
energies

Article

Driving Factors and Future Prediction of Carbon Emissions in
the ‘Belt and Road Initiative’ Countries

Lili Sun 1, Huijuan Cui 1,* and Quansheng Ge 1,2

����������
�������

Citation: Sun, L.; Cui, H.; Ge, Q.

Driving Factors and Future

Prediction of Carbon Emissions in the

‘Belt and Road Initiative’ Countries.

Energies 2021, 14, 5455. https://

doi.org/10.3390/en14175455

Academic Editor: Attilio Converti

Received: 13 August 2021

Accepted: 27 August 2021

Published: 1 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural
Resources Research, Chinese Academy of Sciences, Beijing 100101, China; sunlili@igsnrr.ac.cn (L.S.);
geqs@igsnrr.ac.cn (Q.G.)

2 University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: cuihj@igsnrr.ac.cn; Tel.: +86-134-6654-7017

Abstract: ‘Belt and Road Initiative’ (B&R) countries play critical roles in mitigating global carbon
emission under the Paris agreement, but their driving factors and feasibility to reduce carbon
emissions remain unclear. This paper aims to identify the main driving factors (MDFs) behind
carbon emissions and predict the future emissions trajectories of the B&R countries under different
social-economic pathways based on the extended STIRPAT (stochastic impacts by regression on
population, affluence, and technology) model. The empirical results indicate that GDP per capita and
energy consumption structure are the MDFs that promote carbon emission, while energy intensity
improvement is the MDF that inhibits carbon emission. Population, as another MDF, has a dual
impact across countries. The carbon emissions in all B&R countries are predicted to increase from
SSP1 to SSP3, but emissions trajectories vary across countries. Under the SSP1 scenario, carbon
emissions in over 60% of B&R countries can peak or decline, and the aggregated peak emissions
will amount to 21.97 Gt in 2030. Under the SSP2 scenario, about half of the countries can peak or
decline, while their peak emissions and peak time are both higher and later than SSP1, the highest
emission of 25.35 Gt is observed in 2050. Conversely, over 65% of B&R countries are incapable of
either peaking or declining under the SSP3 scenario, with the highest aggregated emission of 33.10 Gt
in 2050. It is further suggested that decline of carbon emission occurs when the inhibiting effects of
energy intensity exceed the positive impacts of other MDFs in most B&R countries.

Keywords: Belt and Road Initiative; carbon emission; driving factors; SSP scenario

1. Introduction

The ‘Belt and Road Initiative’ (B&R), initiated by China in 2013, aims to build a trade
and infrastructure network connecting Asia with Europe and Africa along the ancient Silk
Road. As of 2015, 65 countries signed this initiative to boost infrastructure, economy, trade,
culture, and tourism. In 2015, the signatory countries accounted for 61.8% of the global
population, consumed 50% of the world’s energy, and contributed 47% to the world’s gross
domestic product (GDP) while emitting over 59% of the global CO2 [1,2]. The average
growth rate (5%) of carbon emissions in the above countries surpassed the average global
rate (3%) by a significant margin during the last decade [3–5]. The surging economic
development and cooperation across B&R countries translate into the increasing growth
rate of CO2 emissions. Under the Paris Agreement, with a global temperature control
target of 2 ◦C/1.5 ◦C, the global carbon emissions need to be half that of their 2010 levels
by the year 2050 [6,7]. With no exceptions, all 65 B&R countries are signatories to the Paris
Agreement with established NDC (Nationally Determined Contribution) targets. The B&R
countries need to take active measures to mitigate their future carbon emissions. Thus, it is
necessary to predict the carbon emission trajectory of the B&R countries for assessing the
feasibility of their emission reduction goals.
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Existing studies on future carbon emissions have mostly been conducted on a regional
or national level [8,9]. For instance, Wu et al. [10] assessed the carbon emission in BRICs
countries and predicted that China would have the largest CO2 emissions (9479 Mt) in
2020, while India and Brazil were predicted to emit 453 Mt and 300 Mt of CO2, respectively.
Wang et al. [11] predicted the CO2 emissions of China and India in 2030, both of which will
grow and reach to 10391Mt and 3395 Mt, respectively. Some studies have also predicted
that China’s carbon emissions will peak in the range of 8000 Mt to 18,000 Mt from 2025 to
2040 [12–14]. However, to date, no work has predicted the carbon emissions of all B&R
countries. It is worth noting that these predictions, to a large extent, are based on the
cognition of socioeconomic factors (i.e., population, GDP, and energy intensity), which also
regulate carbon emissions trajectories. Therefore, to obtain a scientifically robust prediction
of emissions trajectory and peaking time, it is crucial to understand the driving factors of
carbon emission in each country.

Several studies have shown that carbon emissions are highly related to socioeconomic
factors, such as total population, urbanization, GDP per capita, industrial structure, and
energy intensity [15–18]. However, how these factors impact the carbon emissions for B&R
countries remains unknown. In addition, with the enhancement of economic globalization,
economic and trade patterns have significantly changed across countries, but rarely has
the literature studied factors such as foreign investment and trade openness that represent
economic globalization. In addition, some widely used models, including the Logarithmic
Mean Divisia Index (LMDI) model, Index Decomposition Analysis (IDA), as well as the
Environment Impacts by Population, Affluence, and Technology (IPAT) model, either
decompose carbon emission only into limited real-world factors or fail to track the non-
linear relationships between carbon emissions and driving factors [13,19]. These limitations
also lead to the under-examination of driving factors.

To fill the literature gap, this study aims to identify the main driving factors (MDFs)
behind carbon emissions and predict the future emissions trajectories of the B&R countries
under different social-economic pathways. To that end, we apply the extended STIRPAT
model to identify the country-specific MDFs from eight potential drivers. Then, we use
the identified MDFs to predict the future emission trajectory of B&R countries under three
Shared Socioeconomic Pathways (SSPs). Finally, we explore the peak time and peak value
of carbon emissions in the B&R countries under three SSP scenarios.

This paper is organized as follows: Section 2 provides critical reviews on the recent
literature in this field. Section 3 describes the model and the data used in this study.
Section 4 presents the results, and Section 5 displays the discussion. Finally, Section 6
addresses the conclusions and policy implications of our work.

2. Literature Review

Research studies that assess the driving factors of carbon emissions primarily examine
the relationship between carbon emissions and socioeconomic factors [20–23]. The fre-
quently analyzed representative factors include total population, urbanization level, GDP
per capita, financial development, energy consumption structure, and energy intensity. For
example, Shuai et al. [24] investigated the impact of total population, GDP per capita, and
energy intensity on carbon emission in 125 countries and concluded that GDP per capita
was the global key driving factor of carbon emission. Brizga [25] selected total popula-
tion, GDP per capita, fossil energy consumption, and industry proportion as the potential
driving factors to investigate the MDFs in former Soviet Union countries. Khan et al. [26]
analyzed the influence of energy intensity, GDP per capita, financial development, and
income inequality on carbon emission in three developing Asian countries. However,
with the increase in globalization, additional less considered factors, such as foreign direct
investment and trade openness, have also been recognized as exerting a rather prominent
influence on carbon emission in some countries [27,28]. It is essential to investigate whether
these factors have impacted the carbon emissions and the extent of their impacts.
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However, some previously used models have limitations on adding additional factors.
Some models are only capable of decomposing carbon emission into a fixed number of
factors due to the limited model dimensions, while others may fail to detect the non-linear
relationship between carbon emission and the additional driving factors. The STIRPAT
model can not only quantify the impact of population, affluence, and technology on the
environment, but can also add unlimited additional factors, such as the industrial structure,
renewable energy consumption, service industry proportion, foreign direct investment,
and trade openness. It provides the advantage of exploring potential driving factors of
carbon emissions, making it a commonly used method to identify the driving factors of
carbon emissions [29,30].

An increasing number of studies extended the STIRPAT model by adding and drop-
ping variables to examine the relationship between driving factors and carbon emission [31]
(Table 1). For example, Li et al. [32] extended the STIRPAT model by adding industry struc-
ture, urbanization, and technology level and found that technology level is the MDF
inhibiting China’s carbon emissions while other factors are the MDFs promoting carbon
emissions. Shafiei and Salim [33] used urbanization, renewable energy consumption, and
non-renewable energy consumption to extend the STIRPAT model in OECD countries and
concluded that all factors, except for renewable energy consumption, promote the increase
of carbon emission. Furthermore, Salim et al. [34] applied urbanization, renewable energy,
and trade liberalization to extend the STIRPAT model for 13 Asian countries and concluded
that these factors are the MDFs that exert a positive influence on carbon emission reduction.
Similarly, Ghazali and Ali [27] employed trade openness and energy mix to extend the
STIRPAT model for 10 newly industrialized countries and suggested that the energy mix
promotes carbon emissions, while trade openness inhibits carbon emissions.

Combining the STIRPAT model with the socioeconomic scenario can be used to predict
future carbon emissions under the Shared Socioeconomic Pathways (SSPs) [35,36]. These
are established to facilitate the integrated analysis of future climate impacts, vulnerabilities,
adaptation, and mitigation pathways and describe different climate futures that cover
additional possible and internally consistent socioeconomic developments [37–40]. The
SSPs describe five plausible future pathways in mitigation and adaptation challenges by
narrating alternative social, economic, and technical aspects in the 21st century and provide
a new pathway for future carbon emissions prediction. Specifically, the first three SSPs
correspond to low, medium, and high challenges to both mitigation and adaptation, which
can also cover the previously commonly used Low, BAU (business as usual), and High
scenarios. Several studies used this as a new scenario framework to predict future carbon
emission trajectory and provided crucial information for the 2 ◦C/1.5 ◦C temperature
control target [41,42].

Table 1. Brief summary of previous literature for carbon emission used Extended STIRPAT models.

Authors Study Areas Period

MDFs and Result

Population, Affluence,
Technology Variables Extend Variables

Li et al. (2011)
[31] China 1991–2009 Population (+), GDP per capita (+),

Technology level (−) Industrial structure (+), Urbanization (+)

Shafiei and
Salim (2014)

[32]

OECD
countries 1980–2011 Population (+), GDP per capita (+),

Energy intensity (+)

Renewable energy consumption (−),
Non-renewable energy consumption (+),

Urbanization (+ invert-U shaped)

Shuai (2018)
[24] China 1996–2015 Total Population (×), GDP per

capita (+), Energy intensity (×)

Industry value added (+), Fixed assets
investment (−), Urbanization (−),

Renewable energy (−)
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Table 1. Cont.

Authors Study Areas Period

MDFs and Result

Population, Affluence,
Technology Variables Extend Variables

Li et al. (2011)
[31] China 1991–2009 Population (+), GDP per capita (+),

Technology level (−) Industrial structure (+), Urbanization (+)

Shafiei and
Salim (2014)

[32]

OECD
countries 1980–2011 Population (+), GDP per capita (+),

Energy intensity (+)

Renewable energy consumption (−),
Non-renewable energy consumption (+),

Urbanization (+ invert-U shaped)

Shuai (2018)
[24] China 1996–2015 Total Population (×), GDP per

capita (+), Energy intensity (×)

Industry value added (+), Fixed assets
investment (−), Urbanization (−),

Renewable energy (−)

Salim et al.
(2017) [33]

13 Asia
countries 1980–2010

Population (+), GDP per capita (+),
Non-renewable Energy

Consumption (+)

Urbanization (−), Renewable energy
(−), Trade liberalization (−)

Ghazali and Ali
(2019) [27]

10 newly
industrialized

countries
1991–2013 Total Population (+), GDP per

capita (+), Carbon intensity (+) Energy mix (+), Trade openness (−)

Wang et al.
(2017) [43]

China
(Xinjiang) 1952–2012 Population (+), GDP per capita (+),

Carbon intensity (−)

Industrialization (+), Tertiary industry
proportion (−), Fixed assets investment

(+), Trade openness (+), Energy
consumption structure (+)

Wang et al.
(2012) [44] China(Beijing) 1997–2010 Population (#), GDP per capita (+),

Energy intensity (−)

Urbanization (+), Industry proportion
(+), Tertiary industry proportion (−),

R&D output (−)

Wang et al.
(2019) [45]

China
(Guangdong) 1995–2014 Population (+), GDP per capita (+),

Energy intensity (−)

Industrialization level (+), Fixed assets
investment (−), Energy consumption

structure (+)

Fan et al. (2006)
[46] 99 countries 1975–2000

Population (+ in HI,-in UMI), GDP
per capita (+), Energy intensity (+

in HI, LMI and LI, -in UMI)
Urbanization (− in HI)

Nguyen et al.
(2019) [47]

33 emerging
economies 1996–2014 Population (#), GDP per capita (+),

Energy intensity (+)

Urbanization (−), Trade openness (+ in
short run, - in long run), Foreign direct

investiment (+)

Zhang and
Zhou (2016) [48] China 1995–2010 Population (+), GDP per capita (+),

Energy intensity (−)
Urbanization (+), Industry structure (−),

foreign direct investiment (−)

Inmaculada
et al. (2011) [30]

93 developing
countries 1975–2003 Population (+), GDP per capita (+),

Energy Efficiency (−)
Urbanization (+I nverted-U shaped),

Industrial Activity (+)

Roy (2017) [49] India 1990–2016 Population (+), GDP per capita (+),
Carbon intensity (−)

Energy demand (−), energy mix (+),
fossil fuel energy intensity (+)

Poumanyvong
and Kaneko
(2010) [29]

99 countries 1975–2005 Population (+), GDP per capita (+),
Energy intensity (−)

Urbanization (+), Share of industry in
GDP (+ in HI), Share of services in GDP

(×)

Sadorsky (2014)
[50]

16emerging
countries 1971–2009 Population (+), GDP per capita (+),

Energy intensity (+) Urbanization (×)

+ is positive effect, − is negative effect. (#) Variable not analysis in the study, (×): Variable is not significant and not the MDF, HI: High
income level, UMI: upper-medium income level; LMI: lower-medium income.

3. Materials and Methods

This study applied the extended STIRPAT model to identify the MDFs governing
carbon emissions and then predicted the future emissions trajectory of B&R countries.
Firstly, using the historical carbon emissions data from World Bank (1990–2014) [1], the
correlation among carbon emissions and eight potential driving factors (total population,
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urbanization, GDP per capita, energy consumption structure, industry structure, energy
intensity, renewable energy consumption, and trade openness) was tested. Then, the factors
that passed the Pearson correlation test were used to run the extended STIRPAT model to
identify the MDFs in each B&R country. Lastly, by combining the identified MDFs and
scenario assumptions, a country-specific STIRPAT model was established to predict future
carbon emissions.

3.1. STIRPAT Model

This paper employed the improved non-linear stochastic regression STIRPAT model,
which is created based on the IPAT model and describes the impact of population, affluence,
and technology on environmental pressure [51]. It overcomes the unit elasticity assumption.
In other words, the STIRPAT model assumes that there is a non-linear relationship between
the variables, which can statistically analyze the non-proportionate impacts of variables on
the environment. The mathematical formulation of the STIRPAT model is shown in the
following Equation (1):

I = αPa AbTce (1)

After taking the natural logarithm, it is written in the linear form as Equation (2):

ln I = ln α + a ln P + b ln A + c ln T + ln e (2)

where I represents the environmental pressure (carbon emission); P, A and T denote the
factor of population, affluence, and technology, respectively (independent variable); α is
the intercept; a, b, c represent the elastic coefficients of P, A, and T; e is the random error
term. Equation (2) could be further extended by integrating additional driving factors as:

ln Ii = ln a1 + a2 ln TPi + a3 ln URi + a4 ln RGi + a5 ln ESi
+ a6 ln ISi + a7 ln EIi + a8 ln REi + a9 ln TOi + ln e

(3)

where the subscript i stands for the country samples, a1 is the constant, a2, a3 . . . a9 are
the elastic coefficients, TP is the total population in thousands, UR is urbanization (%),
RG is the GDP (gross domestic product) per capita (constant 2011 USD), ES is the energy
consumption structure(%), IS is the industry structure (%), EI is the energy intensity (kg of
oil equivalent per constant 2011 PPP$), RE is the renewable energy consumption (%), and
TO is the trade openness (%). A detailed description of the variables has been shown in
Table 2. It should be noted that the correlation of each potential driving factor (mentioned in
Table 2) with the carbon emissions has been tested through Pearson’s correlation analysis.

Table 2. The detailed driving factors in the STIRPAT model.

Variable Short Name Description Unit

C Carbon emissions Carbon emissions from energy-relate Kt

TP Population total population thousand people

UR Urbanization The ratio of urban population in total population %

RG GDP per capita Real GDP per capita constant 2011 USD

ES Energy consumption
structure

The ratio of fossil energy in total energy
consumption %

IS Industry structure The industrial value-added over the total GDP constant 2011 US (% of GDP)

EI Energy intensity Energy consumption per GDP kg of oil equivalent per constant
2011 PPP$

RE Renewable energy
consumption

The ratio of renewable energy in total energy
consumption %

TO Trade openness The ratio of trade (exports and imports) in GDP % of GDP
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The elastic coefficients need to be solved by regression methods. However, the OLS
(Ordinary Least Squares) regression may lead to multiple collinearities problem, since the
variance inflation factors (VIFs) of many countries were over 10, and for some, even above
100. Therefore, to eliminate the multi-collinearity, the PLS (Partial Least Squares) regression
was employed for each country. The significant factors were defined as the MDFs, for
which a specified STIRPAT model of each country was established and used to predict its
future carbon emissions.

3.2. Predicting Scenarios

Three SSPs scenarios, namely, SSP1, SSP2, and SSP3, representing low, medium, and
high challenges to both mitigation and adaptation, are integrated into the STIRPAT model
to predict future carbon emissions. SSP1 is a sustainable road that leads to low challenges to
both mitigation and adaptation. This scenario constitutes an inclusive development with a
relatively higher increase in income, urbanization, trade, and cooperation, but lower growth
in population and consumption. SSP1 is oriented towards low fossil fuel consumption
and lower energy intensity, which can basically achieve the 1.5 ◦C temperature control
target. SSP2 presents medium challenges to both mitigation and adaptation. It is a scenario
in which the above-mentioned socioeconomic development factors follow the middle of
the business-as-usual road trends. On the contrary, SSP3 describes a regional rivalry road
due to more focus on competitiveness and security among regions, and it leads to high
challenges to both mitigation and adaptation [39]. The assumptions on the variable among
three SSP scenarios are shown in Table 3.

Table 3. The three SSP scenarios assumptions.

Scenario
Mitigation

Chal-
lenges

Adaptation
Chal-

lenges

Population
Growth

GDP per
Capita

Urbaniza
tion

Industry
Structure

Energy
Consumption

Structure

Energy
Inten-
sity

Trade
Openness

Renewable
Energy

SSP1 Low Low Low High High High Low Low High High
SSP2 Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium
SSP3 High High High Low Low Low High High Low Low

3.3. Data

In this study, the historical data of annual CO2 emissions and socioeconomic factors of
B&R countries from 1990 to 2014 were used. The annual CO2 emissions (Kt), the proxy of the
dependent variables, were obtained from the World Bank database [1]. The eight related
independent variables, including total population (thousand people), GDP per capita
(measured as GDP divided by midyear population, constant 2011 USD), energy intensity
(measured as energy use per GDP, kg of oil equivalent per constant 2011 PPP$), urbanization
(the ratio of the urban population in the total population, %), energy consumption structure
(the share of fossil energy consumption in total energy consumption, %), renewable energy
consumption (the share of renewable energy consumption in total energy consumption, %),
industry structure (the share of industry value added to GDP, %), and trade openness
(the ratio of trade, including import and export to GDP, %) from 1990 to 2014 are stated
in Table 2. The data of all eight independent variables were derived from the Word Bank
database [1]. Factors related to GDP were converted into the 2011 fixed price for eliminating
the effect of price rise. It should be noted that the B&R countries in this paper refer to those
countries that signed the ‘Belt and Road Initiative’ with China before 2016. Considering the
availability of data, only 60 B&R countries, except East Timor, Afghanistan, the Maldives,
Syria, and Palestine, were analyzed in this study (see Appendix A Table A1). Furthermore,
these countries were divided into three groups, including the lower-middle-income group
(LMI), the upper-middle-income group (UMI), and the high-income group (HI), according
to the World Bank list of economies of June 2010 [52].

In addition, the data of socioeconomic assumptions (i.e., GDP per capita, urbanization,
and total population) used to predict from 2015 to 2050 were obtained from the SSP database
(https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=80, accessed on 1 February

https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=80
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2021), taken from the International Institute for Applied Systems Analysis (IIASA) and the
Wittgenstein Center for Demography and Global Human Capital model [53–56]. The data of
energy consumption structure (fossil energy consumption, renewable energy consumption)
and technology level (energy intensity) were obtained from the SSP database, which was
taken from the Integrated assessment models (IAM) scenarios model [39]. Other variables
like industrial structure and trade openness were designed according to the description of
the SSPs [36,39].

4. Results
4.1. Main Driving Factors

The selected MDFs of the B&R countries identified through regression analysis are
listed in Appendix A Table A2, and their elasticity coefficients are plotted in Figure 1. We
show that the elasticity coefficients of GDP per capita, energy consumption structure, and
energy intensity are positive in all B&R countries, which indicate positive effects on carbon
emission. The negative elasticity coefficient of renewable energy shows its inhibitive impact
on carbon emissions. Other factors such as population, urbanization, industry structure,
and trade openness may have opposing effects on different countries due to their positive or
negative elasticity coefficients. Figure 1b counts the number of countries having a specific
factor as its MDF. It can be seen that the GDP per capita was the most featured factor (90%
of countries), followed by energy intensity and population. The carbon emissions of over
71.7% of countries are dominated by these three factors. On the other hand, urbanization,
industry structure, and trade openness were selected as the MDFs least number of times,
with smaller elasticity coefficients, which implies their limited influence on the carbon
emissions in B&R countries.

Figure 1. The elasticity coefficients of MDFs and its proportion: (a) The elasticity coefficients of MDFs; (b) The proportion of
countries having the factor as one of their MDFs.

4.1.1. The Influence of GDP per Capita

GDP per capita is the main factor responsible for increasing carbon emission in B&R
countries. The elasticity coefficients, as shown in Figure 2a, are all positive, with a median
value of 0.965, which means every 1% increase in GDP per capita will lead to a 0.965%
increase in carbon emissions. As seen from Figure 2b, from 1990 to 2014, the GDP per capita
of all three income groups increased gradually by 58%, 93%, and 19% for HI, UMI, and
LMI countries, respectively. However, the gap in GDP per capita between different income
groups remained significant. Therefore, if GDP keeps growing at a similar pace, the impact
of GDP per capita on carbon emissions is expected to further intensify in these countries. It
is interesting to note that the elasticity coefficient is slightly higher for LMI countries (1.07)
and UMI countries (0.959) than HI countries (0.723). This indicates that the impact of GDP
per capita may slightly weaken with the increase of income level. The GDP per capita does
not feature in the MDFs of Qatar, the United Arab Emirates, and Singapore, indicating that
the carbon emissions of these countries have decoupled from their economies. This result
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is consistent with the Environmental Kuznets Curve (EKC) hypothesis, which states that
when the economy of a country reaches a certain level, its effect on carbon emissions will
gradually decline and possibly even decouple in the future [57,58].

Figure 2. The elasticity coefficiences of GDP per capita and its changes in different income groups: (a) The elasticity
coefficiences of GDP per capita in three income groups; (b) The changes in GDP per capita in three income groups from
1990–2014.

4.1.2. The Influence of Energy Intensity

Energy intensity is the second most crucial MDF within B&R countries. The influence
of energy intensity on the carbon emissions of countries belonging to different income
groups is consistent. As shown in Figure 3a, the elasticity coefficients of all countries
are positive, with a median value of 0.93. The median value of the elasticity coefficient is
slightly higher for HI countries (1.187) and UMI countries (0.959) than LMI countries (0.764).
This suggests that the impact of energy intensity becomes more critical when the income
increases. The gradual decrease in the energy intensity from 1990 to 2014 (Figure 3b) led to
the mitigation of carbon emissions. Every 1% improvement (decrease) in energy intensity
has reduced 0.93% of carbon emissions. Meanwhile, the energy intensities of all three
income groups appear to have reached a bottleneck under current technology and have
merged around 130 toe/1000 USD since 2010. If the trend continues, the impact of energy
intensity on carbon emissions may be less significant in the future.

Figure 3. The elasticity coefficiences of energy intensity and its changes in different income groups: (a) The elasticity
coefficiences of energy intensity in three income groups; (b) The changes in the energy intensity of three income groups
from 1990–2014.
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4.1.3. The Influence of Population

As one of the MDFs after GDP per capita and energy intensity, the influence of the
population for different income groups shows high variability. As shown in Figure 4a,
the elasticity coefficients fluctuated from negative to positive in different countries, which
implies the dual impacts of the population on carbon emissions. The median coefficients of
LMI (1.041) and UMI (0.813) groups are much higher than those of the HI group (0.394).
At the same time, the growth rate of the population of LMI (45% from Figure 3b) is much
larger than the corresponding rates of UMI and HI groups. This suggests that the impact
of the population on carbon emission will decrease as the income increases. The elasticity
coefficients are negative for some of the countries belonging to the HI group, such as
Slovenia and Kuwait. Therefore, for these countries, population growth may even inhibit
carbon emissions. Our results are in agreement with Shuai et al. [24] in that the impact of
the population on carbon emissions might be opposite in different income groups.

Figure 4. The elasticity coefficiences of population and its changes in different income groups: (a) The elasticity coefficiences
of the population in B&R countries; (b) The changes in the population of three income groups from 1990–2014.

4.1.4. The Influence of Energy Consumption Structure

Energy consumption structure represents the ratio of fossil fuel consumption over
the total energy consumption. Energy consumption structure is also one of the MDFs
within B&R countries with a consistent influence on different income groups. The elasticity
coefficients were found to be similar for different income groups with a median value of
0.788, as shown in Figure 5a. It means that every 1% increment in the proportion of fossil
fuel consumption would result in an 0.788% increase in carbon emissions in B&R countries.
However, as shown in Figure 5b, energy consumption structure in all three income groups
did not change significantly from 1990 to 2014. The fossil energy consumption in HI groups
showed a slightly declining trend, while others have increased slightly. Especially for
countries in LMI groups, whose fossil fuel consumption increased by 4.9% since 2000,
the impact of energy consumption structure on carbon emissions is highly likely to be
intensified in the future.

4.2. Predicting Carbon Emission at the National Level

Based on the specified empirical STIRPAT model by country, we predicted their carbon
emission under three different SSP scenarios. The aggregated carbon emissions of B&R
countries in key years have been shown in Table 4. In general, carbon emissions under the
SSP3 scenario are the highest, followed by SSP2, and the SSP1 is the lowest. Under the
SSP1 scenario, the aggregated carbon emissions in B&R countries are expected to peak in
2030, with total emissions of 21.97 Gt. Under the SSP2 scenario, the aggregated emission
will continue to increase until 2040, and then enter a plateau period with 25 Gt carbon
emissions per year. Under the SSP3 scenario, carbon emissions will increase dramatically
and are unlikely to peak until 2050. The highest aggregated carbon emissions will reach
33.10 Gt in 2050.
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Figure 5. The elasticity coefficients of energy consumption and its changes in different income groups: (a) The elasticity
coefficiences of energy consumption structure in B&R countries; (b) The changes in the energy consumption structure of
three income groups from 1990–2014.

Table 4. Carbon emissions of B&R countries in different scenarios.

Scenarios
Aggregated Carbon Emissions/Gt

2020 2030 2040 2050

SSP1 21.43 21.97 21.22 19.72
SSP2 22.41 24.52 25.27 25.35
SSP3 23.43 27.88 30.64 33.10

According to the emission trajectories of three SSP scenarios, as shown in Figure 6,
60 B&R countries can be classified into the following three groups:

(1) Declining group: This group is characterized by a gradual decline in carbon emissions
from 2015–2050;

(2) Peaking group: The carbon emissions of this group can peak before 2050;
(3) Increasing group: The carbon emission will continue to grow from 2015–2050.

It should be noted that the groups are not consistent in all scenarios.
Under the SSP1 scenario, 17 countries, most of which are HI and LMI, show a decreas-

ing trend in carbon emissions at a rate between 1.36% and 6.56%. The fastest reduction
happens in Belarus, whose carbon emissions are predicted to reduce from 55.6 Mt in 2014
to 5.2 Mt in 2050. In contrast, the slowest reduction occurs in Romania, whose emission
reduces from 55.78 Mt to 34.51 Mt. Under the SSP2 scenario, 17 countries maintain a
consistent downward trend. However, the decreasing rate of carbon emissions is expected
to slow down to an average of 1.94%. The decreasing rate of carbon emissions in Romania
is expected to reduce to 0.25%. Under the SSP3 scenario, carbon emissions of only eight
countries show a decreasing trend. At the same time, the annual average rate further de-
creased to 0.39%. Some UMI countries such as Belarus, Serbia, Russia, Romania, Lithuania,
and Moldova turned into the peaking group.
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Figure 6. Carbon emissions of 60 B&R countries under different SSPs. Plots are categorized by emission trajectories
belonging under SSP1. The green, blue, and pink label on left of picture represent declining group, peak group, and
in-creasing group, respectively.
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On the other hand, around 20 countries, most of which are UMI and LMI countries,
under SSP1 and SSP2, show an increasing trend in carbon emissions. Under SSP1, the
average annual growth rate is approximately 1.4%, with Turkmenistan (3.2%) and Kuwait
(0.07%) showing the fastest and slowest growth rates, respectively. Under SSP2, Kazakhstan,
Turkey, Uzbekistan, Iraq, Yemen, Jordan, and Kyrgyzstan were added to the emissions
increasing groups. The average annual growth rate rose slightly to 1.8%. The fastest growth
rate (4.3%) was observed for Tajikistan, while the slowest growth rate (0.2%) was observed
for Jordan. However, under SSP3, more than 30 countries show an increasing trend in
carbon emissions, and the average annual growth rate increased to 2.3%. The slowest rate
(0.7%) was found for the United Arab Emirates, while the fastest growth rate (5.8%) was
observed in Tajikistan. It is noted that the two largest carbon emission countries, China and
India, also switched to the increasing group under SSP3. Although their growth rates of
1.0% and 2.0%, respectively, were lower than the average, the cumulative increased carbon
emissions due to scenario change may reach 39700 Mt and 24182 Mt, respectively.

As shown in Figure 7, both the timing and amount of peak emissions vary significantly
among different SSPs. Under SSP1 scenarios, over 38% (23/60) of B&R countries will reach
peak emissions (Figure 7a). Furthermore, UMI countries reach their peaks earlier than
LMI countries. Most UMI countries (i.e., China, Thailand) tend to reach peak around
2030, with peak emissions of 12,661.9 Mt. In contrast, most LMI countries (i.e., India,
Kazakhstan, Turkey, Indonesia) are expected to peak around 2040, with a total peak
emission of 4743.6 M. Under the SSP2 scenario, countries such as Uzbekistan, Iraq, Yemen,
Jordan, Kazakhstan, Turkey, and Kyrgyzstan will no longer reach peak emissions. Therefore,
the carbon emissions of only one-fourth of B&R countries (16/60) can still reach a peak
(Figure 7b), most of them being UMI and LMI countries. However, their peak emissions
are both more massive and occur later when compared to those under SSP1. The peak
times of countries such as Malaysia, China, India, Singapore, and Albania have been
delayed by nearly 10 years in comparison to SSP1, resulting in 1871 Mt more emissions.
The carbon emissions of the remaining 11 countries such as Lebanon, Myanmar, Vietnam,
Thailand and Indonesia peak 5 years late, with an additional peak emission of 177 Mt when
compared to SSP1. Under the SSP3 scenario, the carbon emissions of only 21% (13/60)
of B&R countries are likely to peak by 2050 (Figure 7c). It should be noted that only four
countries (Lebanon, Myanmar, Vietnam, and Sri Lanka) remained from the peaking group
under SSP2. In comparison, the other nine countries transformed from the declining group
under SSP2 and belong to the peaking group in SSP3. Furthermore, the peak timing of
those four remaining countries is 2–4 years later compared with SSP2, leading to additional
99 Mt emissions.

Figure 7. Cont.
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Figure 7. Peak emission and time for 60 B&R countries under (a) SSP1, (b) SSP2, (c) SSP3.

5. Discussion

The effects of MDFs on carbon emission under different SSP scenarios were further
quantified by multiplying the elasticity coefficient and their changes (% increase) during
2015–2050, as shown in Figure 8. Overall, the predicted emission trajectories are highly
dependent on the combined effects of different MDFs, which is consistent with Le quere
et al. [59]. The effects of energy intensity improvement are the dominant factor for emissions
entering into the reduction path. For the countries in the declining group, the inhibiting
effect of energy intensity improvement on carbon emissions is around 40–60%, which is
1.16 times the total positive effects of other factors such as GDP per capita and the energy
consumption structure. Referring to the previous results (Figure 2), the countries in the
declining groups are mostly from the HI levels, for whom the impact of GDP per capita on
carbon emissions has been weakened or even decoupled.

On the other hand, as the effects of GDP per capita become larger, the carbon emissions
of these countries are more likely to increase to a peak value and then decrease. The peak
will occur when the inhibiting effects of energy intensity improvement offset the positive
effects of other MDFs. This can also be explained by the EKC hypothesis. Carbon emissions
decrease with the increase in income when it reaches a certain level (a turning point). While,
for countries whose GDP per capita continues growing and has not reached a turning point
from 2015–2050, their emissions will continue increasing.
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Figure 8. The effects of MDFs in 60 B&R countries. The countries belonging to the decreasing group
are marked with a green background, the peaking group is marked with a blue background, and the
increasing group is marked with a pink background.

The effects of the population are the other contributor to a continuous increase in
carbon emissions and the inability to reach peak. For the countries in the increasing group,
the positive effects of the population become more significant than the other two groups,
and their average effects even reach up to 67%. Most of these countries belong to the LMI
group, whose population is expected to increase consistently (referring to Figure 4), thereby
increasing carbon emissions. On the contrary, for countries such as Latvia, Slovenia, and
the Czech Republic in the HI group, the impact of the population turns negative, which is
consistent with Section 4.1.3. This again proves the double-edged effect of the population
on carbon emissions. Furthermore, the effects of energy consumption on carbon emissions
are negligible for most of the B&R countries. However, for some LMI countries, such as
Armenia, Kyrgyzstan, and India, their effect of energy consumption is an important driving
force for entering into the increasing group.

In addition, the assumptions about the growth or decrease rate of MDFs have also
been recognized as another reason for the changes in carbon emission trajectories. As
shown in Figure 8, the effects of energy intensity significantly decrease from SSP1 and SSP2
to SSP3, which contribute to the increased carbon emissions from SSP1 to SSP3. This might
have been caused by the differences in the assumptions of the energy intensity decrease
rate, which was 2% in SSP1, 1.5% in SSP2, and 1.0% in SSP3. However, as shown in
Section 4.1.3, energy intensity improvement may be subtle in the future, which implies the
possible overprediction of carbon emission. In addition, the effects of the population have
increased by 12.8% from SSP2 to SSP3. This may have been caused by the assumed average
annual population growth rate of 0.5% and 0.8% in SSP2 and SSP3, respectively. Especially
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for countries such as Iraq, Yemen, Kazakhstan, and Jordan, the average population growth
rate even reached 1.5% (in SSP2) and 1.8% (in SSP3), transitioning them to the increasing
group from the peaking group.

6. Conclusions

In this paper, we applied extended STIRPAT models by assembling historical CO2
emissions to explore the MDFs behind carbon emissions in 60 B&R countries. We also pre-
dict the emission trajectories under three SSP scenarios over the next 45 years (2015–2050).
The following conclusions are drawn from this study.

GDP per capita, population, energy consumption structure, and energy intensity are
the four MDFs occurring in most of the B&R countries. On the other hand, the effects
of urbanization, industrial structure, renewable energy, and trade openness on carbon
emissions are less important. The GDP per capita and energy consumption structure are the
main MDFs that promote carbon emissions and have a significant impact on LMI countries.
The energy intensity improvement is the MDF that inhibits carbon emissions and has a
significant impact on HI countries. The population was found to have a dual effect on
carbon emissions, with its effect gradually weakening and even becoming negative from
LMI to HI countries.

The aggregated carbon emissions of the 60 B&R countries are the largest under the
SSP3 scenario (33.1 Gt), followed by 25.38 Gt under SSP2, and 21.97 Gt under the SSP1
scenario. The emission trajectories under three scenarios exhibit the following trends:
declining, peaking, and increasing. Under the SSP1 scenario, the carbon emissions of over
60% of B&R countries can either peak or decline. The emissions of UMI countries were
found to peak earlier than LMI countries. Under the SSP2 scenario, carbon emissions of
over half of the countries can peak or decline. However, their peak emissions are higher by
2048 Mt and delayed by 5 to 10 years in comparison to SSP1. Conversely, under the SSP3
scenario, the carbon emissions of over 65% of countries are incapable of either peaking or
declining but reveal an increasing trend.

In addition, we found that the effect of MDFs and its inherent assumptions are two
main reasons that caused the changes in carbon emission trajectories in the future. For B&R
countries, the decline in carbon emissions is due to the inhibiting effects of energy intensity
exceeding the positive impacts of other MDFs. Carbon emissions can reach their peak
when the inhibitory effects of energy intensity offset the positive effects of other MDFs.
In the absence of this effect, carbon emissions will continue to increase. In addition, the
assumptions on the growth or decrease rate of MDFs are another reason for variations
in the future carbon emission trajectories. Especially for countries belonging to the LMI
groups, the increase in the population growth rate is the main reason that facilitates their
entry into the emissions increasing group.

Therefore, this paper may provide decision makers with the following policy advice
to effectively mitigate carbon emissions in the future: B&R countries should focus on their
MDFs and design strategies that are in line with each country.

For countries that take energy intensity as the dominant factor and are incapable of
peaking in at least one scenario, it is critical to improve their energy intensity by either
regulating the industrial structure or promoting advanced low-carbon technologies. For
countries that take GDP per capita as the dominant factor and are unlikely to peak in at
least one scenario, it is important to change the economic development mode and decouple
carbon emissions from the economy as early as possible. For countries that take population
as the dominant factor and whose carbon emissions continue increasing regardless of the
scenarios, it is essential to control the growth rate of population properly and improve
public awareness of environmental protection. For countries that take energy consumption
structure as the dominant factor and are incapable of peaking in at least one scenario, it is
imperative to adjust the energy consumption structure for reducing fossil energy usage.
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Nomenclature

B&R Belt and Road Initiative
MDFs Mmain driving factors
STIRPAT Stochastic Impacts by Regression on Population, Affluence, and Technology
IPAT Environment Impacts by Population, Affluence, and Technology
SSPs Shared Socioeconomic Pathways
TP Total population
UR Urbanization rate
RG GDP per capita
ES Energy consumption structure
IS Industry structure
EI Energy intensity
RE Renewable energy consumption
TO Trade openness
HI High income level
UMI Upper middle income
LMI Low middle income

Appendix A

Table A1. List of 60 B&R countries and classification.

High income level countries(16
countries with per captia >
US$ 122,76 in 2010

Slovenia, Singapore, Saudi Arabia, Qatar, Kuwait, Israel,
Brunei, Bahrain, United Arab Emirates, Czech Republic,
Hungary, Oman, Poland, Slovakia, Estonia, Croatia,

Upper middle income level
groups(21 countries with per
captia GNP between US$ 3976
and US$ 122,75 in 2010

Lithuania, Latvia, Russia, Turkey, Malaysia, Kazakhstan,
Lebanon, Romania, Bulgaria, Montenegro, Iran, Belarus,
Azerbaijan, Serbia, Thailand, China, Bosnia and Herzegovina,
Macedonia, Iraq, Turkmenistan, Albania

low middle income level
groups(23 countries with per
captia < US$ 3975 in 2010

Jordan, Armenia, Indonesia, Ukraine, Georgia, Sri Lanka,
Mongolia, Egypt, Bhutan, Philippines, Moldova, Uzbekistan,
India, Vietnam, Yemen, Laos, Pakistan, Myanmar, Kyrgyzstan,
Cambodia, Bangladesh, Tajikistan, Nepal

http://data.worldbank.org.cn
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Table A2. The coefficient of empirical STIRPAT model after PLS regression.

Countries cons lnTP lnUR lnRG LnIS lnEC lnEI lnRE lnTO R2 Residual

Qatar 10.158 *** 0.607 *** 0.018 * 0.045 ** 0.091 0.102 ** 0.442 *** −0.013 0.075 * 0.989 0.0132

Singapore 8.879 *** 0.125 *** 0.001 0.078 * −0.203 * 0.041 0.828 *** 0.124 −0.121 0.82 0.07197

Kuwait −17.01 *** −0.065
*** 0.174 * 1.143 *** 0.085 0.025 1.218 *** −0.148 * 0.035 0.994 0.0225

Brunei 14.164 *** 0.257 *** 0.003 0.674 *** 0.323 0.022 1.409 *** −0.184 −0.017 0.933 0.1122

United
Arab

Emirates
4.592 *** 0.826 *** −0.015 * 0.006 ** −0.091 1.021 *** 0.025 * −0.044 0.007 * 0.937 0.17732

Israel −11.11 *** 0.64 *** 0.211 ** 1.176 *** 0.018 *** 0.026 1.263 *** −0.031 −0.013 * 0.992 0.01939

Slovakia 12.863 *** −0.547
*** 0.193 −0.094 0.231 *** 0.426 *** 0.244 −0.011 −0.006 0.973 0.01538

Bahrain −2.216 *** 0.89 *** 0.141 0.654 *** - 0.103 1.297 *** −0.065 −0.037 0.889 0.11917

Czech 1.083 *** −0.357
*** 0.256 * 0.724 *** −0.043 0.498 ** 1.168 *** −0.105 * 0.088 0.973 0.01783

Oman −18.252
*** 1.177 *** −0.413 1.546 *** 0.112 −0.046 0.765 *** —— 0.132 0.966 0.1148

Saudi
Arabia

−17.435
*** 0.394 *** −0.074

** 1.176 *** 0.226 ** −0.034
** 0.672 *** 0.084 0.109 * 0.967 0.09436

Slovenia 10.829 *** −1.501
*** 0.085 0.721 *** 0.034 0.378 *** 1.18 *** 0.054 0.362 0.887 0.0263

Estonia −6.467 *** 0.018 ** −0.812 * 1.048 *** 0.029 0.114 1.195 *** −0.232 * −0.333 0.983 0.00362

Hungary 2.563 *** 0.084 0.179 0.013 *** −0.015
*** 0.951 *** 1.332 *** 0.026 * 0.101 0.987 0.01687

Croatia −6.036 *** 0.018 * 0.01 1.086 *** 0.175 0.207 1.466 *** −0.357
*** 0.022 0.868 0.08974

Poland −14.934
*** 1.153 *** −0.121

** 0.962 *** −0.021 0.772 *** 1.18 *** −0.013 * 0.014 0.995 0.00451

Lithuania −12.62 *** 0.947 *** 0.084 0.818 *** 0.34 1.044 ** 1.073 *** −0.618
** 0.927 0.967 0.01873

Latvia −34.45 *** 0.752 *** 1.258 ** 1.207 *** −0.169 0.155 * 1.379 *** −0.534
*** −0.017 0.99 0.01178

Russia −16.176
*** 1.052 *** −0.098

*** 1.083 *** 0.032 0.474 * 1.155 *** −0.019 −0.004 * 0.995 0.00658

Azerbaijan −5.849 *** 0.657 *** −0.498 0.967 *** −0.046 * 0.131 0.863 *** 0.041 0.513 * 0.98 0.07517

Turkey −8.645 *** 0.118 * 0.951 *** 1.016 *** −0.006 0.432 *** 0.94 *** −0.023 0.103 0.999 0.00864

Malaysia −4.812 *** −0.221
***

−0.076
** 0.875 *** −0.055 0.319 *** 0.353 *** 0.022 0.108 0.993 0.05212

Kazakhstan −6.586 *** 1.178 *** 0.035 0.405 *** 0.561 *** 0.488 * 0.146 * −0.398
*** −0.051 0.979 0.04586

Lebanon −12.394
*** 0.917 *** −0.014 0.611 *** 0.11 0.512 *** 0.645 *** −0.078 −0.096 0.951 0.06774

Romania −12.389
*** 0.813 *** −0.166

** 0.535 *** −0.016 0.923 *** 1.018 *** −0.063 * 0.101 0.998 0.01045

Bulgaria −7.909 *** 0.071 −0.067 * 0.837 *** 0.036 1.490 *** 0.95 *** −0.176 * −0.062 0.959 0.032

Montenegro −10.988
*** 0.105 0.071 1.595 *** 0.025 —— 0.905 *** —— −0.05 0.984 0.02048

Iran −13.611
*** 1.149 *** 0.02 * 0.398 *** 0.034 0.107 0.427 *** −0.017 * −0.07 0.99 0.04029

Belarus −2.443 *** 0.093 ** 0.031 * 0.183 *** 0.32 *** 0.415 * 0.97 *** −0.183 * −0.024
*** 0.938 0.0313

Serbia −3.471 *** 0.121 * 0.092 0.079 −0.321
*** 0.952 *** 0.397 *** −0.041 0.003 0.996 0.0068

Thailand −3.919 *** 0.03 ** −0.642
*** 1.681 *** 0.003 1.032 *** 0.057 ** −0.068

** −0.02 ** 0.997 0.0213

China −2.277 *** .066 * −0.202 * 1.190 *** 0.596 ** −0.108 1.121 *** −0.379
*** 0.121 * 0.998 0.02014
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Table A2. Cont.

Countries cons lnTP lnUR lnRG LnIS lnEC lnEI lnRE lnTO R2 Residual

Bosnia
and

Herze-
govina

−5.905 *** 0.029 −0.085 * 0.994 *** −0.015 1.21 *** 0.972 *** −0.037 0.021 0.997 0.0213

Macedonia,
FTR

−21.588
*** 1.026 *** 0.097 * 0.697 *** 0.05 0.184 * 0.654 *** 0.126 0.136 0.964 0.05432

Iraq −6.248 *** 0.664 *** 0.032 0.34 *** 0.089 0.104 0.883 ** −0.062 0.026 * 0.895 0.06551

Turkmenistan−12.143
*** 0.081 ** 0.828 *** 1.182 *** −0.064

*** 0.021 * 0.815 *** −0.024 * 0.084 0.998 0.01199

Albania −11.477
*** 0.194 ** −0.111 1.646 *** 0.123 0.197 1.452 *** −0.081

** 0.012 0.945 0.09761

Jordan −7.321 *** 0.809 *** 0.034 * 0.778 *** 0.103 0.091 0.923 *** −0.132 0.053 0.99 0.02983

Armenia −3.602 *** −0.297 * −0.143 * 0.751 *** — 0.787 *** 0.842 *** −0.167 −0.125 0.97 0.05471

Indonesia −13.251
*** 1.085 *** 0.213 ** 0.805 *** 0.049 0.011 0.175 *** 0.149 −0.014 0.949 0.09458

Ukraine −25.384
*** 1.041 *** 0.469 * 0.673 *** −0.094 1.107 *** 0.789 *** −0.002 0.047 0.988 0.02896

Georgia 0.633 *** −0.275 0.236 0.922 *** 0.396 −0.464 0.615 *** −0.36 *** −0.011 0.955 0.0233

Sri
Lanka

−61.542
*** 1.04 *** 0.147 0.43 −0.046 0.458 *** 0.723 *** −0.206

** 0.012 0.99 0.04897

Mongolia −16.658
*** 1.75 *** −0.495 * 1.351 *** 0.108 * 0.196 * 1.121 *** −0.372 * −0.150 * 0.897 0.05987

Egypt −9.978 *** 1.08 *** −0.616
** 0.952 *** −0.318 * −0.083 1.094 *** −0.821

** 0.003 0.976 0.0596

Bhutan −60.459
*** 0.334 *** 0.23 1.511 *** 0.2 — 0.886 *** −0.039 * 0.172 0.98 0.07517

Philippines −16.415
*** 1.011 *** −0.033 * 1.386 *** −0.098 0.719 *** 1.136 *** −0.451

** −0.032 0.99 0.02666

Moldova −31.11 *** 0.310 * 0.169 * 1.013 *** −0.231 * 0.884 *** −0.08 *** −0.103 −0.31 0.951 0.03236

Uzbekistan −13.889
*** 0.943 *** 0.199 * 1.241 *** 0.134 *** 0.062 1.133 *** 0.172 0.284 0.934 0.02114

India −10.272
*** 0.546 *** 0.298 * 1.126 *** −0.005 * 1.044 *** 1.089 *** −0.038 0.016 0.998 0.01731

Vietnam −4.247 *** 0.152 ** 0.243 ** 0.808 *** 0.054 1.264 *** 0.914 *** −0.159 −0.025 0.997 0.01433

Yemen −13.511
*** 1.086 *** −0.087 * 1.479 *** 0.01 −0.05 ** 0.976 *** −0.033

** −0.036 0.979 0.04076

Laos −25.634
*** 1.064 *** 0.755 *** 0.883 *** 0.036 —— —— 0.518 * 0.115 0.98 0.01191

Pakistan −17.179
*** 1.041 *** 0.518 * 0.657 *** −0.001 −0.645

*** 0.634 *** −0.018 0.098 0.995 0.02122

Myanmar −16.204
*** 1.391 *** 0.073 1.534 *** −0.072 0.127 0.404 *** −0.126 0.192 0.938 0.05651

Kyrgyzstan −18.158
*** 0.578 *** −0.011 0.454 *** −0.053 0.375 *** 0.696 *** −0.04 * 0.023 0.988 0.03076

Cambodia −10.642
***

−0.003
** 0.021 ** 1.508 *** −0.036 1.015 0.739 *** −0.135 −0.063 0.995 0.03316

Bangladesh −18.885
*** 1.375 *** 1.132 *** 0.872 *** −0.057 0.735 * 0.389 *** −0.28 ** 0.098 0.998 0.02146

Tajikistan −42.779
*** 0.783 *** 0.11 1.854 *** 0.106 −0.4 0.872 *** 0.103 ** −0.045 0.938 0.02081

Nepal −8.037 *** −0.153 * −0.179 * 1.868 *** 0.106 0.783 *** 0.043 * −0.005 * 0.185 *** 0.986 0.01761

Median 0.89 0.792 0.965 0.134 0.788 0.932 −0.379 0.081

Selected ***, **, and * denote the correlation is significant at the 0.01, 0.05, and 0.1 level, respectively.
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