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Abstract: A tritium breeding blanket (TBB) is an essential component in a fusion reactor, which
has functions of tritium breeding, energy generation and neutron shielding. Tritium breeding ratio
(TBR) is a key parameter to evaluate whether the TBB could produce enough tritium to achieve
tritium self-sufficiency (TBR > 1) for a fusion reactor. Current codes or software struggle to meet
the requirements of high efficiency and high automation for neutronic optimization of the TBB. In
this paper, the multiphysics coupling and automatic neutronic optimization method study for a
solid breeder TBB is performed, and a corresponding code is developed. A typical module of China
fusion engineering test reactor (CFETR) helium cooled ceramic breeder (HCCB) TBB was selected,
and a 3D neutronics model of an initial scheme is developed. The automatic neutronic optimization
was performed by using the developed code for verification. Results indicate that the TBR could
increase from 1.219 to 1.282 (~5.17% improvement), and that the maximum temperature of each
type of material in the optimized scheme is below the allowable temperature. It is of great scientific
significance and engineering value to explore and study the algorithm for automatic neutronic
optimization and the code development of the TBB.

Keywords: multiphysics coupling; automatic neutronic optimization; HCCB TBB; TBR

1. Introduction

The tritium breeding blanket (TBB) is an essential component to achieve tritium
production, energy generation and extraction in a fusion reactor. The solid breeder TBB
is an important alternative for a demonstration fusion reactor (DEMO) or a fusion power
plant. Tritium self-sufficiency is a significant goal, and the tritium breeding ratio (TBR) is a
key parameter to evaluate whether the TBB can produce enough tritium to achieve tritium
self-sufficiency for fusion reactor, which can be calculated as follows Equation (1)

TBR =

s [
N6Li σ6Li(n,a)

(
→
r , E) + N7Li σ7Li(n,a)

(
→
r , E)

]
· φ(→r , E, t)dEd

→
r

Splasma
(1)

N6Li and N7Li are the atom densities of 6Li and 7Li, respectively; σ6Li and σ7Li are the
cross-sections of the (n, T) reactions of 6Li and 7Li, respectively; Φ(r, E, t) is the neutron
flux distribution; Splasma is the generation rate of fusion neutron in plasma. In brief, TBR
represents the average atom number of tritium produced in the TBB for every fusion
neutron consumed.

However, the TBR of the fusion reactor can be impacted by a number of factors,
including the geometries (the opening ports to install the corresponding heating and
diagnostic equipment [1,2], and a heterogeneous model of the blanket [3]), materials
(type, density, enrichment), nuclear libraries (uncertainty), and neutron transport codes
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(uncertainty). Meanwhile, the tritium losses occur during the fuel cycle because of tritium
decay, leakage, extraction, and retention, which is a considerable challenge to tritium-
sustaining. Therefore, a higher TBR is needed.

According to the above constraints, a general neutronic optimization flow chart for
the TBB of the fusion reactor is shown in Figure 1 [4]. The procedures mainly include six
steps: (1) An initial design for the TBB needs to be made (including the choice of functional
materials, structural material, and coolant, and the set of geometry parameters). (2) The
Monte-Carlo (MC) neutronic transport calculation of the TBB is performed, and the TBR,
nuclear heat, and neutron flux are obtained as inputs for a following FEM analysis. (3)
Thermal-fluid FEM analysis is performed by using ANSYS, and some design parameters
such as fluid pressure distribution and pressure drop are obtained. (4) The temperature
distribution of the first wall (FW) and TBB (including the regions of the tritium breeding
and neutron multiplier) can be calculated by ANSYS Thermal. (5) A structural analysis
is performed by ANSYS Thermo-mechanics, and the primary and thermal stresses can
be obtained. (6) The optimized TBB design can be made. The neutronics optimization
should be returned back to the first step, and geometry parameters should be adjusted
accordingly if the TBB design does not meet the design requirements of the pressure
drop, the temperature of the FW/TBB and thermal stresses. Each physics field analysis is
performed respectively, and one-way data transmission is adopted.
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tallies overlaid over explicit geometry in general, and so many particles are needed to 

Figure 1. General flow chart of the neutronic optimization for the TBB.

To ensure that the maximum temperature of each type of material is lower than its cor-
responding allowable temperature, real-time monitoring for the temperature distribution
of the TBB is necessary during the process of neutronic optimization. Calculation accuracy
can be ensured through the above flow chart, yet a huge computational expense is caused.
On the one hand, 3D thermal FEM and iterative simulations call for huge calculation
expense. The same holds true for a 3D MC simulation, since one needs fine mesh tallies
overlaid over explicit geometry in general, and so many particles are needed to reduce the
MC relative deviation. On the other hand, such explicit 3D models impose too much CPU
time and memory to be working modules of iterative optimization algorithms. Therefore,
the cycle time is too long during the optimization process, which is not suitable for the
rapid automatic optimization of the TBB.
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In view of the above constraints, the method study of the multiphysics coupling
and neutronics automatic optimization for a solid breeder TBB was performed, and a
corresponding code is developed and verified, which consists of four modules: (1) the
neutronic transport calculation module (MCNP-4C [5,6]); (2) the automatic neutronic
optimization module; (3) the 1D thermal feedback module; (4) the packing fraction (PF) of
the feedback module (only for pebble beds; PF is the ratio of the volume of pebble beds
to the whole volume of the container). This code can realize the multiphysics coupling,
increase the optimization efficiency and ensure data transmission without losses.

2. D Thermal Feedback Module
2.1. Code Development

Figure 2 shows the CAD model of the latest design of CFETR [1] HCCB TBB [7]. It
mainly consists of an armor (which prevents plasma sputtering), a first wall (FW), tritium
breeder zones, neutron multiplier zones, caps, cooling plates (CP), a distribution plate, a
shielding plate and a gathering plate. According to the 3D CAD model, a simplified model
of the TBB with a sandwich-like layout for 1D thermal calculation is shown as Figure 3. The
1D simplified model of the breeding zone includes the tritium breeder, neutron multiplier
and structural material for rapid thermal calculation (shown in Figure 3).
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In this paper, one tritium breeder region with two adjacent cooling plates (CP) is
defined as one breeder unit (BU), and one neutron multiplier region with two adjacent CP
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is defined as one multiplier unit (MU). According to the BU and MU, the 1D steady-state
heat conduction equation is expressed as follows:

d2T(x)
dx2 +

.
φ

λ(T(x)) = 0, x ∈ (0, δ)

x = 0, λ(T(x)) dT(x)
dx + h(Tf1 − T(x)) = 0

x = δ,−λ(T(x)) dT(x)
dx + h(Tf2 − T(x)) = 0

(2)

where T(x) is the temperature distribution of the breeding region;
.
φ is the internal heat

source of one tritium breeder region or neutron multiplier region; λ(T(x)) is the effective
heat conductivity coefficient of the pebble beds; δ is the total radial thickness of the study
object; h is the convective heat transfer coefficient; Tf1 and Tf2 are the left- and right-side
fluid temperature, respectively.

In consideration of reducing computational expense effectively, a constant heat con-
ductivity under an average temperature is adopted in the CPs because the CP thickness in
radial is small (only 1 cm), with a small temperature gradient, and the thermal conductivity
is insensitive to the temperature changes. Therefore, an analytical solution of temperature
distribution of the CP can be calculated as follows:

T(x) = −
.
φ

2λ0
x2 + c1x + c2, x ∈ [0, δ] (3)

c1 =
h(Tf2 − Tf1)

2(λ0 + hδ)
(4)

c2 =

.
φ

2λ0
δ2 +

.
φδ

h
+

(Tf2 + Tf1)

2
(5)

λ0 is the heat conductivity under average temperature of each CP.
In contrast, the tritium breeder region and the neutron multiplier regions are relatively

thicker in the radial, with a high-temperature gradient. The effective heat conductivity
coefficient in the pebble beds should not be considered as a constant value. The calculation
methods of the effective coefficients in Be pebble beds and Li4SiO4 pebble beds are shown
in Section 2.2.

Then, spatial discretization is performed by the finite difference method (FDM), and
the discretization equation can be derived as follows. Here, ∆x is the spatial step.

(
− a+bTf1

∆x − h
)

T0 +
a+bTf1

∆x T1 = −hTf1

Ti−1 − 2Ti + Ti+1 = −
.
φ∆x2

λ , i = 1, 2, 3, · · · , n− 1
a+bTf2

∆x Tn−1 +
(
− a+bTf2

∆x − h
)

Tn = −hTf2

(6)

Next, the discretization equation can be solved by using the chase-after method of
tridiagonal equations, which is expressed as follows:



−
a+bTf1

∆x − h
a+bTf1

∆x
1 −2 1

. . .
. . .

. . .
1 −2 1

. . .
. . .

. . .
1 −2 1

−
a+bTf2

∆x −
a+bTf2

∆x − h





T0
T1
T2

...
Tn−1
Tn


=



−hTf1

−
.
φ∆x2

λ

...

−
.
φ∆x2

λ
−hTf2


(7)
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2.2. Code Verification

The HCCB TBB typical module based on the latest design of the CFETR HCCB blanket
was selected for the verification. Firstly, a neutronics model was needed for 3D transport
calculation. Yet, high-fidelity modelling and transport calculation are very challenging
tasks for a solid breeder TBB because the TBB surrounds the high-temperature plasma
with a complex geometry, an intense heterogeneous neutron flux distribution and neutrons
with a large energy span. Therefore, a 3D homogeneous neutronic model was adopted
and developed, as shown in Figure 4. It is proven that the homogeneous neutronics model
has a small impact on the performance of the CFETR HCCB TBB [3]. In the homogeneous
model, the different materials of the breeding blanket were assumed to be mixed according
to their volume fractions in each functional region. Reflecting boundaries were applied,
including both toroidal and poloidal directions. The toroidal widths and poloidal length
of the blanket module were both 120 cm, and the radial thickness was 80 cm (2.5 cm for
FW, 56.5 cm for the breeding zone, 15 cm for manifold, and 5 cm for the back plate). The
poloidal length of the caps was the same as that of the FW. ODS steel was selected as the
structural material, Li4SiO4 [8] (the enrichment of 6Li is 90%) as the tritium breeder in
the pebble bed regions, and Be as the neutron multiplier. The whole blanket module was
divided into nine regions: five regions for the tritium breeding and four for the neutron
multiplication. There were eight CPs providing cooling and structural support for the
blanket box. The initial radial dimensions of the blanket module are listed in Table 1.
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Table 1. The initial radial dimensions of the blanket module.

Structure Radial Length/cm Structure Radial Length/cm

FW 2.5 CP-5 1.0

Li4SiO4-1 1.7 Be-3 11.0

CP-1 1.0 CP-6 1.0

Be-1 5.0 Li4SiO4-4 5.5

CP-2 1.0 CP-7 1.0

Li4SiO4-2 2.2 Be-4 6.0

CP-3 1.0 CP-8 1.0

Be-2 8.0 Li4SiO4-5 6.0

CP-4 1.0 Manifold 14.0

Li4SiO4-3 3.1 Back plate 1.0
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The transport calculation was performed by MCNP-4C based on FENDL-2.1 [6]. One
million particles were taken into account in the simulation, and the MC relative deviation
could reduce to ~0.1%. A general neutron source of a Gaussian fusion energy spectrum
was added in front of the FW, and reflecting boundaries were adopted in toroidal and
poloidal. F4 and F6 tallies were performed for calculating TBR and average power density,
respectively.

The packing fraction of the Li4SiO4 pebble bed was 62%, and the density was
1404.672 (kg/m3). The fitting formulas of the effective thermal conductivity and effective
specific heat at normal pressure are expressed as follows [9,10]:

λ(T) = 0.768 + 4.96× 10−4T(W/m ·K) (8)

Cp(T) = 940 + 1.46T + 4.01× 106T−2(J/kg ·K) (9)

The packing fraction of the Be pebble bed is 80%, and the density is 1406.4 (kg/m3).
The fitting formula of the effective thermal conductivity is expressed as [11–13]

λ(T) = 6.234(1 + 353(αBe − αFe)(T− 300))(W/m ·K) (10)

αBe and αFe are the coefficients of the thermal expansion of the Be and Fe (a type of
impurity in the Be pebble bed), respectively. The empirical formulas are written as follows:

αBe = 8.43× 10−6 × (1 + 1.36× 10−3T − 3.53× 10−7T2)(K−1) (11)

αFe = 7.18422× 10−6 + 1.21304× 10−8T − 6.25× 10−12T2)(K−1) (12)

The density of the ODS steel at room temperature was 7847 (kg/m3). The fitting
formulas of the thermal conductivity and effective specific heat at the normal pressure are
expressed as follows:

λ(T) = 34.02857− 0.01025T(W/m ·K) (13)

Cp(T) = 536.82457− 0.11405T + 7.7381× 10−4T2(J/kg ·K) (14)

The simplified calculation method of the heat source of each region was utilized. The
heat removed by the helium coolant in the FW consists of three parts: (1) the surface heat
flux of the FW (0.5 MW/m2), (2) the nuclear heat deposited in the FW, and (3) half of the
nuclear heat deposited in the Li-1 region. The heat removed by the helium coolant in the
breeding zone included half of the nuclear heat deposited in the Li-1 region and the nuclear
heat deposited in all regions behind.

Then, the verification for the 1D thermal feedback module could be performed. The
1D average power density distribution of the TBB under a NWL (neutron wall loading) of
2.5 MW/m2 is illustrated in Figure 5, which is also considered as the input for the thermal
calculation [14].

The inlet and outlet temperatures of the coolant were 300 ◦C and 500 ◦C. The solid
breeder TBB is periodic in the toroidal direction, and a typical layer model (shown as
Figure 6a) was adopted for the 3D thermal analysis in ANSYS-14. The mesh dissection
is shown as Figure 6b. Then, the 1D radial temperature distribution of the TBB can be
calculated as shown in Figure 7a, and the results calculated by ANSYS-14 are shown in
Figure 7b.
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shown as Figure 6b. Then, the 1D radial temperature distribution of the TBB can be calcu-
lated as shown in Figure 7a, and the results calculated by ANSYS-14 are shown in Figure 
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Results indicate that (1) the 1D radial temperature distribution result is consistent with
the one calculated by ANSYS; (2) the maximum temperatures of the Li4SiO4 calculated by
these two codes are 1456.4 K and 1448.2 K, respectively, and both of them are located in
Li-5; (3) the maximum temperatures of the Be as calculated by these two codes are 1073 K
and 1082.4 K, respectively, and both of them are located in the Be-1 region. Therefore, the
1D thermal feedback module can be used for rapid thermal calculation of the TBB during
the process of neutronic optimization.

3. PF Feedback Module

Figure 8 shows the relationship between the average packing fraction and the container
size of the Li4SiO4 pebble beds, in which the diameter of pellets D is assumed to be 1 mm,
and Ly means the radial length of the container. According to the results in Figure 8, the
average PF of each tritium breeder region can be obtained by interpolation, which is shown
as follows:

PFi(
δi
d
) = PFa + (

δi
d
− δa

d
)

PFb − PFa
δb
d −

δa
d

(15)

δi is the radial length of the ith tritium breeder region; δa and δb are the floor and
upper radial thickness for the interpolation, respectively; d is the diameter of the Li4SiO4
pellet; PFi is the average packing fraction of the ith tritium breeder region; PFa and PFb are
the floor and upper average packing fraction for the interpolation, respectively. In brief,
PFi can be obtained by interpolating between two adjacent points.
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The average density of the tritium breeder region and the atom density of 6Li and 7Li
can be calculated as follows:

ρLi4SiO4
i = ρLi4SiO4 · PFi (16)

ρLi4SiO4 is the density of Li4SiO4, and ρLi4SiO4
i is the average density of the ith tritium

breeder region.
N6Li

i and N7Li
i are the atom densities of 6Li and 7Li of the ith tritium breeder region,

respectively; N0 is Avogadro’s number; ALi4SiO4 is the relative atomic mass of Li4SiO4; A6Li
and A7Li are the relative atomic masses of 6Li and 7Li, respectively; ε6Li and ε6Li are the
enrichment of 6Li and 7Li, respectively.

N6Li
i =

4N0ρLi4SiO4
i c6Li

ALi4SiO4

(17)
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N7Li
i =

4N0ρLi4SiO4
i c7Li

ALi4SiO4

(18)

c6Li =
1

1+
A6Li
A7Li

( 1
ε6Li
− 1)

(19)

c7Li =
1

1+
A7Li
A6Li

( 1
ε6Li
− 1)

(20)

4. Automatic Neutronic Optimization Module
4.1. Limits and Goals of Optimization

Limits and goals of the automatic neutronic optimization of the TBB mainly include
the following:

(1) Temperature limits

The maximum temperature of the blanket structure ODS, multiplier Be, and solid
breeder Li4SiO4 should be lower than 923, 923 and 1173 K, respectively;

(2) Goals of engineering feasibility

The radial thickness of each tritium breeder region and neutron multiplier region
should be not less than 1 cm at the minimum.

The radial thickness of the optimization step should be between 0.1 cm and 0.5 cm.
The total radial thickness of the breeder zone and of each CP thickness should be

assumed to be constant during automatic neutronic optimization.

4.2. Method of Automatic Optimization

The flow chart of the automatic neutronic optimization of the TBB is illustrated in
Figure 9, which mainly includes the five following steps:

(1) Step 1

The 3D Monte-Carlo neutronic transport calculation based on the initial design of the
TBB is performed, and the initial neutronic performance parameters (such as TBR, nuclear
heat distribution, etc.) can be obtained.

(2) Step 2

An assumption of the radial thickness of the optimization step and geometry adjust-
ment with one step length of each CP is performed in sequence. The scheme libraries of
the current optimization step are formed. Then, the PF of each pebble bed of each scheme
is updated through the PF feedback module, and the effective heat conductivity coefficient
of each pebble bed is also updated for the subsequent 1D thermal calculation. Next, the
neutronic analysis of each scheme is performed, and the neutronic performance parameters
(TBR and nuclear heat distribution) can be obtained. Power density of each region can be
calculated as follows:

·
φ

j
i =

F6j
i · NWL · S

14.1×V j
i PFj

i

(21)

PFj
i is the PF of the ith region of the jth scheme; φ

j
i is the average power density of the

ith region of the jth scheme; F6j
i is the nuclear heat deposition of the ith region of the jth

scheme; NWL is the neutron wall load; S is the area facing to the plasma; V j
i is the volume

of the ith region of the jth scheme.
Then, thermal analysis of each scheme is performed through the 1D thermal feedback

module, and the 1D radial temperature distribution of each scheme can be obtained. Next,
a primary filter according to the TBR of each scheme is set up. The specific scheme belongs
to primary alternatives if its TBR is greater than that of the initial schemes; otherwise it is
eliminated.
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(3) Step 3

The secondary filter according to the temperature limits of each primary alternative is
set up. The specific primary alternative is assumed to be the secondary alternative if the
maximum temperature of each type of material is lower than its corresponding temperature
limit; otherwise it is automatically abandoned.

(4) Step 4

Cycle through Step 2 and Step 3 until the filters of all schemes have been completed.
An adjustment of the radial thickness of the optimization step is made if the number of
primary alternatives is 0 (there is no scheme with the TBR greater than that of the initial
schemes). Continue through Step 2 and Step 3 until the radial thickness of the optimization
step reaches the upper limits. The initial scheme is considered as the final optimized
scheme if the number of secondary alternatives is 0 (all schemes with a greater TBR do not
meet the temperature limits); otherwise, the scheme with the greatest TBR of the secondary
alternatives is regarded as the initial scheme of the next step of neutronic optimization.

(5) Step 5

Cycle through Step 1 and Step 2 until the automatic neutronic optimizations are
completed and the final optimized scheme is confirmed to meet the temperature limits and
requirement of the engineering feasibility.
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5. Code Development and Verification
5.1. Code Development

Using programing in Fortran 2013, the multiphysics coupling and neutronics auto-
matic optimization code was developed on Visual Studio 2012. The framework mainly
consists of four modules: (1) the neutronic transport calculation module, through which
3D neutronic analysis of the solid breeder TBB was performed; (2) the automatic neutronic
optimization module, which holds the direction of the neutronic optimization via calling
other modules; (3) the 1D thermal feedback module; (4) the packing fraction feedback
module. Among the above four modules, the neutronics transport calculation module
was an existing code (MCNP-4C), and the other three modules were self-developed in
this paper.

As shown in Figure 10, the flow chart of the multiphysics coupling of the developed
code mainly consists of the following five steps. (1) Neutronics transport calculation of
solid breeder TBB is performed, nuclear heat distribution obtained and transmitted to
the 1D thermal feedback module, and neutron flux and TBR distribution are calculated
and transmitted to the neutronics automatic optimization module. (2) Next, 1D thermal
calculation of the TBB is performed, and the 1D temperature distribution is obtained.
(3) According to the 1D temperature distribution, geometry adjustment is taken by the
neutronics automatic optimization module. (4) Then, there is a PF adjustment taken by
the PF feedback module, and the geometry and density adjustments for each pebble bed
are performed based on the PF adjustment. (5) Neutronics analysis for a new TBB scheme
is performed.
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A weak multiphysics coupling between neutronics, thermal and PF of pebble beds
was primarily achieved. Transmission, iteration and real-time updating of the temperature
distribution and density distribution could be realized during the neutronics automatic
optimization of the solid breeder TBB in the developed code by coupling the above four
modules. The impact of temperature on the cross-sections is not considered in the multi-
physics coupling at this stage.
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5.2. Verification

The same HCCB TBB typical module shown in Figure 4 is regarded as the object
for the verification of the automatic neutronic optimization code. Referring to the latest
neutronic design of CFETR phase II, the NWL is 1.69 MW/m2 [11]. The automatic neutronic
optimization of the HCCB TBB typical module was performed, and the radial dimensions
of the optimized blanket module are listed in Table 2. The variation of the radial thickness
of each tritium breeder region and each neutron multiplier are illustrated in Figure 11. The
curve of the TBR vs. the optimization step is shown in Figure 12. The 1D radial temperature
distribution of the optimized HCCB TBB typical module is shown in Figure 13.

Table 2. The radial dimensions of the optimized blanket module.

Structure Radial Length/cm Structure Radial Length/cm

FW 2.5 CP-5 1.0

Li4SiO4-1 0.6 Be-3 11.2

CP-1 1.0 CP-6 1.0

Be-1 6.5 Li4SiO4-4 4.3

CP-2 1.0 CP-7 1.0

Li4SiO4-2 1.7 Be-4 7.7

CP-3 1.0 CP-8 1.0

Be-2 8.6 Li4SiO4-5 5.2

CP-4 1.0 Manifold 14.0

Li4SiO4-3 2.7 Back plate 1.0
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The automatic neutronic optimization results indicate that (1) the optimized scheme
can be obtained after 43 steps, and the radial thickness of each region is tending towards
stability; (2) the TBR increases from 1.219 to 1.282 (~5.17% improvement) after the automatic
optimization, and the maximum temperature of each type of the material is lower than the
allowable temperature, as listed as in Table 3.

Table 3. The limit temperatures of each type of the materials in the TBB [14]. Reproduced from [14],
Fusion Engineering and Design: 2009.

Material Max Temperature/K Limit Temperature/K

Li4SiO4 1064 1173
Be 763 923

ODS steel 758 923

6. Conclusions

The multiphysics coupling and automatic neutronic optimization code for the tritium
breeding blanket of the fusion reactor was developed and verified. This code consists
of four modules: the neutronic transport calculation module, the automatic neutronic
optimization module, the 1D thermal feedback module and the PF feedback module. The
developed 1D thermal feedback module was verified and would be available for real-time
temperature monitoring for the TBB. The maximum deviation compared with the 3D
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results calculated by ANSYS is less than 10K. As for a typical HCCB TBB module, the TBR
can increase from 1.219 to 1.282 (~5.17% improvement) after the automatic optimization,
and the maximum temperature of each type of the material is lower than the allowable
temperature.

A weak multiphysics coupling between neutronics, thermal and PF of pebble beds
was primarily achieved in this paper, without considering the impact of temperature on
the cross-sections. The nuclear-thermal coupling by means of the Picard method will be
mentioned in a future study.
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