks, the concept of microgrids is proposed [18,19].
A microgrid is a small-scale low- or medium-level voltage distribution system consisting
of distributed energy resources (DERs), intermittent storage, communication, protection,
and control units that operate in coordination with each other to supply reliable electricity
to end-users [20].

2.1.1. Distribution Generations (DGs)

Conventional generation (CG), such as coal-based thermal power plants, hydro power
plants, wind-generation farms, and large-scale solar and nuclear power plants, are central-
ized to supply electricity for long distances. A decentralized generation is energy generated
by the end-users by using small-scale energy resources [21,22]. Local generation when
compared with the conventional power system reduces the transmission losses and the
cost associated with it. The generation could be from 1 kW to a few 100 MW; the generation
units are mostly used to support the peak load of the demand. Distributed generation
sources consist of both renewable and non-renewable sources, i.e., wind generators, PV
panels, small hydro power plants, and diesel generators [23]. Combined heat and power
(CHP) is where heating is added along with electricity in the application. The sources
that are being used in CHP systems are Stirling engines, internal combustion engines, and
micro-turbines (MT) using biogas, hydrogen, and natural gas [24]. CHP technology stores
excess allowing optimum performance, thereby attaining efficiency of more than 80%,
to that of about 35% for centralized power plants [25]. Table 1 shows characteristics of
distributed generation sources.

Table 1. Characteristics of distributed generation sources.

Characteristics Solar Wind Micro-Hydro Diesel CHP

Availability Location-Based Location-Based Location-Based Anywhere Source-Based
Output DC AC AC AC AC

Carbon emission Nil Nil Nil High Source-Based
Interface Converter Converter + IG/SG IG/SG Generator Generator

Flow control MPPT/DC Voltage MPPT/Torque and Pitch Controllable Controllable AVR and Governor

DC—Direct current, AC—Alternate current, MPPT—Maximum power point tracking, AVR—Automatic voltage regulator.

2.1.2. Energy Storage System (ESS)

Energy storage is a device that is capable of converting the electrical energy to a
storable form and converting it back to electricity when it is needed. Based on the form of
stored energy, there are four main categories for energy storage technologies: mechanical
energy storage (MES), thermal energy storage (TES), chemical energy storage (CES), and
electrical energy storage (EES). The key components for the working of MG EMS are the
energy storage units, which regulate the supply–demand balance during the operation of
DGs. In [26–28], a conclusion is drawn that a system with several micro sources is modeled
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to support an island mode where storage systems are needed to maintain the balance of the
intermittent sources. The energy storage devices that are included in microgrid systems
that provide continuous power supply are batteries, flywheels, and supercapacitors [29].
In terms of the current economy, batteries are less expensive and have a high negative
environmental effect compared to other storage devices. Storage in fuel cells is also another
option that converts the fuel into electricity through a chemical process. These fuel cells
require oxygen and hydrogen for continuous supply without discharge. A variety of fuels
available for the fuel cell are propane, natural gas, anaerobic digester gas, methanol, and
diesel hydrogen [30], while hydrogen has become prominent in recent years for its clean
and safe operation. Table 2 shows commonly used energy storage and their characteristics.

Table 2. Different energy storage systems in microgrids.

Characteristics Charge/Discharge
Rate (MW)

Discharge
Duration

Response
Time

Energy
Density
(Wh/kg)

Power
Density
(W/kg)

Environmental
Impact

Service
(Years)

Efficiency
(%)

Battery 0–40 msec–hours msec 10–250 70–300 High 5 70–90
Flywheel 0.001–0.005 msec–1 h msec 0.005–5 500–10,000 Low 20 75–95

Supercapacitor 0.002–0.25 msec–15 min instantaneous 5–130 400–1500 Low >10 90–95
Fuel Cell 0.001–50 sec-day+ m sec 800–10,000 500–1000 Moderate >15 20–90

CES 0.1–300 Hour–day+ min 3–60 - Low 15 40–90
SMES 0.1–10 msec–10 sec instantaneous 0.5–5 500–2000 Low 10 >95

Pumped
storage 0.1–5000 Hour–day+ Sec–min 0.5–1.5 - Low 25 >85

2.1.3. Loads and Their Classification

Loads can be categorized as residential, commercial, industrial, and others (agriculture
and public offices) from the statistical data of feeder consumption in the distribution
system. Measurement-based and component-based approaches are considered for load
model identification [31]. The measurement-based approach needs the measured data
from the smart meters or measuring devices which derives into load model structure. The
capturing of data for load characteristics needs to be composed of different environmental
conditions. The data obtained from the smart devices are used to form the load model
structure as static, ZIP (constant impedance-resistive components or heating, constant
current-street lighting, and constant power motors), and exponential [32,33]. Then, the
structure is estimated and validated with field measurements by correcting the errors
using intelligent detection techniques (artificial intelligence and pattern detection). The
component-based approach aggregates the load model by combining the load consumption
of individual components, acquired by the information or rating of each load in the load
composition. This approach needs three different datasets: (i) individual component load
model, (ii) percentage of each component’s load consumption, and (iii) share of the load
contribution from each load class—residential, commercial, and industrial. The individual
component model parameters are obtained from experiments [34–37]. Figure 2 has shown
different loads classification is based on identification and control.

The above-discussed techniques and classifications are the key structures for the smart
loads. Smart loads are energy-efficient sensor-based controllable load infrastructures that
have real-time access to energy usage data. Smart houses control the appliances according
to users’ preferences, using the intelligence of the appliances to enable the consumer to use
real-time energy budgeting to manage in any given day, which allows smart loads to tune
the consumer’s energy consumption to their daily lifestyle consumption [38,39].
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Figure 2. Loads classification is based on identification and control.

2.1.4. Integration of Electric Vehicles

Increased pollution led the world to move away from conventional fossil-powered
vehicles to electric vehicles. Electric vehicles have untapped potential in both environ-
mental and energy applications. A few of the applications of the electric vehicle are the
vehicle-to-grid (V2G), vehicle-to-vehicle (V2V) supply of power [40,41]. The connection of
EV connected to the grid through the charging station is shown in Figure 3.

Figure 3. Electric vehicle connected to a charging station.

V2G is a process where an electric-powered vehicle supplies power to the regional
local grid to meet the demand during peak demand or participate in the energy market by
reducing the overall cost of bidding during peak rise in the price of power. This requires
communication with the power grid to return the electricity or by controlling the charging
rate which enables the EV to support the renewable energy sources from fluctuating, as they
cannot be governed [42]. A few of the EVs that support the V2G are battery electric vehicles
(BEV), plug-in hybrid vehicles (PHEV), and fuel cell electric vehicles (FCEV). When the
electric car batteries are not in use, they can be used to provide electricity to the grid or to
charge other storage devices. With an estimated increase in usage of electric vehicles in the
future, it is assured to improve the storage capability to balance the demand–supply of the
MG. Thus, it provides improved performance in the stability and reliability of the system.
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2.2. Classifications of Microgrids

A microgrid is generally connected to the grid at the point of common coupling (PCC)
through STS (static transfer switch), where voltage and frequency stability is managed by
the power grid. When disturbance or failure in the grid occurs, MG maintains the system
stability by isolating itself from the main power grid, forming an islanded condition. The
renewable energy sources (solar, hydro, wind, and bio), which are not continuous, are
connected through power electronic converters (PEC) for good power quality of output;
these converters provide a resilient, reliable, continuous, and efficient power supply [43,44].
By the nature of the output obtained, MGs are classified into AC source microgrid, DC
source microgrid, and (AC/DC) hybrid microgrid.

An AC microgrid is a common topology of its flexible voltage level transmission using
transformers. An AC supply bus is introduced where all DERs, either with DC or AC
sources, are connected using PECs to AC loads [45,46]. Almost all the loads in the power
system are of AC nature; AC-MG is most sorted. Figure 4 represents a structure of an
AC microgrid.

Figure 4. Structure of an AC microgrid.

In the DC-MG network, a DC bus connects both AC and DC sources from where
the output is taken by the loads [47]. The concept to supply the DC supply is to reduce
the number of PEC used, as the DC sources are more available compared to AC sources,
which also eliminates the possibility of harmonics due to PEC, as it is not present in DC
supply [48]. Increasing popularity in the usage of DC sources like mobiles, laptops, and
also household items for isolated places instigated the DC-MG into existence. Figure 5
represents a typical DC microgrid structure.
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Figure 5. Structure of a DC microgrid.

An AC/DC hybrid MG is proposed to effectively introduce both AC and DC sources
and consumers in a system. AC sources and DC sources are connected to their respective
buses where the outputs are given to the consumers accordingly [49]. The idea of AC/DC
hybrid MG is to simultaneously use the supply from both DC and AC sources and thereby
reduce the overall power consumption [50]. This is possible by the PEC at both supply
buses that support the bi-directional exchange of power from source end to load and
vis-à-vis. Figure 6 represents a hybrid microgrid.

Figure 6. Structure of a hybrid microgrid.

2.3. Control Structure of a Microgrid

As a small-scale electrical distribution network, an MG has many variables and con-
straints to control. An energy management system plans, supervises, and manages the
system’s supply–demand balance while assuring dependable, cost-effective, and efficient
operation [51–53]. The management of a microgrid needs to deal with different technical
and economical areas, timescales, and infrastructure levels, which requires a control struc-
ture to operate the variables. One such control structure for the microgrid is the hierarchical
control scheme, which is a generally accepted standardized solution [54].

The hierarchical control structure consists of three different levels operating with
individual operating time, data inputs, and control equipment. The different levels in
hierarchical control schemes are: (i) primary level, which supervises the control of the DER
units; (ii) secondary level, which is responsible for the voltage and frequency modification
of the system in coordination with the primary level; (iii) tertiary level, which is the core
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control of the system like demand–supply management, storage management, renewable
integration, power flow control, optimization of parameters, and control strategies. The
tertiary level can also be termed as the energy management system [55]. Figure 7 shows a
typical hierarchal control of a MG.

Figure 7. Hierarchal control of a microgrid.

2.4. Communication of the Microgrid

Communication is an important tool that converts the conventional power network
into an intelligent system, connecting generation, transmission, distribution, and utilization
systems to the central management center to maintain stability by processing the real-time
data. There are several wires and wireless technologies available in the market but the
selection of technologies depends on features like data rate, latency, coverage area, reliabil-
ity, and consumption of power [56]. Table 3 presents various communication technologies
used in microgrid. Communication equipment could increase the MG implementation
cost with an increased number of communication devices like the repeater and routers for
feasible and fast co-collection of data in an area. Increase data collection by the sensors and
monitors in the smart homes and smart cities to compensate for the cost and the dire need
to reduce the communication infrastructure while maintaining the reliable operation [57,58].
With recent trends in MG’s integration and to incorporate internet of things (IoT) devices
for measuring, it is better to consider wireless communication technology for its wider
applications [59].
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Table 3. Communication technologies in a microgrid.

Technology Spectrum Data Rate Range

GSM 900–1800 MHz 14.4 Kb/s 1–10 km
GPRS 900–1800 MHz 170 Kb/s 1–10 km

3G 1.92–1.98 GHz 2 Mb/s 1–20 km
4G 2.11–2.6 GHz 100 Mb/s 1–10 km
5G 3–90 GHz 10 Gb/s >1 km

WiMAX 2.5–5.8 GHz 75 Mb/s 10–50 km
PLC 1–30 MHz 2–3 Mb/s 1–3 km

Zigbee 800 MHz–2.4 GHz 250 Kb/s 30–50 m
Bluetooth 2.4–2.483-GHz 2.1 Mb/s 0.1–1 km

3. Energy Management System Control Structure
3.1. Structure of EMS

According to the International Electro-Technical Commission (IEC) standard appli-
cation program about power systems, IEC-61,970 defines an energy management system
as a “computer system comprising a software platform providing basic support services
and a set of applications providing the functionality needed for the effective operation
of electrical generation and transmission facilities to assure adequate security of energy
supply at minimum cost” [60].

Different operations of EMS are data analytics, forecasting, optimization, and human–
machine interface (HMI), and network reconfiguration for real-time interface with the EMS.
Figure 8 shows the structure of the EMS of an MG.

Figure 8. Structure of energy management system.

Energy management in microgrids is a complex automated system that is aimed
at optimal scheduling of available resources (CG, DGs, ESS) to meet the day-to-day de-
mand while considering the meteorological data and market price. There are three control
approaches in energy management of the microgrid which are: (i) centralized, (ii) decen-
tralized, and (iii) distributed.

The centralized control is at the core of the control in this method MGCC, which
collects the information from the local controllers and analyzes it to control the system
actions [61]. This process requires end-to-end communication between all local controllers
to the central controller. Different EMS structures are shown in Figure 9.
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Figure 9. Types of EMS control: (a) centralized, (b) decentralized, (c) distributed.

With an increase in the geographical area, the system control in centralized mode
becomes difficult due to the delay or lag in the communication, which leads to delay control.
This process is not feasible as well as not economical; hence, we choose the decentralized
mode of control. In decentralized control, each unit has its own local controller that
works in an autonomous state where it receives the voltage and frequency data [62].
Here, the decentralized control does not provide the all the information to the other local
controllers, but rather exchanges the global information to make the decisions of the
overall system. The exchange of information is allowed in a few controllers to take action
spontaneously in a state of emergency. A third approach, obtained with a combination
of the above two control approaches, is the distributed control [63]. This mode of control
scheme provides control to both centralized as well to decentralized property up to a
certain degree of control. In this control scheme, each local controller unit uses the local
information like voltage and frequency from the neighbors, which helps to obtain a global
solution by the central controller while using the two-way communication link by the local
controllers. Characteristics of different types of controls in the energy management system
are presented in Table 4.

Table 4. Characteristics of different types of controls in the energy management system.

Centralized Decentralized Distributed

Information Accessed Microgrids pass information to
the central controller

Independent control is provided
with data from the other local

controllers

Interoperability and data
exchange between every device

Communication Information Synchronized information from
the device to the central controller

Information among local
controllers is asynchronized

Communication is both locally
and globally asynchronized

Function in real-time Complex Acceptable Easy

Feature of Plug and play The central controller needs to
be instructed

Can be accessed by
central controller Available by the peers

Expenditure More Less Less

Structure of Grid Centrally controlled Locally controlled Both centrally and
locally controlled

Tolerance during fault Less tolerance capability One router fault—tolerated
N router fault—expensive

N router fault—tolerated,
Possible self-healing feature

Infrastructure Needs suggestion
integrating DERs

Integration is modular
and possible No change while integration

Size (Number of nodes) Less IPv4-212

IPv6-2128 >2128

Final Nodes No identification Unique identification IP Global unique identifier

Operation Flexibility Very less Available Very much needed

Bandwidth & Latencies Low and high Both are great High and low

QoS Not allowed Allowed Inherent

Connectivity EPA (Physical) TCP/IP (Physical) TCP/IP (Virtual)

Safety measures Less Available High

Individuality No No Possible
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3.2. Data Handling in EMS

Data handling and clustering are the prominent steps towards system management,
as many intelligent measuring and sensing devices have been integrated with the MG,
which generates a large amount of data per unit (hour, minutes, or seconds). The complex
structure of MG system requires it to be equipped with different sensors and monitoring
equipment which bring varied kinds of data, like structured data from the conventional
power system, semi-structured data from the system like images (camera), unstructured
data from meteorological data, network structure, and maps [64]. Figure 10 shows different
data types available in EMS.

Figure 10. Data availability in a microgrid.

Usage of a wide variety of applications of communication and network has improved
the speed of the data generated from the units while applications like big data are used to
access the information [65]. Intelligent networks help in unfolding the unknown patterns
from the data collected. Analytical software technologies like Hadoop, HBase, and Storm
are used as data centers to support the vast collection of the data in a structured format by
the sensors and the other measuring devices such as smart meters.

3.3. Network Reconfiguration

Network reconfiguration is an optimization problem that identifies the optimal radial
topology of the distribution network based on all topologies. Network reconfiguration is
generally carried out with the aim to reduce the power loss, harmonize voltage profile,
and unify network loading through a multi-objective framework. The multi-objective
optimal solution problem uses deterministic and stochastic methods for reconfiguration.
Much work on reconfiguration is presented using the meta-heuristic method in distribution
systems considering radial topologies by interchanging of tie lines [66,67].

3.4. Forecasting in EMS

EMS proceeds with data available towards analyzing different forecasting parameters
like electricity price market, energy purchase, weather, demand response management,
and financial planning using forecasting techniques.

Forecasting is a prominent part of energy management, which is classified in different
categories concerning the period of forecast required [68]. These classifications are: (i) very
short-term (seconds– 1

2 h), which is used for the dynamic control of renewable energy
sources according to the load requirements; (ii) short-term ( 1

2 –6 h), which is used for energy
scheduling among the sources and the storage devices; (iii) medium-term (6 h–1 day),
which is used for market pricing; and (iv) long-term (1 day–1 week), which is used in load
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dispatch and maintenance [69]. Figure 11 shows types of forecasting techniques available
in EMS of microgrid.

Figure 11. Forecasting techniques in EMS.

3.5. Demand Management in Microgrid

Load balance acts as a constraint between generation and demand. Load demand
balance problems can be categorized in two ways: the supply-side and the demand-
side [70]. Supply-side balance can be obtained by using the hierarchical control scheme
for the economic scheduling for consumption by the end-users. Load control can be
categorized as: (i) controllable loads, which are the loads that are managed according
to the price, and (ii) shiftable loads, also known as deferrable loads, such as charging of
electric vehicles, washing machines, dryers, which can provide scheduling flexibility for
demand response.

The demand-side balance needs to be carefully accessed by modeling the generation
in renewable energy, i.e., by forecasting for the supply to the users in the system. Demand-
side control is sub-categorized into direct load control (or the demand side management)
and price-based load control (or the demand response). Demand-side control is performed
by the central controller by the consumer agreement to mainstream the economic agenda.
In the price-based load control, the consumer is provided with options to choose their
energy consumption according to the market price available. Figure 12 shows different
supply and demand classification in EMS.
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Figure 12. Supply and demand management classification.

4. Numerical Methodologies of EMS

Different EMS techniques are differentiated according to the numerical methods used
for controlling the energy management system. These methods are broadly classified into
three categories: (i) classical methods, (ii) metaheuristic methods, and (iii) intelligent methods.

4.1. Classical Methods

Classical methods are the mathematical programming or classical programming
methods that choose certain variables to maximize or minimize a given function subject
to a given set of constraints. Branch and bound are the classic components that are used
for solving the classical method approach to find the optimal solution in an iterative
process without integer constraints. Classical methods use both linear and nonlinear
optimization models to solve the problem. The classical methods are divided into certainty-
and uncertainty-constrained problems.

Under certainty linear programming (LP) are mixed integer programming (MIP) and
nonlinear programming (NLP). A combination is mixed-integer non-linear (MINLP) and
mixed-integer linear programming (MILP) [71–73]. Uncertainty constraints are decision
theory (rule-based and deterministic-based), where the output of the model is fully deter-
mined by the parameter values and the initial values; whereas probabilistic (or stochastic)
models incorporate the randomness in their approach such as dynamic programming (DP)
and stochastic programming (SP) [74]. An optimization algorithm is an algorithm that
uses the physical deterministic method of solving the solution without any random nature
being known as deterministic. Table 5 shows a review of MG EMS by classical methods.

Table 5. A review on classical mathematical programming methods used in EMS.

Ref No. Method Power
Sources Ev Dr Grid/Island Ems Remarks

[75] MILP-LP PV, BT, FC G/I C A mixed-mode of EMS is proposed with
ON/OFF and continuous run mode.

[76] MILP PV, WT, BT * I C
Cost reduced by reducing the ESS with
advantageous demand response (DR)
determination.

[77] MILP PV, BT, DE * G/I C
EMS proposed to minimize the fuel cost while
optimizing the diesel generators and battery
sizing using a piecewise linear function.

[78] MILP PV, WT * I C
Optimizing the day-to-day energy scheduling
with DR and EVs using multiobjective
constraints.
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Table 5. Cont.

Ref No. Method Power
Sources Ev Dr Grid/Island Ems Remarks

[79] MILP PV, WT, DE,
MT, FC, BT * G/I C

EMS is modeled to optimize while determining
the capital cost, cost of the fuel, energy cost, and
penalization for emission. Energy sources and
storage are considered in economical dispatch
for techno-economic analysis.

[80] MILP PV, BT G/I C A three-phase EMS model is proposed with load
shedding considering outage constraints.

[81] MINLP PV, WT, MT,
FC, BT I C

EMS is developed for a three-phase system to
minimize the fuel, startup, and shutdown
expenditure.

[82] MINLP PV, BT G/I C
Stable operation of hybrid MG with clean water
supply while reducing the overall daily
operating costs.

[83] NLP PV, FW, MT,
FC, BT G/I C Energy market operational cost and its profit are

determined by the MG management application.

[84] NLP PV, FC, BT * G/I C
Maximization of the cost benefiting
charge–discharge scheduling of the battery
considering the customers’ load shifting events.

[85] DP DE, BT G/I C

EMS is modeled to optimize the operational cost
of the conventional grids considering the penalty
cost. Computational time is reduced using
Pontryagin’s Principle.

[86] DP WT, DE, BT G/I C

Minimization of the total cost of operations by
scheduling the available units while predicting
the wind speed by short-term forecasting and
determining the real-time pricing.

[87] Approx.
DP WT, BT G/I C

Optimization of the MG is proposed considering
the cost function of the unit commitment and
economic dispatch operations along with daily
energy scheduling.

[88] Rule
based

PV, UC, MT,
BT I C

To perform power scheduling with day-ahead
forecasting for the conventional, PV generators
and gas turbine are used in a deterministic
power optimization.

[89] Rule-
based PV, WT, BT G/I C

To configure switches operation to model
different configurations considering SOC of the
battery and load imbalance.

[90] Rule
based PV, UC, BT G C

An energy management strategy with PV
generator and SOC-based battery hierarchical
structure for electricity regulation and
continuous operation of the microgrid.

[91]
Determinist-

ic
based

PV, WT, MT,
BT * G/I C

Proposed to minimize the overall running cost of
the system by reducing the industrial loads,
considering TOU rate of demand response
programs executed.

[92] NP-Hard PV, BT * G/I C

Proposes polynomial–time algorithms for
approximating optimal solutions and robust
supplier networks of group energy communities
in terms of a black start while minimizing the
operational costs.

PV—Photo voltaic; WT—Wind Turbine; MT—Micro Turbine; FW—Flywheel; DE—Diesel; FC—Fuel Cell; UC—Ultra Capacitor; G—Grid;
I—Islanded; C—Centralized, DC—Decentralized, DT—Distributed, *—Availability.



Energies 2021, 14, 5459 15 of 32

4.2. Metaheuristic Methods in EMS

A metaheuristic is a branch of random search and generation algorithms. These
algorithms select a path through a search algorithm such as a heuristic (random) to find an
optimal solution in an optimization problem with or without constraints. Metaheuristic al-
gorithms perform computation when incomplete data or limited capacity are provided [93];
the sample set of random values are considered and explored for an optimal solution.
Metaheuristic approaches use a separate search strategy to generate a random selection or
assumption of the problem variables, which can be advantageous in a variety of situations.

An optimal solution can be found in the distinct search space as used in combinatorial
optimization. Metaheuristic method is an iterative method that is unlikely to guarantee
a global optimum solution due to its convergence properties. This can be compensated
with finding the mean of the solutions; the use of Monte Carlo simulation improves the
convergence of the solution. Stochastic implementation of optimization is dependent on
the random variables created [94]. The metaheuristic approach works on two concepts,
namely intensification and diversification. Intensification is searching a local area to find
an optimal solution when we know that solution could be found in the prescribed region.
The diversification process is searching the space on a global scale with no limits in the
search pattern using the randomly generated variables, while randomization increases the
diversity of solution when the search space exceeds the local optima. To find the global
optimal or the best solution, both the intensification and diversification processes need to
be in proper balance, which increases the rate of convergence in the algorithm [95–99]. A
few metaheuristic algorithms are particle swarm optimization (PSO), genetic algorithm
(GA), modified PSO (MOPSO), non-dominated sorting genetic algorithm II (NSGA-II),
enhanced velocity differential evolutionary PSO (EVDEPSO), priority PSO, multi-voxel pat-
tern analysis (MVPA), grey wolf optimization (GWO), artificial bee colony (ABC), adaptive
differential evaluation (ADE), crow search algorithm (CSA), rule-based bat optimization
(BO), gravitational search algorithm (GSA), alternating direction method of multipliers
(ADMM) using modified firefly algorithm (MFA), teaching–learning optimization (TLA),
social spider algorithm (SSO), and whale optimization algorithm (WOA). Table 6 provides
a critical review of the metaheuristic methods used in EMS.

Table 6. A review of metaheuristic methods used in EMS.

Ref No Method Power
Sources Ev Dr Grid/Island Ems Remarks

[100] NSGA-II PV, WT, BT G/I C

A multi-objective optimization problem is
proposed to maximize the economy. Intelligent
power marketing is adapted to improve the
economic dispatch of the microgrid.

[101] NSGA-II PV, WT, BT * G/I C

This paper establishes an integral objective
function considering the demand response and
user satisfaction constraints, which has an effect
on the economy and operation of the system
with the DR strategy.

[102] PSO PV, MT, BT,
TES G/I C

An optimal energy planning is proposed for the
recently modeled energy hub. An efficient
microgrid structure is discussed along with
technical and economic prospects with
optimization.

[103] CVCPSO PV, WT, DE * G/I C

Minimizing the operating costs while
maximizing the utility benefit using the
CVCPSO algorithm, which yielded the
Pareto-optimal set for each objective, and the
fuzzy-clustering technique was adopted to find
the best compromise solution.
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Table 6. Cont.

Ref No Method Power
Sources Ev Dr Grid/Island Ems Remarks

[104] MPVA PV, WT, MT,
BT G/I C

A sports metaheuristic algorithm to minimize
the overall running cost of MG while studying
four different MG scenarios.

[105] GWO PV, WT G/I C

A sine cosine optimizer is used to optimally
participate in the trading of energy, i.e., selling or
buying the power while bringing the capital cost
of the microgrid.

[106] ABC PV, WT, DE,
BT, FC * G/I C

An EMS application of the V2G economic
dispatch problem is optimized in the MG while
converting the multi-objective problem to a
single objective using the judgment matrix
methodology.

[107] EBC PV, WT, MT,
BT G/I C

Different TOUs are evaluated to minimize MG
operational costs and to analyze the efficiency of
a typical distribution system, considering all
relevant technical constraints.

[108] ADE DG, BT G C

An ADE-based optimization is proposed for the
DC microgrid modeling the active power
sources under real-time pricing to minimize the
total operating cost.

[109] MOPSO PV, MT, BT,
TES * G/I C

EMS application is proposed to reduce the
carbon dioxide emissions and payback period of
the microgrid structure.

[110] EVDEPSO PV, BT * * G/I C

A day-ahead planning schedule is determined to
improve the energy market trading while
managing the resources available. Includes the
electric vehicles participating in the energy
market, G2V and V2G.

[111] Rule base
BO

PV, WT, MT,
FC, BT * G C

A bat algorithm is used to optimize the MG
operation by forecasting the load power and
uncertainties in RES using probabilistic methods.
The weight factors are taken for tuning.

[112] CSA PV, FC, DE,
HY * G/I C

The Pareto front is considered to investigate the
operating cost, solar power uncertainty, carbon
emission, and the cost of the parameters.
Hydrogen fuel is considered in reducing
operating costs.

[113] GSA PV, WT, BT * * G/I C
Optimization of the overall cost considering the
carbon emission and weekly generation
scheduling for the small dispatchable systems.

[114] ADMM-
MFA

PV, WT, MT,
FC, BT * G/I C

EMS is modeled for the MG to optimize the
electricity price by considering the load profile,
PV irradiance, and market prices with certain
constraints.

[115] TLA PV, WT, MT,
FC * * G/I C

Hybrid MG reducing the operating cost
considering thermal power recovery and
hydrogen generation; V2G technology helps to
convert the PEVs into active storage.

[116] SSO PV, WT, DE,
FC * I C

Optimal sizing of the renewable energy sources
with conventional sources to minimize the cost
of energy (COE) and power loss supply
probability while analyzing the reliability.

[117] WOA PV, WT, DE,
BT * I C

EMS is proposed to optimize the load demand of
the MG by minimizing the operating cost with
improved reliability of the power.

PV—Photo voltaic; WT—Wind Turbine; MT—Micro Turbine; TES—Thermal energy storage; DE—Diesel; FC—Fuel Cell; HY—Hydro;
C—Centralized, DC—Decentralized, DT—Distributed, *—Availability.
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4.3. Intelligent Methods in EMS
4.3.1. Fuzzy Control and Neural Networks

For the computation of a large amount of numerical processing data like signals or
images, fuzzy logic systems and neural networks (NN) are used. These methods are
computational nonlinear algorithms with the flexibility to use a range from small software
programs to large hardware systems. Through continuous decision-making by the system,
learning takes place and the knowledge acquired is stored in as weights. These weights are
the internal parameters of knowledge. A fuzzy logic system, when used to control a system
through a set of rules considering the constraints, is known as fuzzy logic control (FLC).
Applications of FLC are used to improve battery state of charge (SOC), smooth voltage
profile, and grid-to-vehicle (G2V) charge transfer [118].

Neuro-fuzzy is a combination of fuzzy approach and neural network, where fuzzy
inference system (FIS) is adjusted by the data provided to NN learning rules. Improved
speed, accuracy, and strong learning skills along with simple execution are the advantages
of this approach [119].

A neural network is an interconnection of neurons, when used in a physical system to
control using different layers of connection, which are also known as an artificial neural
network (ANN). These artificial NN are used for adaptive control and model predictive
analysis. Applications of ANN are provided with training via a dataset. From experience or
the outputs of the model, self-learning takes place. Using ANN for MG, EMS can perform
complex operations such as forecasting DR and control of MG [120].

Recurrent neural network (RNN) is a classification in ANN which allows it to provide
temporal dynamic behavior and the structure of RNN connects the temporal sequence
through the graph between the nodes. Similar to feed forward neural networks or ANN,
which process variable-length sequences using internal memory, RNN has an internal
state memory to process the sequence of inputs using short-term memory (STM) or long
short-term memory (LSTM) for predictions of energy and economy. A review on fuzzy and
ANN-based applications in EMS are described in Table 7.

Table 7. A review on fuzzy and ANN-based applications in EMS.

Ref No. Method Power
Sources Ev Dr Grid/Island Ems Remarks

[121] Fuzzy
logic PV, WT, BT * G/I C

EMS for distributed generations DGs in AC MG.
An adaptive neuro-fuzzy inference system
(ANFIS) is developed to manage the available
energy in ACMG.

[122] Fuzzy PV, WT, FC,
BT I C

The system is controlled by a low complexity
fuzzy system, with only 25 base rules which give
better results in terms of control and
energy-saving efficiency, that has
been improved.

[123] Fuzzy
logic

PV, WT, DE,
BT * * G/I C

Studies different fuzzy techniques for the
charging/discharging of the electric vehicle
while ensuring the optimal demand
management from the vehicle-to-grid (V2G).

[124] Fuzzy PV, FC, BT * G/I C

EMS is developed to manage the operating
conditions with economic constraints.
Operations of grid ON/OFF connections are also
discussed using the fuzzy logic controller and a
predictive controller.
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Table 7. Cont.

Ref No. Method Power
Sources Ev Dr Grid/Island Ems Remarks

[125] FLC PV, BT * G/I C

A fuzzy logic-based energy management system
is developed to minimize the power-sharing
error between renewable energy sources
and demand.

[126] Neuro-
fuzzy

PV, WT, MT,
FC, BT * G/I C

A neuro-fuzzy Laguerre wavelet control
(FRNF-Lag-WC) architecture scheme is
validated for various stability, quality, and
reliability factors obtained through a simulation
testbed implemented.

[127] Neuro-
fuzzy PV, FC, BT * I C

A battery cycle is improved by reducing the
charging/discharging period and ensuring
optimal power-sharing in the microgrid.

[128] RNN. PV, BT * I C

A control strategy is developed to maximize
consumption and minimize electricity pricing by
using an LSTM forecasting method for
supply–demand management.

[129] ANN PV, WT, DE,
BT * I C

A real-time scheduling problem is developed for
an MG with a finite horizon model using the
ADP approach. The ADP approach is modeled
using the RNN technique.

[130] RNN PV, BT * I C

Discussed many algorithms for scheduling
including the maximum time lap scheduling and
day-ahead forecasting for a building of its
energy consumption with PV installation.

[131] ANN PV, WT, MT,
DE, BT * G C

EMS application to optimize the economic
dispatch and to minimize the operating cost in a
hybrid microgrid using Lagrange programming
neural network.

PV—Photo voltaic; WT—Wind Turbine; MT—Micro Turbine; FW—Flywheel; DE—Diesel; FC—Fuel Cell; UC—Ultra Capacitor;
C—Centralized, DC—Decentralized, DT—Distributed, *—Availability.

4.3.2. Model Predictive and Multi-Agent EMS

Model predictive control (MPC) is an algorithm that regulates or controls the system
based on the moving or rolling horizon approach as specified in Unnikrishnan et al. [129].
The role of MPC is to make the system less sensitive to the variables and control the physical
process. MPC can be performed online with uncertainty constraints. In online methods,
the current system parameter and forecasted parameters help in updating the decision
variables at any instant [132,133]. The optimum solution could be obtained by updating
decision variables with current system parameters with ease, and gets complex with an
increase in variables. Hence, it is used in smaller systems.

In the multi-agent system (MAS), the objectives of the system are obtained by in-
telligent agents communicating with other nearby agents while participating to form a
configuration. MAS is an online/offline approach used in MG applications as shown
in [134]; this approach is utilized in the control of EMS, optimization, and managing of the
energy market. In [135,136], the application of MAS is used to control the architecture of
the MG while using optimization techniques for the configuration of renewable resources.
Table 8 presents the review on MPC and MAS based on EMS.
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Table 8. A review on MPC and MAS based on EMS.

Ref No. Method Power Sources Ev Dr Grid/Island Ems Remarks

[137] MPC PV, FC, SC, DE,
BT * I DT

Energy scheduling is proposed using the MPC to optimize
the dwell time of the high SoC state of the battery and to
smoothen the set point deviation of the fuel cell for
regenerative capability. Compared with fuzzy-based
heuristic in generation and load demand.

[138] MPC PV, WT, BT * G/I DT

MPC-based decision-making is developed by the
optimization algorithm for participation in the grid
electricity market with excess generation to support ancillary
services of the main grid.

[139] MPC PV, BT * G/I DT

A real-time microgrid from Athens is developed in the
laboratory to study the day-ahead market and the control
management of the energy profile with the energy market.
User interface with the market interactions is performed for
an enhanced microgrid.

[140] Adaptive
MPC PV, DE, BT * I DC

An EMS application is developed to optimize the cost
function of the fuel in a diesel generator for economic
dispatch using the Lagrange multiplier and lambda iteration
method with battery operation constraints.

[141] MPC PV, BT * * G/I DT

An MPC-based control strategy is developed to sell or store
the excess generated power from the solar panels while
managing the overall conditions like heating, ventilation, air
conditioning system, time of use pricing, and to reduce
economic constraints.

[142] MPC PV, BT * G DC
By installing an ESS at the end of the feeder, the capacity of
PVs and EV connected to the bus are extended up to twice
the capacity of the main power source.

[143] MPC PV, WT, DE, BT * G/I DC

A proximate scenario is taken by the optimizer at each step,
and the optimal supply of system capacity is accessed based
on the scenario selected and the possible variations in
the future.

[144] MAS PV, WT, MT,
FC, BT, DE * I DC

MAS-based agent optimization is developed to optimize the
operation of the distribution system with DG in energy
scheduling and generation. EMS is performed for the system
by considering the constraints, such as generation cost and
emission of carbon.

[145] MAS PV, BT * * I DC

A MAS-based two-stage energy management system is
developed using the Kantorovich method for the energy
generation scenario considering the self-healing strategy by
the decentralized restoration technique and coordinated
management.

[146] MAS-
CNN PV, WT, DE, BT * G/I DC

MAS-based energy management is proposed for the
generation management of the PV, wind, and load. Balancing
is maintained using the CNN (convolution neural
network)-based load forecasting technique for the
load demand.

[147] MAS PV, DE, BT * * I DC

This paper proposes a MAS-based intelligent energy
management system to operate a hybrid microgrid in
islanding mode while effectively minimizing the peak
demand of the system using the V2G and LED savings.

[148] MAS PV, WT, FC, BT G/I DC

This paper proposes a communication rule for sharing the
local information of the agents and getting access to the
global information was based on an average consensus
algorithm (ACA), and a restoration decisions strategy based
on the discovered global information was developed.

[149] MAS-RL PV, WT, BT * G/I DC

A multi-agent-based EMS is developed to manage the
objectives of the system. Reinforced learning is imbibed with
MAS to improve the decision-making capability by learning
using the sets for the participation in the energy
trade marketing.

[150] MAS PV, WT, BT * G/I DC

Experimental results show the ability of the proposed
multiagent T-Cell-based RT-EMS in maintaining the stability
and smooth operation of the MG with modularity and fault
tolerance features implemented through the MAS
JADE platform.

PV—Photo voltaic; WT—Wind Turbine; MT—Micro Turbine; DE—Diesel; FC—Fuel Cell; SC—Supercapacitor; G—Grid; I—Islanded;
C—Centralized, DC—Decentralized, DT—Distributed, *—Availability.
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4.3.3. Game Theory and Deep Learning

Deep reinforcement learning (DRL) is an intelligent algorithm approach to solve
complex problems like decision-making through training or learning. It is a combination
of reinforced learning (RL) and deep learning (DL) where agents perform the decision-
making task to a wide variety of applications. DRL is a sub-category of intelligent machine
learning, which is also a part of artificial intelligence where a system learns from the actions
it performs as a human learning experience [151,152]. The agent learns by a reward and
penalty system on their decision policy.

Game theory (GT) brings multiple decision variables to interact using a mathematical
model to analyze the environment. The objectives of the problem are achieved by introduc-
ing each strategic decision-making variable to participate in the game. Nash equilibrium is
a prominent solution concept for game theory, where the actions of other players are set to
constant while there is no change to the unilateral strategy by any player to change their
revenue strategy. Thereby, it is possible to arrive at an optimum mutual response from all
the players [153]. To find the optimal solution in the non-cooperative game theory when
there is evidence that no leader–follower relationship is found, Nash equilibrium strategy
is used to improve the utility parameter by making every player compete against each
other. A review on game theory and deep reinforced learning in EMS has been presented
in Table 9.

Table 9. A review on game theory and deep reinforced learning in EMS.

Ref No. Method Power Sources Ev Dr Grid/Island Ems Remarks

[154] DRL WT, DE, BT * I DC

An EMS is proposed for energy storage management and
load shedding management with dual control policy to
manage the utility of the system dual control to improve
resilience. The dual controls are the energy storage and load
shedding policies.

[155] DRL BT * G DC
EMS is developed to manage fuel efficiency compared to the
rule-based approach. The EMS developed makes decisions
by itself from the actions of the states.

[156] DRL PV, WT, BT * I DC
DRL-based energy management is proposed to minimize the
operating cost and to improve the economic performance of
the islanded microgrid by controlling the energy reserve.

[157] DRL PV, WT, MT,
FC, BT * G/I DC

An EMS is modeled with DRL and the Markov decision
process (MDP) strategy to satisfy the objective function, i.e.,
by minimizing the overall operating cost of the MG system.

[158] RL WT, BT * G/I C
An EMS application for the consumer-based intelligent
method is developed for the consumer to explore and control
the stochastic nature of the generation and load actions.

[159] DRL PV, WT, MT,
FC, BT G/I DC

Paper proposes a scheduled strategy to minimize the daily
operating cost of the MG using DRL architecture for
addressing the problem of operating an electricity MG in a
stochastic environment.

[160] Game
Theory PV, WT G C

A game-theory-based EMS is modeled to minimize the
utilization cost of the system using the coalition theory, the
EMS is proposed to reduce the utilization cost while
improving the market profit of the sellers.

[161] Game
Theory

PV, WT, BT,
HYD * * G/I DC

A Nash equilibrium-based game theory EMS is modeled for
controlling the power exchange and minimizing the
operating cost. An optimal operation can be achieved by
maximizing the preferences of the agents using the
Nash equilibrium.

[162] Game
Theory PV, BT * G/I DC

An MG-based non-cooperative game theory EMS is modeled
to optimally decide the electricity price for the consumers by
regulating the storage capacity of the system. A mechanism
for the price regulation is developed for the modeled EMS.

[163] Game
Theory PV, BT * I DC

Optimal scheduling of the energy and storage management
is proposed by the continuous non-cooperative
game-theory-based energy management system by
considering the energy consumption scenario to reduce the
overall cost.
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Table 9. Cont.

Ref No. Method Power Sources Ev Dr Grid/Island Ems Remarks

[164] Game
Theory PV, WT, BT * * I DC

An EMS is developed by forecasting the generation of the
short-term wind power plant using big data. The optimal
payment period is decreased by finding the prediction error
of the MG.

[165] Game
Theory PV, WT, FC, BT * G/I DT

The paper gives cooperation between the agents as a
non-cooperative or a cooperative game theory approach.
Nash equilibrium is used for exploring the optimum
solutions of games with energy management.

PV—Photo voltaic; WT—Wind Turbine; MT—Micro Turbine; FW—Flywheel; DE—Diesel; FC—Fuel Cell; UC—Ultra Capacitor; G—Grid;
I—Islanded; C—Centralized, DC—Decentralized, DT—Distributed, *—Availability.

4.4. Problem-Based Classification

The microgrid energy management strategies are discussed in previous sections, and
objectives considered in the review can be further classified into problems addressed.
The review methodologies that are classified based on problems addressed are shown
in Table 10.

Table 10. The problem addressed in microgrid energy management.

Problems Addressed References

Optimal storage management [76,98,112,123]
Demand response program [77,92,95,151,163]

On vehicle-to-grid system (V2G) [78,108,113,118,124]
Cost minimization [79,81,82,84,91,93,94,99,100,105,106,110,111,127,141,151,152,161,163]
Energy schedulling [80,87,89,90,102,104,107,109,114,115,121,136,139,142,154,156,157,160]

Operating time [85,126,150]
Reliability of operation [116,117,143,165]

Communication and information exchange [129,134,140]
Based on forecasting [119,129,138,146,162,164]

Data collection and scenario generation [125,147,155,158,159]
Based on market participation [83,88,101,132,137,141,146,149,153]

Time response [96,97,128,130,131]
Stability analysis [86,120,136,145,148,150]

Generate energy with lower emissions [103,144]

5. Microgrid Standards

Standards are the parameters or the process which ensure the product’s performance
levels to satisfy the safety and quality for the implementation according to utility market
requirements. The standards are developed to set a standard in the market for the safety of
consumers [166,167], introducing a set of verification procedures to test the performance of
the quantification and their comparison with a minimum set of requirements. Standards
for microgrids are set to provide configuration, topology, and laws to control the microgrid
and its integration to renewable sources. Different configurations can be implemented with
microgrid blocks to perform different operations. A set of testing procedures is carried out
in the distributed network operator [168] (DNO) and microgrid operator with parameters
to compare their control functions. These metrics or parameters are designed to test the
endurance of the system. Standards that exist for the smart grid distribution network
are the Institute of Electrical and Electronics Engineers (IEEE 1547) with identification
code 1547, which provides guidelines for interconnecting dispatchable sources into the
electric power grid; and IEEE 2030, which provides the inter-operability guide between
smart grids and microgrids [169]. International Electro-Technical Commission (IEC) is
another standardization for microgrids in which IEC 62,898 provides design and imple-
mentation of the microgrid. For electric vehicles in IEEE 2030.1, IEC 61851, and ISO 15118-1
give the guidelines for electric transportation and its interconnection to the power system.
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IEEE 1646 and IEC 61850-7-420 provide the standards of communication in the electric
network. IEEE 2413 and IEC 61,968 give the standards for connecting IoT into the system
and data exchange between devices and the network, respectively. Table 11 presents the
standards for microgrid and electric vehicles.

Table 11. Standards for microgrids and electric vehicles.

Standards Description

IEEE 1547 The standard for interconnecting distributed resources with an electric power system

IEEE 1547.1 Test procedures for equipment interconnecting distributed resources

IEEE 1547.2 Application guide for IEEE 1547 for interconnecting distributed resources

IEEE 1547.3 Monitoring, information exchange, control of distributed resources

IEEE 1547.4 Design operation and integration of distributed resources

IEEE 1547.6 Interconnecting of distributed resources for distribution system secondary networks

IEEE 1547.7 Guide to conducting distribution impact studies for distributed resources interconnection

IEEE 1547.8 The practices identified in P1547.8 should lead to the development of advanced hardware and software and
help streamline their implementation acceptance, resulting in higher penetration levels of DER

IEEE 2030 Guide for smart grid interoperability

IEEE 2030.1 Guide for electric power sourced transport infrastructure

IEEE 2030.2 Guide for interoperability of energy storage systems integrated with electric power infrastructure

IEEE 2030.3 The standard for test procedures of energy storage systems integrated with electric power applications

IEEE 2030.4 Guide for control and automation installations applied to the electric power infrastructure

IEEE 2030.5 The standard for smart energy profile 2.0 application protocol

IEEE 2030.6 Guide for the benefit evaluation of electric power grid customer demand response

IEEE 2030.7 The standard for the specification of microgrid controllers

IEEE 2030.8 Standard testing of microgrid controllers

IEEE 2030.9 Recommended practices for the planning and design of the microgrid

IEEE 1646 Communication requirements in substation

IEEE 2413 The standard for an architectural framework for the Internet of Things

IEC 62898-1 Guidelines for planning and design of microgrids

IEC 62898-2 Technical requirements for operation and control of microgrids

IEC 62898-3-1 Technical requirements for the protection of microgrids

IEC 62898-3-2 Technical requirements of microgrid EMS

IEC 62898-3-3 Technical requirements of self-regulation of dispatchable loads in microgrids

IEC 62257-9-2 Recommendations for renewable energy and hybrid systems for rural electrification—Part 9-2: Integrated
systems—Microgrids

IEC 61850-7-420 Communication between devices in transmission, distribution, and substation automation

IEC 61968 Data exchange between devices and networks in the power distribution domain

IEC 61851-1 Electric vehicle on-board charger EMC requirements for conductive connection to AC/DC supply

IEC 61851-23 DC electric vehicle charging station

IEC 61851-24 Digital communication between a DC EV charging station and an electric vehicle for control of DC charging

ISO 15118-1 Vehicle-to-grid communication interface—Part 1: General information and use-case definition

ISO 15118-2 Network and application protocol requirements

ISO 15118-3 Physical and data link layer requirements

ISO 15118-4 Network and application protocol conformance test

ISO 15118-8 Physical layer and data link layer requirements for wireless communication
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6. Auxiliary Infrastructure

In order to make a smart distribution system operable, a complex of networks and
devices needs to get together for a reliable system. IoT and smart meters technologies are
the primary components to make the conventional connection between the prosumer and
operator into a smart interdependent system with faster and reliable communication [170].

6.1. IoT Sensors

Advancements in wireless technology with improved sensing devices using embedded
processing technology have led to the Internet of Things [171], which provides efficient
monitoring, measuring, and control services.

IoT connects the physical and digital components without any mediation of the
operator. The connection of each network device is possible through foolproof protocols.
Unique identifier (UID) is a unique identification number for each IoT device that makes it
recognizable to others or the control network.

According to Gartner, the number of IoT devices in use by the year 2020 is estimated
to be 20 billion. Figure 13 shows the graph of the rate of increase in IoT devices by the
year. IoT devices are used in health care sectors (popular IoTs are fitness band and health
monitoring devices), the industrial sector (sensing and measuring devices), security sector
(cameras and positioning systems), and general devices are used in smart homes for the
monitoring and control of loads. Microgrids come into this cross-industry sector: this
sector specifies special devices that improve the efficiency of other network devices that
include improvements in quality of monitoring and reducing the losses through effective
control of failure rate in production [172]. Figure 14 shows the IoT based support to the
microgrid applications.

1 

 

 Figure 13. Internet of things (IoT) rate of increase in usage in different applications.
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Figure 14. IoT support to the microgrid.

6.2. Smart Meters

For the last few years, disc-type meters have been replaced by electronic integrated
circuit embedded meters which are used effectively by the distribution utility companies
in providing authentic and electronic billing for the customers [173]. The necessity for
refined flexible billing and control of billing information for two-way power flow proposes
the implementation of smart meter technology. Smart meter technology provides the
day-to-day of market prices of the power demand to the customer in commercial situations
and industries. Previously existing automated meter reading (AMR) technology collects
the energy consumption data from the customers to the utility, which is a one-way flow
in power and communication. The AMR, an advanced metering infrastructure (AMI)
developed in recent years, provides two-way communication and power flow between the
meter and the central control system [174]. The improved functionality characteristics from
the AMR to the AMI are shown in Figure 15.

Figure 15. AMR and their functionalities in the microgrid.

In the aspect of both transmission and distribution, a smart grid is a revolutionary
approach and the smart meters play a significant role as an integral part of the smart
grid in communicating with the customers and data collection. Supposedly, the smart
meter consists of three main components, which are communication network management,
advanced metering element, and data management unit. The smart meter is equipped
with a memory device that allows consumers to monitor their energy usage via a software
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interface, allowing it to communicate in two ways. The smart meter controls the operation
distribution system switches and reclosers which provide an efficient delivery system and
maintain reliability. The availability of two-way communication and the energy interface
in the smart meter allows the control of distribution infrastructure by sending commands
to the control center, which is also known as the distribution automation at the load end.
The advantage of the smart meter is that it enables the central control to take action when
tampering happens with the available rapid report sent from the smart meter as a part
of collecting data [175]. This helps in reducing power theft while improving the power
system security. Availability of day-to-day billing reports to the consumers helps them to
manage the loads and reduce their bills through the smart meter.

The data from every meter can be collected, processed, and stored using applications
like big data [176]. This makes the utility companies go towards the implementation of
smart meters where two-way communication plays a prominent role.

7. Conclusions

This paper gives a detailed review of the recent analysis of the different energy manage-
ment strategies proposed for the microgrid, consisting of classical, heuristic, and intelligent
algorithms. Furthermore, this paper provides a brief introduction about the architecture of
microgrids, different classifications in microgrids, components of a microgrid, communica-
tion technologies used, standards available for the implementation, and auxiliary services
required in the microgrid. It discusses key applications in energy management, which
include forecasting, demand response, data handling, and the control structure. This article
also presents an insight on areas in which the scope of research and their contribution to
energy management is in the nascent stage.

Optimization in cost minimization, operation control, reliability, energy scheduling,
emission control, and load forecasting is the objective functions of the EMS in both the
modes of microgrid operation for sustainable development. This makes the MG energy
management a multi-objective optimization problem considering the economic, technical,
and emission aspects as key constraints. The prime aspects that are covered in this review
are on prospects, solutions, and opportunities of the objective functions of the EMS using
efficient strategies. Based on the practicability, suitability, and tractability of the methods,
the techniques are considered to find global solutions to the operations of the system. The
microgrid energy management objectives depend on its mode of operation, whether it is
centralized, decentralized, or distributed operation, several economical constraints, and the
dynamic nature of dispatchable energy sources. Furthermore, few authors have considered
greenhouse gas emissions as an additional objective function apart from non- renewable
generators, batteries’ health status, integration of active demand response, active and
reactive losses along with resilience and customer management.

Many research articles have been published on the energy management of microgrids
on different applications, yet the reviewed papers have been considered based on diversity
of the objective functions. The areas such as customer confidentiality regulations, manage-
ment of communication systems, and reliability studies on islanded mode have further
scope to emphasize in future studies. Potential areas as mentioned above needed to be fo-
cused in detail along with the depth of discharge of the batteries, effect of the conventional
grid on greenhouse gas emissions, and demand response integration to obtain effective
and efficient operation of microgrids.
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