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Abstract: The underground coal gasification represents a technology capable of obtaining synthetic
coal gas from hard-reached coal deposits and coal beds with tectonic faults. This technology is also
less expensive than conventional coal mining. The cavity is formed in the coal seam by converting
coal to synthetic gas during the underground coal gasification process. The cavity growth rate and the
gasification queue’s moving velocity are affected by controllable variables, i.e., the operation pressure,
the gasification agent, and the laboratory coal seam geometry. These variables can be continuously
measured by standard measuring devices and techniques as opposed to the underground temper-
ature. This paper researches the possibility of the regression models utilization for temperature
data prediction for this reason. Several regression models were proposed that were differed in their
structures, i.e., the number and type of selected controllable variables as independent variables. The
goal was to find such a regression model structure, where the underground temperature is predicted
with the greatest possible accuracy. The regression model structures’ proposal was realized on data
obtained from two laboratory measurements realized in the ex situ reactor. The obtained temperature
data can be used for visualization of the cavity growth in the gasified coal seam.

Keywords: underground coal gasification; measurement; temperature; regression; model; analyses; cavity

1. Introduction

The underground coal gasification process (i.e., the UCG process) is a constantly evolv-
ing technology and provides an alternative to conventional coal mining. This technology
transforms coal into high-calorific gas (i.e., syngas), and for coal mines located in great
depths is especially effective. In implementing this technology, at least one injection and
one production well must be drilled from the earth’s surfaces in an area where the coal seam
is located. A gasification agent (i.e., the ratio of air, oxygen, and water vapor) is injected
through the injection well. This gasification agent will ensure the chemical reactions occur.
These chemical reactions are required for the syngas creating. Subsequently, Syngas is
extracted through the production well and subsequently cleaned and stored (see Figure 1).

The UCG reactor can be divided into three basic zones in terms of the chemical
reactions that occur. Chemical reactions to increase the coal seam temperature are taking
place in the oxidation zone (i.e., at a temperature above 900 ◦C). In the reduction zone (i.e.,
at a temperature between 550–900 ◦C), chemical reactions transform coal into syngas (i.e.,
a mixture of CO, CO2, CH4, H2, etc.). The pyrolysis and drying process of the coal seam
takes place in the drying and pyrolysis zone (i.e., at a temperature between 220–550 ◦C). All
these processes take place at a desired coal seam temperature. It is important to know the
temperature distribution in the coal seam for this reason. The temperature information can
determine the distribution of the individual zones in the coal seam and set the appropriate
gasification agent mixture to increase the coal seam temperature or create syngas. In
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addition, the cavity formation process in coal seam can be observed by seeing behaviors of
temperatures [1,2].

Figure 1. The scheme of the UCG process (Source: own elaboration).

Model in the form of a risk graph and a risk matrix was used for risk analysis and
hazard identification in the UCG process by investigating health risks and impacts in terms
of their influence on the environment [3]. The proposed measures could lead to the reduc-
tion of risks and impacts on an acceptable level. The UCG process state prediction was
realized by a dual-source long short-term memory (i.e., LSTM) prediction model [4]. This
model was compared with the Support Vector Machine (i.e., SVM) and Back Propagation
Neural Network (i.e., BPNN) prediction model. The results showed that the predicting
trends accuracy reaches 90.99%. The prediction of syngas composition was realized by a
thermochemical equilibrium model of the UCG process [5]. This model considers the effect
of the drying process and is based on the water–gas shift reaction and gasification reactions.
The results showed the positive impact of the steam addition into the gasification agent to
increase the hydrogen and carbon monoxide content in syngas and increase the calorific
value. A stoichiometric equilibrium model has been used to estimate the equilibrium
composition of the produced gas [6]. This model is based on the Gibbs function’s mini-
mization and was used to simulate the relevant thermochemical coal conversion processes.
Verification of described model showed that the produced gas composition was in a good
agreement under different operating conditions. A three-dimensional numerical model has
been used to simulate an ex situ allothermal coal gasification experiment [7]. The deviations
between the simulated composition of produced gas and experimental data were from 10%
(e.g., H2) to less than 50% (e.g., CH4) at some coal samples. The prediction of the shape and
volume of the underground cavity over time was realized by the model based on a series
of equations, the cavity pressure, and temperature information [8]. The simulations were
realized by COMSOL software, and the results in the form percentage of the product gas
components (i.e., CO, CO2, CH4, and H2) showed a good comparison. A review of various
gasification UCG models for predicting the cavity growth and the product gas recovery
where the temperature value (i.e., the cavity temperature, solid-phase temperature, the
gasification agent temperature, and the produced gas temperature) has the critical role
was described [9]. The results of this review showed that the packed bed models are
applicable for highly permeable porous media, the channel models overcome the limitation
of the packed bed models in regards to calculating the cavity shape and size, and the coal
slab models describe the process by the movement of the various defined regions in the
coal slab. An empirical model based on the non-linear multivariable regression method
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also realized the prediction of cavity growth [10]. Nine possible independent variables as
moisture, operating pressure, seam thickness, seam depth, calorific value, permeability,
volatile matter, and fixed carbon were evaluated in terms of their prediction ability during
the analysis. The regression analysis excluded the coal seam thickness and fixed carbon
content. The investigation of reaction zones, reaction rates, cavity formation, and syngas
properties was made by a two-dimensional computational fluid dynamics model [11]. This
model was verified by numerical calculation of the syngas composition and a lab-scale
hydrogen experiment. A good agreement was shown between the calculated and the
experimental data at every stage. A laboratory-based UCG model with advanced real-time
control and monitoring was used for monitoring cavity formation, temperatures, syngas
characteristics, and coal-tar [12]. Results showed the ability of the laboratory-based UCG
process to forecast the sustainability and standardization before the UCG process imple-
mentation by observed of the realized experiment. It has been demonstrated a significant
influence of operational pressure and coal properties on the process parameters as energy
efficiency, gas composition, and methane yields by realized model experiments [13]. The
oscillations of the gas production rates reflected the changes in gasification conditions and
the cavity geometry. A dependence was shown of methane yields on the properties of coal
and the pressure regime. The Continuous Retracting Injection Point (i.e., CRIP) Process
Model and the Linked Vertical Wells (i.e., LVW) Process Model were used for modeling the
rate of cavity growth and the related chemical process in the UCG process [14]. The CRIP
Process Model showed the more controllable cavity growth rate in a better-regulated water
influx from the surrounding strata.

Nowadays, it is of great interest in the methods area which examining tempera-
tures distribution in the coal seam. The temperature field calculation was solved by
two-dimension nonlinear unstable mathematical models and analyzing the regularity of
the temperature field distribution in the gasified coal layers of the UCG reactor [15]. The
laboratory model experiment in a laboratory gasifier was used to establish the accuracy of
this methodology. The most significant differences between calculated results and mea-
sured temperatures were in the combustion zone (i.e., some temperature points above 20%),
but differences of other measuring points are below 15%, most of which, within 10%. The
analytical solution of one-dimensional unsteady heat conduction was used to study temper-
ature distribution in burnt surrounding rocks at the UCG process [16]. The heat conduction
is solved by the first and the fourth kinds of boundary conditions in this solution. The
modeled case showed that the temperature influence range in burnt surrounding rock is
circa 18–19 m. The two-dimensional temperature field of the UCG reactor was also solved
by the heat conduction model based on the first and third kinds of boundary conditions
and velocity of motion of the gasification front [17]. There was examined the influence of
burned coal seam (i.e., the heat source) on surroundings rocks, including the earth surface.
The modeled cases showed that the temperature changes of the surrounding rock were
maximal 14 m from the boundary of the coal and overburden towards the earth’s surface.
A mathematical prediction model using the CFD software package (FLUENT 6.3.26) was
used to predict cavity growth, temperature distribution, and coal consumption [18]. The
CFD software package solved the simulation of combustion and gasification reactions
on the interface between the coal seam and cavity. The error of the coal consumption
prediction was less than 5%. During the underground coal gasification process, the tem-
perature change in rock strata was identified in the numerical simulation based on the
computational fluid dynamics formalism [19]. The applied software allowed the creation of
coal gasification processes models at different conditions and, mainly, the process occurring
beneath the ground surface. The modeled study showed temperature changes from 0.5 (i.e.,
1000 ◦C) to 2.5 (i.e., 75 ◦C) meters above the gasification channel. Thermo-mechanical
simulations were used to quantify the permeability changes in representative coal measure
strata surrounding the UCG reactor [20]. The influence of the temperature-dependent and
temperature-independent rock properties on the spatial permeability development was
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compared in this study. The results showed that temperature-dependent parameters are
required for simulations in the close vicinity of the reactor.

Various statistical methods are used to predict values in the UCG process, including
regression analysis. Regression analysis is a powerful statistical method that researchers
widely use to examine the relationship between two or more variables of interest. The
differential equation based on linear regression was developed to modeling the carbon
dioxide emission data [21]. The penalized least-square fitting criteria were used to smooth
the data. Optimizing the profile error sum of squares was used for the estimation of
differential operators using functional regression. The logistic regression model from four
statistical models reached the highest probability of predicting future pipe accidents [22].
It was shown that the most effective variables are the length, diameter, material, and
hydraulic pressure in the pipe failure areas. The vector regression method was used for
modeling the coal gross calorific value [23]. This method showed that carbon, moisture,
ash, and hydrogen contents in the coal are the most effective variables for the gross calorific
value modeling. The correlation of determination (R-2) for models was 0.99. Several
statistical approaches solved the online coal calorific value prediction based on the flame
radiation features in linear and nonlinear regression analyses [24]. The partial least squares
analysis-based nonlinear regression model showed the best performance for coal calorific
value prediction. The regression model is also used to calculate the pulverized coal ignition
temperature [25]. The results showed that the multivariate regression method is useful
for determining the ignition temperature calculation formula. Multivariable regression
and artificial neural network methods were used for a wide range of coal samples from
a calorific value of 10.05 to 34.80 MJ/kg [26]. The correlation coefficient values 0.77, 0.75,
and 0.81 were reached by the least square mathematical method at the investigation of
the relationship between inputs parameter (i.e., moisture, volatile matter, ash, total sulfur,
etc.) and HGI (i.e., Hardgrove Grindability Index) in linear condition. A multivariate
adaptive regression splines (i.e., MARS) approach was used for predicting the syngas
temperature [27]. This proposed approach was tested in the fire prevention area of UCG
processes. The effect of the coal rank to examine the composition and toxicity of water
effluents was solved by statistical analysis [28]. The principal component analysis, Pearson
correlation analysis, and the multiple regression statistical method were used to predict
the toxicity using the values of the selected parameters. The proposed regression model
had a high coefficient of determination R2 = 0.956 to experimental data. The study for
identifying physicochemical parameters of river water that affect the electrical conductivity
and evaluate their percentage contribution was realized [29]. The correlation coefficients
calculation and display of the various parameters regression equations with electrical
conductivity were realized by statistical analysis in this study. It is found that total dissolved
solids have the highest contribution (39.6%) while total alkalinity has the second-highest
contribution (23.5%), followed by total hardness (19.9%). A multiple regression model was
proposed for a real-time surface roughness prediction system [30]. The proposed models
with linear correlation coefficients of 0.940 and 0.933 for predictor variables, such as feed
rate, vibration amplitude average, spindle speed, and depth of cut, had a strong linear
correlation with the predicted variable. The regression model had an accuracy of above
90% in predicting the surface roughness. A new data mining algorithm has been proposed
to capture the non-linearity in data and also find the best subset model [31]. This proposed
algorithm based on the classical least square regression framework is compared with
the five nodes of the neural network method. The correlation coefficient was 0.79 in the
proposed algorithm and 0.81 in the neural network method. The UCG data prediction in
laboratory conditions was realized by the utilization support vector machines method [32].
This method analyzed data used for classification and regression analysis to predict the
underground temperature and syngas calorific value. The results obtained from the
Matlab program and its statistical toolbox showed that the most appropriate is to use the
Gaussian kernel function to achieve the best prediction quality. Statistical data processing
was realized to investigate the relationships between measured quantities during the
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atmospheric geochemical survey of contaminated soil and the environmental burden of the
industrial establishment [33]. The dependency between examined values was confirmed
by regressive and correlative analysis.

It is necessary to continue to develop methods that would improve the prediction
of the UCG process state in its implementation process due to the specificity of this pro-
cess, mainly its diversity, which is determined by different geological environments. This
improvement includes the accuracy improvement of the underground temperature calcula-
tion, which leads to the achievement of the required behavior of chemical reactions, the
range determination of the surrounding rock burning, the prediction of cavity growth, and
the produced gas’s composition determination. It could lead to an increase in the efficiency
of this process by producing gas with the highest possible calorific value (i.e., obtaining
the maximum amount of energy) in the process control while minimizing the negative
impact on the environment. We focused on using regression analysis methods to model
the temperatures of the gasified coal seam in an ex situ reactor due to the wide range of
applications of regression analysis methods in the processes of extraction and processing
raw material. For this goal, two experiments with the same structure of the coal model
differed by the amount of gasified coal were performed. Regression models were created
from the data of the first experiment and subsequently verified on the data from the second
experiment. Verification of the suitability of the created regression models for their use in
different conditions was performed, i.e., a different amount of gasified coal and thus also
different amounts of gasification agent and a time of the experiment.

2. Experiments Methodology

The methodology of the UCG process physical modeling in experimental equipment
is widely used by researchers (e.g., in [34,35]). For this reason, an experimental gasifier was
designed and constructed to realize the UCG process experimental measurements. The
UCG process experiments were performed in an experimental laboratory gasifier (i.e., ex
situ reactor). This ex situ reactor has a length of 3000 mm and a height of 500 mm and
comprises two basic parts, i.e., a vessel and lid. The ex situ reactor vessel is semi-cylindrical
in shape and consists of the vessel jacket and the forehead (i.e., front and rear). The inner
surface of the ex situ reactor vessel is covered 100 mm thick in the isolation, which is placed
under the steel cover plate. The scheme of the experimental coal gasification system is
shown in Figure 2. A fan was placed behind the reactor vessel to direct the flow of the
gasification agent through the coal model.

Figure 2. Scheme of the experimental coal gasification system (Source: own elaboration).

The coal seam model embedded into the ex situ reactor included the overburden,
underburden, and coal blocks. This model was arranged so that the gasification agent
could permeate through the whole coal seam model (i.e., the gasification channel was
drilled through the entire coal seam model). The experiments were based on the regulated
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supply of the gasification agent (i.e., through the gasification agent input) into burning
the coal seam model (i.e., embedded into the ex situ reactor) and exhaust of the syngas
(i.e., through the output of the gas). The gasification agent composition was set by the ratio
of the air and the oxygen (i.e., O2). The syngas composition consisted of the following
components ratio, i.e., the carbon monoxide (i.e., CO), the oxygen, the methane (i.e., CH4),
the hydrogen (i.e., H2), etc. The syngas extraction and temperature measurement were
realized by sounds placed on the ex situ reactor lid. Thermocouples measured the channel
and coal temperatures, i.e., thirteen thermocouples were placed in the gasification channel
(i.e., 1–13 sounds), and eight thermocouples were placed in the coal (i.e., 14–21 sounds).

Measured values, i.e., channel and coal temperatures, gasification agent and syngas
composition, and their flows, were transferred from the ex situ reactor to the PC. These val-
ues were processed and shown by the monitoring system. The control of the UCG process
was based on the evaluation of these values by the control algorithm. Two experiments in
the described experimental ex situ reactor were realized for the regression modeling of the
measured temperature values.

2.1. The First Experiment

The one layer of coal cubes with a total weight of 214 kg was embedded into the ex
situ reactor. This layer had circa 30 cm the width and circa 25 cm the height. The technical
analysis of these coal samples was carried in an accredited laboratory, and its results are
shown in Table 1. The individual coal blocks were glued with a mixture of gudron, coal
dust, and water. The cross-sectional design of the coal seam model for this experiment is
shown in Figure 3. A gasification channel along the length of the whole ex situ reactor was
created in the bottom third of the coal seam model height (see Figure 4a). The gasification
channel had a diameter of 20 mm. The coal blocks layer was covered with a thermal
insulation foil because of the prevention of heat leakage at the UCG process (see Figure 4b).

Figure 3. The cross-sectional designs of the coal model for the first experiment (Source: own
elaboration based on [36]).

Figure 4. The construction of the coal model (a) gasification channel placement, (b) thermal insulation
of coal blocks, (c) reinforcement of coal model top part (Source: own elaboration).
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Table 1. The analysis of coal with the help of Slovak testing standards used by an accredited
laboratory (Abbreviations: r—received, d—dry, daf—dry, ash-free, a—analytical, G—Gravimetry,
EA—elementary analysis with heat conductive detector, K—Calorimetry, RFS—X-ray fluorescence
spectrometry) (Source: own elaboration).

Parameter Value Uncertainty Method Standard

Total Moisture Wr
t (%) 38.2 5 G PN 16.3

Ash Ad (%) 9.4 2 G PN 16.4
Volatiles Vda f (%) 50 4 G PN 16.2
Carbon Cda f (%) 76.5 2 EA PN 16.7

Hydrogen Hda f (%) 3.95 5 EA PN 16.7
Nitrogen Nda f (%) 1.48 40 EA PN 16.7

Calorific Value Qda f
i (MJ/kg) 30.2 2 K PN 16.2

Calorific Value Qd
i (MJ/kg) 27.4 2 K PN 16.1

Calorific Value Qr
i (MJ/kg) 16.0 2 K PN 16.1

Ash Ar (%) 5.81 2 G PN 16.4
Carbon Cr (%) 42.8 2 EA PN 16.7

Hydrogen Hr (%) 2.21 5 EA PN 16.7
Nitrogen Nr (%) 0.83 20 EA PN 16.7

CaO (%) 2.37 5 RFS PN 3.1
MgO (%) 0.46 10 RFS PN 3.1
SiO2 (%) 1.23 10 RFS PN 3.1

Al2O3 (%) 0.74 10 RFS PN 3.1
Fe2O3 (%) 1.02 10 RFS PN 3.1
Na2O (%) <0.2 RFS PN 3.1
P2O5 (%) <0.02 RFS PN 3.1
TiO2 (%) 0.02 10 RFS PN 3.1
K2O (%) 0.06 10 RFS PN 3.1

Volatiles Vr (%) 28 4 G PN 16.2
Analytical Moisture Wa (%) 21.5 5 G PN 16.3

Total Sulphur Sr
t (%) 1.62 15 G PN 16.5

Sulphate Sulphur Sr
s (%) 0.17 15 G PN 16.5

Pyritic Sulphur Sr
p (%) 0.99 15 G PN 16.5

Organic Sulphur Sr
o (%) 1.44 15 G PN 16.5

The thermal insulation foil separated coal blocks and a mixture of perlit and the water
glass. The mixture of perlit and the water glass created isolation around the top and
sides of the coal blocks. The inner bottom part of the ex situ reactor was covered with
a mixture of sand and water glass. The top part of the isolation was reinforced with the
steel construction because of the prevention of the isolation fall after combustion of coal
blocks (see Figure 4c). The sibral plate was placed over the top part of the insulation. The
mixture of perlit and the water glass, the mixture of the sand and the water glass, and
sibral simulated the surrounding rock of the coal seam. The analysis shown in Figure 5
confirmed that whole coal blocks were burned.

2.2. The Second Experiment

The ex situ reactor was filled with a layer of coal cubes in a total weight of 472 kg
for this experiment. The same type of coal was used as in the first experiment, i.e., coal
composition is shown in Table 1. The coal seam model with the isolation around had a
similar shape as is shown in Figure 3, but the gasification channel had a diameter of 40 mm.
The coal blocks were cemented by a mixture of gudron, coal dust, and water (see Figure 6).

The thickness of the unburnt coal was different along the whole ex situ reactor length.
In the first meter, the thickness of the unburnt coal was about 3–4 cm, in the second meter,
it was around 4–6 cm (see Figure 7a), and in the third meter, it was about 6–8 cm at the
edges even more, up to 16 cm as is shown in Figure 7b. There was 66 kg of unburned coal
that is circa 14% from input coal.
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Figure 5. The coal blocks in the experimental generator after the gasification process (Source:
own elaboration.

Figure 6. The coal blocks cemented to each other by a mixture of gudron (Source: own elaboration).

Figure 7. The unburned layer of coal (a) in the second meter, (b) in the third meter (Source: own
elaboration).
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3. Regression Methodology

It is often necessary to take into account that one dependent variable y is affected by
several independent variables x1x2, . . . , xk [37]. We can write it in the following form:

y = β0 + β1x1 + β2x2 + . . . + βkxk + ε, (1)

where the regression parameter β j j = 1, 2, · · · , k, expresses the assumed change in the vari-
able y caused by the unit change of one independent variable xj, if the other independent
variables do not change; ε is a random error.

The least-squares method is most often used to estimate the regression parameters of
multiple linear regression models. The least-squares method requires n observations of
all considered independent variables xj j = 1, 2, . . . , k, i.e., xij i = 1, 2, . . . , n, [38]. We will
assume that the variables εi are uncorrelated random variables with zero mean value, and
constant variance. Then, Equation (1) can be written in a modified form using the data
from Table 2:

yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + εi = β0 +
k

∑
j=1

β jxij + εi, for i = 1, 2, . . . , n (2)

Table 2. Data for multiple linear regression [38].

y x1 x2 . . . xk
y1 x11 x21 . . . x1k
y2 x21 x22 . . . x2k
...

...
...

...
yn xn1 xn2 . . . xnk

We can formulate the object function L for the least-squares method of the model (2)
in the form that ensures that the sum of squares of errors εi is minimized, i.e.,:

L =
n

∑
i=1

ε2
i =

n

∑
i=1

(
yi − β0 −

k

∑
j=1

β jxij

)2

(3)

The object function L must be minimized in respect of the parameters β0, β1, · · · βk. It
can be written in the form of equations:

∂L
∂β0

∣∣∣∣
β̂0,β̂1,...,β̂k

= −2
n

∑
i=1

(
yi − β̂0 −

k

∑
j=1

β̂ jxij

)
= 0

∂L
∂β j

∣∣∣∣∣
β̂0,β̂1,...,β̂k

= −2
n

∑
i=1

(
yi − β̂0 −

k

∑
j=1

β̂ jxij

)
xij = 0 j = 1, 2, . . . , k (4)

The least-squares normal equations are obtained by simplifying Equations (4) into the
form (5):

nβ̂0 + β̂1

n

∑
i=1

xi1 + β̂2

n

∑
i=1

xi2 + · · ·+ β̂k

n

∑
i=1

xik =
n

∑
i=1

yi, (5)

β̂0
n
∑

i=1
xi1 + β̂1

n
∑

i=1
x2

i1 + β̂2
n
∑

i=1
xi1xi2 + · · ·+ β̂k

n
∑

i=1
xi1xik =

n
∑

i=1
xi1yi

...
...

...
...

...

β̂0
n
∑

i=1
xik + β̂1

n
∑

i=1
xikxi1 + β̂2

n
∑

i=1
xikxi2 + · · ·+ β̂k

n
∑

i=1
x2

ik =
n
∑

i=1
xikyi

, (6)

Subsequently, estimates of regression parameters β0, β1, · · · βk are obtained by solving
these equations. It is appropriate to use matrix notation to simplify the solution of equations:

y = Xβ + ε (7)
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where

y =


y1
y2
...

yn

, X =


1 x11 x12 · · · x1k
1 x12 x22 · · · x2k
...

...
...

...
1 xn1 xn2 · · · xnk

, β =


β0
β1
...

βk

 and ε =


ε1
ε2
...

εk

, (8)

Then, the vector of regression coefficient β estimates is calculated as

β̂ =
(

XTX
)−1(

XTy
)

(9)

and it can be used in notation of a multiple regression model

ŷ = Xβ̂ (10)

or in the form

ŷi = β̂0 +
k

∑
j=1

β̂ jxij, i = 1, 2, . . . , n (11)

The difference between the actual value yi and the corresponding modeled value ŷi is
called the residual.

SST = SSR + SSE, (12)

Furthermore, it is necessary to verify the suitability of the proposed multiple regression
model. The first recommended test is a test to verify the existence of a linear regression
relationship between the dependent variable y and the selected independent variables. The
null hypothesis H0: β0 = β1 = β2 = · · · = βk = 0 will be tested against the alternative
hypothesis H1: Not all the βi, i = 1, 2, · · · , k are zero. The test will use analysis of variance,
the important calculations of which are shown in Table 3. The most important part of the
test procedure is the calculation of the three sums of squares in the following form:

n

∑
i=1

(yi − y)2 =
n

∑
i=1

(ŷi − y)2 +
n

∑
i=1

(yi − ŷi)
2, (13)

Table 3. Analysis of variance for significance of regression in multiple regression [38].

Source of Variation Sum of Squares Degrees of Freedom Mean Square F

Regression SSR k MSR = SSR/k F = MSR/MSE
Error or residual SSE n− (k + 1) MSE = SSE/(n− (k + 1))

Total SST n− 1

H0: β0 = β1 = β2 = · · · = βk = 0 We will not reject if the calculated value of the
test statistic F is less than the critical value Fα,k,n−k−1, or if the calculated P-value is greater
than the selected level of significance of the test α. If we do not reject the tested null
hypothesis, there is no assumed linear relationship between the independent variable y
and the considered independent variables xj j = 1, 2, · · · , k. To verify the significance of
individual independent variables, we can perform t-tests. The null hypothesis has a form
β j = 0 and is tested against the alternative hypothesis β j 6= 0 for j = 1, 2, · · · , k. The test
statistic is calculated according to the formula:

t =
β̂ j√
σ̂2Cjj

, (14)
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Besides the estimated value of the coefficient β̂ j, we also use the values of a standard

error
√

σ̂2Cjj where Cjj are diagonal elements of the matrix
(
XTX

)−1. We reject the null
hypothesis if the value of the test statistic is greater than the critical value tα/2,n−k−1 or if
the p-value is less than the chosen level of significance α. Because we want to evaluate
the suitableness of a proposed multiple linear regression model, we use the mean square
error—MSE defined as:

MSE =
SSE

n− (k + 1)
, (15)

The lower the MSE values, the better the regression model expresses the measured
data. The same is true for the square root of MSE, which is called the standard error
of estimate and is marked s. Using the multiple coefficient of determination R2, we can
calculate the share of the variability of the dependent variable y, which is expressed by the
model, i.e., a combination of selected independent variables used in the regression model.
It can be written in the form:

R2 =
SSR
SST

= 1− SSE
SST

, (16)

At best, it is equal to R2 = 1 or expressed in a percentage R2 = 100%. We can use the
adjusted multiple coefficient of determination R2

adj to consider the number of independent
variables in the proposed linear regression model. Thus, we take into account not only the
values of SSE and SST, but also the numbers of freedom degrees n− (k + 1) and (n− 1)
in this value calculation:

R2
adj = 1−

SSE
n−(k+1)

SST
n−1

(17)

The comparison of the calculated values of R2 and R2
adj is also helpful from the point of

view of considerations about the inclusion of individual independent variables in the mul-
tiple linear regression model. If their values differ significantly after the inclusion of a new
variable, it is clear that the inclusion of this variable in the model is not necessary [39,40].

4. Results and Discussion

This chapter describes the proposal of multiple linear regression models for modeling
temperatures in the gasification channel and in the coal, which are differed from each
other in the number of independent variables considered. The coefficients of the proposed
models were calculated by using the measured experimental data from the first experiment
(see Section 2.1). Measured experimental data from the first experiment (i.e., the exhaust
fan motor frequency, the flow of air and oxygen, and calorific value) are shown in Figure 8.
Verification of the quality of the proposed models was performed on the measured data
from this experiment by calculation of multiple coefficients of determination and standard
error of the estimate. Furthermore, the change of experimental conditions was tested, i.e.,
the proposed models based on data of the first experiment were applied to the measured
data from the second experiment (see Section 2.2), which were obtained under different
conditions. Measured experimental data from the second experiment (i.e., the exhaust fan
motor frequency, the flow of air and oxygen, and calorific value) are shown in Figure 9.

4.1. The Proposal of a Multiple Linear Regression Model for the Channel’s and Coal’s Temperatures

In the first stage of the solution, the kind of independent variables was chosen for the
proposal of the temperature prediction model. These variables represent the measured
variables: frequency of the fan located behind the ex situ reactor (see Figure 2), airflow,
oxygen flow, syngas calorific value, temperatures measured in the channel and in coal.
The models for the individual dependent variables—channel temperatures (i.e., Tmod

j
j = 3, 4, · · · , 13) differed by the selected measured temperatures in order from the place
the coal seam ignition (i.e., gasification agent input) to the calculated temperature. For the
model of the dependent variable temperature Tmod

3 , only the temperatures T1, T2, T14, and
T15 were taken into account, but, e.g., for the temperature Tmod

12 , all previously measured
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channel temperatures T3 to T11 were included in the model. The results of the correlation
analysis (i.e., mainly calculations R2 and R2

adj coefficients) showed that temperatures
measured in coal (i.e., temperatures T16, T17, T18, T19, T20, T21) are insignificant independent
variables for the model proposal, and due to this reason, were excluded from the models.
The mathematical form of the proposed regression models for channel’s temperatures can
be written in general form, as follows:

Tmod
j = b0 +

7

∑
i=1

bi · xi +
i+j−3

∑
i=8

bi · xi, (18)

where: Tmod
j are modelled temperatures for j = 3, 4, · · · , 13 (◦C); x1 is frequency (Hz); x2 is

airflow (m3.h−1); x3 is oxygen (m3.h−1); x4 is calorific value (MJ.m−3); x5 is temperature
T1 (◦C); x6 is temperature T14 (◦C); x7 is temperature T15 (◦C); xi is temperature Ti−6 for
i = 8, 9, · · · , 18 (◦C).

Measured data from the first experiment were used to determine the coefficients
of multiple linear regression models. The calculations were performed in the Minitab
statistical software using the least-squares method. The calculated coefficients of regression
models for channel temperatures are shown in Table 4.

Figure 8. The measured data behaviors in the first experiment: (a) the exhaust fan motor frequency,
(b) the air and oxygen, and (c) the calorific value (Source: own elaboration).
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Figure 9. The measured data behaviors in the second experiment: (a) the exhaust fan motor frequency,
(b) the air and oxygen, and (c) the calorific value (Source: own elaboration).

Table 4. Coefficients of regression models for channel temperatures and values of a multiple coefficient of determination
and a standard error of the estimate (Source: own elaboration).

Coefficients Tmod
3 Tmod

4 Tmod
5 Tmod

6 Tmod
7 Tmod

8 Tmod
9 Tmod

10 Tmod
11 Tmod

12 Tmod
13

b0 122.473 67.662 38.014 15.472 4.003 96.044 −24.393 88.273 71.571 −17.614 −28.813
b1 −0.824 −0.287 0.352 0.519 0.314 −0.250 −0.002 1.218 0.038 −1.027 −0.109
b2 −1.821 1.339 1.141 −0.684 0.127 1.239 0.068 2.759 0.077 2.409 0.193
b3 8.895 8.739 2.781 −0.569 −1.390 2.237 0.042 4.450 −0.298 −2.911 −0.255
b4 1.617 −4.234 −0.241 −2.720 −0.051 4.504 0.143 0.369 −3.353 2.398 0.092
b5 −0.419 0.173 0.052 0.063 −0.056 −0.208 −0.011 −0.726 0.155 0.170 0.015
b6 0.210 −0.106 0.035 −0.052 0.117 0.038 0.001 0.403 −0.227 −0.187 −0.020
b7 0.174 −0.005 −0.099 −0.042 −0.022 −0.003 −0.002 0.128 0.026 −0.001 0.000
b8 0.936 −0.082 −0.055 0.279 −0.040 0.070 0.001 −0.146 0.197 0.030 0.006
b9 0.971 0.186 −0.140 −0.110 0.083 0.010 0.609 −0.365 −0.247 −0.023
b10 0.815 −0.315 0.211 −0.081 −0.002 1.067 0.096 0.053 0.002
b11 1.187 −0.428 0.079 −0.004 −0.763 −0.205 −0.028 0.012
b12 1.346 −0.092 −0.006 −0.553 0.494 −0.086 −0.023
b13 0.931 −0.944 −0.004 0.074 0.294 0.031
b14 1.944 0.644 −0.199 −0.135 −0.013
b15 0.303 0.441 −0.188 −0.012
b16 0.351 0.267 0.023
b17 0.981 −0.921
b18 1.912

s 44.053 28.864 19.316 14.350 11.790 19.647 6.139 30.922 18.581 14.395 6.182
R2 96.11% 98.04% 99.07% 99.50% 99.67% 98.91% 99.87% 96.48% 98.60% 98.23% 99.86%
R2

adj 96.10% 98.03% 99.06% 99.49% 99.67% 98.90% 99.87% 96.46% 98.59% 98.21% 99.86%
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Tests of the null hypothesis β0 = β1 = β2 = · · · = βk = 0 at the selected level of
significance 0.05 realized by Analysis of Variance for Significance of Regression in Multiple
Regression, we concluded for all proposed regression models by rejecting this hypothesis
and not rejecting the alternative hypothesis, H1: Not all the βi, i = 1, 2, · · · , k are zero, and
thus confirming the existence of a multiple linear relationship between the independent
variable and the dependent variables.

Table 4 shows that the influence of individual independent variables included in the
regression models for calculating channel temperatures is not unambiguous but varies in
terms of force (i.e., size of the coefficient) and terms of type (i.e., direct/indirect dependence).
The last three lines of Table 4 contain selected results of correlation analysis, namely
the standard error of estimate—s, the multiple coefficient of determination—R2 and the
adjusted multiple coefficient of determination—R2

adj.
The standard error of estimate—s for individual models ranges from 6.1390 to 44.0534,

which is an acceptable result due to the size of the measured temperatures used (i.e.,
maximal is circa 1200 ◦ C). Values of R2 and R2

adj, ranging from 96.11% (i.e., for T3) to
99.87% (i.e., for T9), clearly show that each of the proposed regression models represents
more than 96% of the variability of the dependent variable (i.e., channel temperature). Thus,
it can be stated that the proposed regression models are suitable for use. The behavior of
measured Tj and modelled Tmod

j temperature (i.e., for temperatures T3 and T9) is shown

in Figure 10. The difference between the calculated values R2 and R2
adj is minimal due to

the large number of data (i.e., n = 2846), and therefore only the value R2
adj is shown in the

following tables.

Figure 10. The measured (T) and modelled (T_MOD) temperature behavior, (a) temperature T3,
(b) temperature T9 (Source: own elaboration).

In the next phase, we focused on solving temperatures in coal, i.e., temperatures
T17 and T18. The proposed regression model included channel temperatures T1 to T7,
i.e., temperatures located from the ignition place of the coal seam to the cross-section
of the generator where the temperatures T17 and T18 were measured. The results of the
correlation analysis (i.e., values R2 and R2

adj) showed that temperatures measured in coal
(i.e., temperatures T16 and T19) located in the same section as modeled temperatures are
insignificant for the proposal of the model, and due to this reason were excluded from the
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models. The mathematical form of the proposed regression models for temperatures T17
and T18 can be written in general form, as follows:

Tmod
j = b0 +

13

∑
i=1

bi · xi (19)

where: Tmod
j are modelled temperatures for j = 17, 18 (◦C); x1 is frequency (Hz); x2 is

airflow (m3.h−1); x3 is oxygen (m3.h−1); x4 is calorific value (MJ.m−3); x5 is temperature
T1 (◦C); x6 is temperature T14 (◦C); x7 is temperature T15 (◦C); xi is temperature Ti−6 for
i = 8, 9, · · · , 13 (◦C).

The calculated coefficients for individual models are shown in Table 5. The table shows
that the temperature T7 has the most significant influence on the modeled temperatures
Tmod

17 (see Figure 11a) and Tmod
18 (see Figure 11b) of all considered measured temperatures

(i.e., independent variables). The calorific value and airflow have a more significant effect
on the modelled temperature Tmod

18 , which can be caused by the non-uniform gasifying coal
along the right and left sides of the gasification channel.

Table 5. Coefficients of regression models for coal temperatures and values of multiple coefficient of
determination and standard error of the estimate (Source: own elaboration).

Coefficients Tmod
17 Tmod

18

b0 233.232 373.710
b1 1.119 −0.343
b2 −1.952 −9.548
b3 5.449 1.597
b4 −7.515 −20.216
b5 −0.957 −0.245
b6 0.467 −0.283
b7 0.098 −0.038
b8 0.035 0.301
b9 0.649 −0.091
b10 0.750 −0.345
b11 0.155 3.187
b12 0.539 1.082
b13 −1.286 −3.587

s 66.82 115.56
R2 86.00% 62.17%
R2

adj 85.94% 61.98%

Table 5 shows that the values of the standard error of estimate—s are higher (i.e.,
66.82 and 115.56), and at the same time, the values R2 (i.e., 86.00 and 62.17%) and R2

adj
(i.e., 62.17 and 61.98%) are lower than at the modeled channel temperatures. This result
indicates a worse prediction of coal temperatures by proposed regression models. A
significant difference can be seen between correlation characteristics for temperature T17
and T18, which also supports the previous conclusion about the non-uniform gasifying
coal along the sides of the gasification channel, i.e., the gasification process was faster
on the temperature T17 side. The difference in the velocity of gasifying coal was circa
6 h. The temperature of 600 ◦C was reached on the left side of the gasification channel
approximately at the 5th hour, while on the right side at the 11th hour. The difference of
the burning velocities can be caused by uniform leakage of gasification agent through the
upper edge of the ex situ reactor or by the fall of the overburden layers into the space of
the formed cavity.
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Figure 11. The measured (T) and modelled (T_MOD) temperature behavior, (a) temperature T17,
(b) temperature T18 (Source: own elaboration).

4.2. Coefficients Application of Multiple Linear Regression Models on Data from the
Second Experiment

Multiple linear regression models proposed for the data from the first experiment were
verified on the data from the second experiment. This experiment differed in the amount
of gasified coal (see Section 2.2) and the gasification time. Proposed regression models
were applied only to the measured data from the second experiment in the first phase
of verification. Modeled temperature values from the proposed regression models were
used to calculate temperatures depending on their values during the second verification
phase. For example, the modeled temperature T3 (i.e., Tmod

3 ) was used in the temperature
calculation T4, and then the modeled temperature values T3 (i.e., Tmod

13 ) and T4 (i.e., Tmod
4 )

were used to calculate the temperature T5, etc. The goal of this phase was to verify whether
it is possible to use only measured temperatures at the input to the ex situ reactor (i.e., T1,
T2, T14, and T15) to calculate temperatures in the gasified coal seam model (i.e., from T3
to T13, and T17 and T18). It was assumed that in a real gasified coal seam are not suitable
conditions for measuring temperatures along the length of this coal seam.

The graph shown in Figure 12 contains selected results of correlation analysis for
both phases, i.e., R2

adj1 values for the first phase and R2
adj2 values for the second phase.

Assuming that in the best case, the modeled values exactly match the observed values,
R2 = 1 or 100%, in the opposite case, i.e., if R2 = 0, modeled values do not correspond
to the measured values at all. The deviation between the measured and modeled values
in some cases was so large that R2

adj values were not within the specified range because
coefficients calculated from the measured values of the 1st experiment were applied to the
values of the 2nd experiment. Therefore, these values were replaced by 0% in the graph.
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Figure 12. Values R2
adj of proposed regression models for the first phase—R2

adj1 and the second

phase—R2
adj2 (Source: own elaboration).

The values of the multiple coefficient of determination for channel temperatures
at the first phase are significantly lower than their values in the first experiment and
differ significantly from each other. The maximum value of the multiple coefficient of
determination was reached at the measured temperature T8 (see Figure 13a). Thus, it
was possible to represent 87.17% of the variance of the original variable by its regression
model. The smallest value of the multiple coefficient of determination was reached for the
measured temperature T10 (see Figure 13b) when it was possible to represent only 9.97% of
the variance of the original variable.

It can be observed in Figure 14a,b differences in the progress of the burning coal on
the right and left sides of the ex situ. At the same time, it is possible to see that twice the
volume of coal in the ex situ reactor caused the application of the proposed models from
the first experiment for coal temperatures T17 and T18 shows more significant deviations
than for channel temperatures. The regression model of temperature T17 in the second
half-time of the experiment shows significantly lower deviations to the measured values
than in its first half-time (see Figure 14a).
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Figure 13. The measured (T) and modeled (T_MOD) temperature behavior, (a) temperature T8,
(b) temperature T10 (Source: own elaboration).

Figure 14. The measured (T) and modeled (T_MOD) temperature behavior in the first phase verifica-
tion, (a) temperature T17, (b) temperature T18 (Source: own elaboration).

The application of regression models using the modeled temperatures in the second
phase verification showed that multiple coefficients of determination are even lower than
for the first phase. The maximum value of 65.78% was obtained for temperature T6 (see
Figure 15a), and the minimum value of 7.73% was obtained for temperature T11 (see
Figure 15b). The zero values R2

adj for temperatures T10, T13, T17, and T18 indicate a low
agreement of measured and model values, i.e., the unsuitability of using the proposed
regression models obtained from the first experiment for modeling temperatures in the
second experiment. The graphs of temperatures T17 (see Figure 16a) and for T18 (see
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Figure 16b) are shown to a better visual representation.

Figure 15. The measured (T) and modeled (T_MOD) temperature behavior, (a) temperature T16,
(b) temperature T11 (Source: own elaboration).

Figure 16. The measured (T) and modeled (T_MOD) temperature behavior in the second phase
verification, (a) temperature T17, (b) temperature T18 (Source: own elaboration).

The conditions of the second experiment realization were different from the first
experiment’s conditions due to the volume of gasified coal and the insulating materials
used. Therefore, it was difficult to apply the proposed regression models based on data from
the first experiment for data from the second experiment. The use of modeled temperatures
in the second phase verification instead of those measured caused the deviations transfer
of dependent variable values to the calculations of other temperatures. For this reason, we
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focused on creating regression models with a lesser number of independent variables in
the next solution.

4.3. The Proposal of a Modified Multiple Linear Regression Model for the Channel’s and
Coal’s Temperatures

We tested several multiple linear regression models calculated based on the measured
values from the first experiment to optimize the number of independent variables. These
tests have differed from each other in the number of independent variables involved in
regression models. The most suitable type of regression model for modeling channel
temperatures T3 to T13 in terms of the minimum value of the multiple coefficient of deter-
mination proved to be a model including only two independent variables, namely calorific
value and temperature (e.g., T2 for T3 calculation, T3 for T4 calculation, etc.). The proposed
type of regression model can be written in the following form:

Tmod
j = b0 + b1 · x1 + b2 · x2 (20)

where: Tmod
j are modeled temperatures for j = 3, 4, · · · , 13 (◦C); x1 is calorific value

(MJ.m−3); x2 is temperature Tj−1 (◦C).
The calculated coefficients for individual regression models of modelled channel

temperatures and selected correlation characteristics (i.e., s and R2
adj) are shown in Table 6.

The effect of calorific value expressed by the individual calculated coefficients b1 is predom-
inantly indirect because the calculated coefficients have mostly negative signs. The effect
of temperature is always direct, which can be seen in the positive values of the calculated
coefficients b2.

Table 6. Coefficients of modified regression models for channel temperatures and values of a multiple
coefficient of determination and a standard error of the estimate (Source: own elaboration).

Predicted Temperature b0 b1 b2 s R2
adj

Tmod
3 106.564 −2.890 0.855 64.625 91.60%

Tmod
4 107.575 −4.334 0.918 34.127 97.20%

Tmod
5 46.542 0.153 0.962 24.200 98.50%

Tmod
6 1.378 1.952 0.998 28.016 98.10%

Tmod
7 −3.909 0.799 1.011 16.123 99.40%

Tmod
8 105.407 −3.932 0.912 27.346 97.90%

Tmod
9 70.103 −5.691 0.928 29.542 97.10%

Tmod
10 39.156 −2.646 0.944 17.296 98.90%

Tmod
11 31.217 −3.239 0.953 18.223 98.60%

Tmod
12 4.998 −5.582 0.993 33.147 95.60%

Tmod
13 −25.378 −6.724 1.039 32.607 96.10%

Tests of the null hypothesis β0 = β1 = β2 = · · · = βk = 0 at the selected level of
significance 0.05 realized by Analysis of Variance for Significance of Regression in Multiple
Regression, we concluded for all proposed regression models by rejecting this hypothesis
and not rejecting the alternative hypothesis, H1: Not all the βi, i = 1, 2, · · · , k are zero, and
thus confirming the existence of a multiple linear relationship between the independent
variable and the dependent variables.

The standard error of estimate—s for individual models ranges from 17.296 to 34.127,
only for temperature T3 is higher (i.e., 64.625). It is an acceptable result due to the size of the
measured temperatures (i.e., maximal is circa 1200 ◦C). Values of R2

adj, ranging from 91.60%
(i.e., for temperature T3) to 99.40% (i.e., for temperature T7), clearly show that each of the
proposed regression models represents more than 91% of the variability of the dependent
variable (i.e., channel temperature). Thus, it can be stated that the proposed regression
models are suitable for use. The behavior of measured Tj and modeled Tmod

j temperature
(i.e., for temperatures T3 and T7) is shown in Figure 17a,b.
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Figure 17. The measured (T) and modeled (T_MOD) temperature behavior, (a) temperature T3,
(b) temperature T7 (Source: own elaboration).

After analyzing several variants of the solution, a model for temperatures in coal (i.e.,
for temperatures T17 and T18) was proposed. This model includes four independent vari-
ables, i.e., calorific value, channel temperature T7 and temperatures T16 and T19 measured
in the insulation layer at the edges of the ex situ reactor. The solution was based on the
assumption of measuring temperatures in the surrounding rocks of the gasified coal seam.
The proposed model can be written in the following form:

Tmod
j = b0 + b1 · x1 + b2 · x2 + b3 · x3 + b4 · x4, (21)

where: Tmod
j are modelled temperatures for j = 17, 18 (◦C); x1 is calorific value (MJ.m−3);

x2 is temperature T7 (◦C); x3 is temperature T16; x4 is temperature T19 (◦C).
The calculated coefficients for individual regression models of modeled coal tem-

peratures and selected correlation characteristics (i.e., s and R2
adj) are shown in Table 7.

The modified regression model of temperature T17 (see Figure 18a) worse represents mea-
sured temperature T17 in the first 10 h of the experiment while compared to the regression
model results shown in Figure 11a. This conclusion is also confirmed by the reduction of
R2

adj values from 85.94 to 71.48%. The modified regression model of temperature T18 (see
Figure 18b) better represents measured temperature T18 during the experiment than the
regression model shown in Figure 11b. Proof that this is an increase in R2

adj values from
61.98 to 95.65%.

Table 7. Coefficients of modified regression models for coal temperatures and values of a multiple
coefficient of determination and a standard error of the estimate (Source: own elaboration).

Predicted Temperature b0 b1 b2 b3 b4 s R2
adj

Tmod
17 −87.233 0.110 0.543 0.414 0.156 95.179 71.48%

Tmod
18 9.627 12.987 −0.031 0.466 0.533 39.866 95.65%



Energies 2021, 14, 5444 22 of 28

Figure 18. The measured (T) and modeled (T_MOD) temperature behavior by using modified
regression models, (a) temperature T17, (b) temperature T18 (Source: own elaboration).

4.4. Coefficients Application of Modified Multiple Linear Regression Models on Data from the
Second Experiment

The modified multiple linear regression models proposed for the data from the first
experiment were verified on the data from the second experiment similarly as in the case
of the verification of regression models described in Section 4.2. Two phases were used
in the verification, similar to the previous cases. At first, the calculations were performed
only with the measured data and subsequently also with calculated. Selected results of the
correlation analysis—R2

adj values for all modeled temperatures are shown in Figure 19.

The first verification phase’s multiple coefficient of determination values R2
adj1 were

in a range from 77.15% (i.e., temperature T13) to 94.99% (i.e., temperature T3) for channel
temperatures calculated only from the measured temperatures. It is possible to observe a
decreasing trend of these values towards the ex situ reactor output based on these values.
The behavior of measured and modelled temperatures T3 and T13 is shown in Figure 20a,b.

It is visible a significant improvement in the representation of measured coal tempera-
tures by modeled coal temperatures in compared temperature behaviors in Figure 21a,b
with temperature behaviors in Figure 14a,b. This result is also confirmed by the achieved
values R2

adj1, i.e., 48.936% for temperature T17 and 48.471% for temperature T18 (see
Figure 19).

The second verification phase’s multiple coefficient of determination values R2
adj2 were

in a range from 8.54% (i.e., temperature T9) to 83.08% (i.e., temperature T4) for channel
temperatures calculated from the modeled temperatures. It is possible to observe a decrease
in these values towards the ex situ reactor output based on these values. This decrease
is due to reducing the number of independent variables, i.e., by minimization of the
transmitted calculation error. We can state that the applicability of the proposed models
is sufficient for temperatures T4 to T6 by observing the values of R2

adj2 for temperatures
measured in the gasification channel. The behavior of measured and modeled temperatures
T4 and T9 is shown in Figure 22a,b.
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Figure 19. Values R2
adj of modified regression models for the first phase—R2

adj1 and the second

phase—R2
adj2 (Source: own elaboration).

Figure 20. The measured (T) and modeled (T_MOD) temperature behavior, (a) temperature T3, (b)
temperature T13 (Source: own elaboration).
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Figure 21. The measured (T) and modeled (T_MOD) temperature behavior in the first phase ver-
ification by using modified regression models, (a) temperature T17, (b) temperature T18 (Source:
own elaboration).

Figure 22. The measured (T) and modeled (T_MOD) temperature behavior, (a) temperature T4, (b)
temperature T9 (Source: own elaboration).

Results showed a significant improvement in the representation of measured values
by modeled values at comparison modeled coal temperatures showed in Figure 23a,b to
modeled coal temperatures showed in Figure 16a,b. It is confirmed by the achieved values
R2

adj2 = 46.03% for temperature T17 and 48.19% for temperature T18. The achieved values

of R2
adj in the first and second phases have differed only minimally, i.e., the replacement

measured values by calculated values did not reduce the expression quality of the depen-
dent variable variance (i.e., temperature T17 or T18). Reach values R2

adj, around 50%, are
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low in terms of the suitability of these models. We can say that the deviations between the
measured and modelled values of the dependent variables T17 and T18 are significantly
lower from the 45th hour of the experiment. Deviations of these temperatures in the first
half of the experiment cause small values of R2

adj2 (see Figure 23a,b). The similarity of
temperature behaviors between Figures 21b and 23b is caused by lower value regression
coefficient b2 (i.e., −0.031). This coefficient lower value reduces the effect of the temper-
ature T7 (i.e., measured in the first phase verification and modelled in the second phase
verification, at the temperature T18 calculation) on the temperature T18.

Figure 23. The measured (T) and modeled (T_MOD) temperature behavior in the second phase
verification by using modified regression models, (a) temperature T17, (b) temperature T18 (Source:
own elaboration).

The average calorific value for the first experiment was 1.155 and for the second
experiment was 0.657. Thus, we can say that the influence of calorific value on the modeled
coal temperatures T17 and T18 was reduced by almost half in the second experiment. The
calorific value reduction causes significant differences between the measured and modeled
temperatures, especially if the temperatures are above 600 ◦C. Syngas with the desired
composition and calorific value can be produced (i.e., the transformation of coal into gas
occurs) due to this temperature.

5. Conclusions

This described research aimed to propose regression models for modeling temper-
atures in the gasification channels and the coal seam gasified in the ex situ reactor. The
proposed models were to contribute to developing a methodology for predicting tem-
peratures in a gasified coal seam. Improving the prediction of these temperatures with
higher accuracy makes it possible to identify places in the coal seam where coal to gas is
transformed and the underground cavity is formed. The prediction of coal seam tempera-
tures would also allow the development of methods to control the UCG process based on
modeled temperatures in the coal seam.

Two experiments were performed for the proposal and verification of regression
models. These experiments were differed by the volume of gasified coal and thus also in
the duration of the experiment. The proposal of regression coefficients was performed on
the data from the first experiment, but the verification of the proposed regression models
was performed mainly on the data from the second experiment. The ability to use the
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created regression models to predict temperatures in the UCG process realized under
approximately the same geological conditions, e.g., the same structure of the coal seam
with the surrounding rocks, was tested. The coal model (i.e., placement of coal blocks and
isolation layers) in the second experiment had the same structure as the coal model of the
first experiment, where the difference was the amount of gasified coal. This coal amount
affected the experiment duration, the amount of gasification agent used, and the output
data obtained from the experiment.

The quality of the models was assessed by calculating the multiple coefficient of
determination and the standard error of the estimate. In the first stage of the research, two
model structures were proposed, i.e., multiple linear regression models for channel and
coal temperatures. A more number of independent variables influencing the gasification
process were considered in the first solution. The multiple coefficient of determination of
the proposed regression models for channel temperatures expressed more than 96% and
for coal temperatures more than 61% of the variability of the dependent variable. This
solution proved to be less efficient in verifying proposed models on the data from the
second experiment because it was influenced by the transmission of the error from all
independent variables. The multiple coefficient of determination was ranged from 9.97 to
87.17% for channel temperatures and for coal temperatures was outside its specified range
when was verified on directly measured data. Verification using also modeled temperatures
showed a very low similarity between the measured and modeled temperatures.

The structure of the independent variables was optimized, and subsequently, final
regression models were created under their significantly smaller number. The multiple
coefficient of determination of the proposed regression models for channel temperatures
expressed more than 91% and for coal temperatures more than 71% of the variability of
the dependent variable. Verification of the data from the second experiment confirmed the
correctness of reducing the number of independently variables by increasing its values.
The stability of the coal temperatures modeling was not affected by the transition from
measured to modeled data at their calculation because the value of the multiple coefficient
of determination decreased only minimally (i.e., for temperature T17 from 48.94 to 46.03%
and temperature T18 from 48.47 to 48.19%). The results indicated the possibility of using the
proposed model of channel temperatures for the first half of the generator. The prediction
of coal temperatures showed a 50% similarity of measured and modeled values, i.e., use
the model only on data in the second half time of the experiment. This result was caused by
lower values of the measured calorific value of syngas, mainly at the internal temperature
T18, when the regression model contained a higher value of the regression coefficient b1.
The calorific value could be influenced by the suction air at the outlet of the ex situ reactor,
where a fan was placed on improving the control of the UCG process.

Low similarities of measured and modeled temperatures and thus the low quality of
the proposed regression models could be caused by leaks of gasification agent through ex
situ reactor cracks. We can say that there are still many options for the development of
regression models for temperature prediction in the gasified coal seam, for example:

− improving the experimental process for data collection, e.g., by reducing to a minimum
respectively by removing gasification agent leaks during the experiment, continuous
measurement of gas composition and calorific value along the length of the ex situ
reactor, etc.

− including dimensionless numbers in the regression models proposal for their applica-
tion under various conditions, e.g., the Fourier number as a dimensionless time

− determination of relevant independent variables for modeling temperatures in specific
places of the coal seam by extended regression analysis
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33. Škvareková, E.; Taušová, M.; Seňová, A.; Wittenberger, G.; Novaková, J. Statistical Evaluation of Quantities Measured in the
Detection of Soil Air Pollution of the Environmental Burden. Appl. Sci. 2021, 11, 3294. [CrossRef]

34. Bazaluk, O.; Lozynskyi, V.; Falshtynskyi, V.; Saik, P.; Dychkovskyi, R.; Cabana, E. Experimental Studies of the Effect of Design and
Technological Solutions on the Intensification of an Underground Coal Gasification Process. Energies 2021, 14, 4369. [CrossRef]
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