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Abstract: Resource Constraints in Wireless Sensor Networks are a key factor in protocols and
application design. Furthermore, energy consumption plays an important role in protocols decisions,
such as routing metrics. In Software-Defined Networking (SDN)-based networks, the controller is
in charge of all control and routing decisions. Using energy as a metric requires such information
from the nodes, which would increase packets traffic, impacting the network performance. Previous
works have used energy prediction techniques to reduce the number of packets exchanged in tradi-
tional distributed routing protocols. We applied this technique in Software-Defined Wireless Sensor
Networks (SDWSN). For this, we implemented an energy prediction algorithm for SDWSN using
Markov chain. We evaluated its performance executing the prediction on every node and on the SDN
controller. Then, we compared their results with the case without prediction. Our results showed that
by running the Markov chain on the controller we obtain better prediction and network performance
than when running the predictions on every node. Furthermore, we reduced the energy consumption
for topologies up to 49 nodes for the case without prediction.

Keywords: software-defined networking; energy consumption; centralized prediction

1. Introduction

Wireless sensor networks (WSN) are formed by interconnected nodes with the capacity
of sensing, processing, and communicating. Advances in digital electronics, wireless com-
munication, and microelectromechanical systems (MEMS) have enhanced WSN popularity,
a technology currently used in a vast number of applications, such as environmental, in-
dustrial and health monitoring, tracking and detection, home automation, and security [1].
WSN is also a key technology in the development of the Internet of Things (IoT) [2]. These
networks are resource constrained, typically having low processing power, low storage
capacity, limited bandwidth, and limited energy. Those restrictions are important to reduce
the cost of hardware production but limit the network flexibility, resource reuse, security,
and network lifetime.

Kobo et al. [3] state that to solve WSN-inherent problems, including energy and com-
putational constraints, a holistic solution is necessary. Previous works propose integrating
WSN with Software-Defined Networking (SDN) as a potential solution to the previously
mentioned limitations. The SDN approach decouples the control plane from the data plane,
centralizing the routing decisions in the SDN controller [4,5]. The integration of WSN
and SDN is referred to in the literature as Software-Defined Wireless Sensor Networks
(SDWSN) [6–9], and results show that SDWSNs perform as well as RPL [9] (IPv6 Routing
Protocol for Low-Power and Lossy Networks, RFC 6550).

Routing in WSN considers the resource constraints and the performance demands
from applications [10,11]. For example, an energy-aware routing protocol uses energy
consumption metrics to extend the network lifetime [12]. In SDN-based networks, the con-
troller is in charge of all routing decisions, and for this reason, it needs information about
the network topology and status (i.e., performances metrics), such as energy consumption
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metrics. To understand the importance of this information in the SDN controller, Oliveira
and Margi [12] applied energy-aware route selection to SDWSN. In their proposal, each
node reports its remaining energy to the controller every time there is a decrease higher
than 1% of the total energy supply. The energy-aware route selection performance was
compared to a link quality route selection using the expected transmission count (ETX),
a routing metric based on active probing measurements [13]. Their results showed that
using the energy-aware route selection increases the network lifetime and reduces the num-
ber of route changes. However, this requires that the network devices periodically inform
their energy information (i.e., average energy consumption or residual energy) to the SDN
controller to maintain the routing metric updated, which increases packets traffic and
impacts the network performance.

Several authors proposed mechanisms to reduce the transmissions of these packets.
Their main objective is to predict future values of a monitored variable to reduce the fre-
quency of transmissions to update the metric value [14–17]. For example, Dias et al. [16]
implemented autoregressive algorithms in an IoT context to predict sensing measure-
ments, with results depicting a reduction in data transmission and energy consumption.
Mini et al. [17] compared Markov chain and time series based node energy consumption
prediction algorithms in WSN, and obtained a reduction in the number of messages with
energy consumption information for both cases. On the other hand, the prediction requires
processing and energy resources that are scarce in WSN nodes.

In this work, we study the benefits and consequences of moving the prediction
execution from every WSN node to one centralized node without resource constraints. For
this, we decided to implement our proposal using an SDN architecture. Thus, we can use
the SDN controller processing power to predict the energy consumption of every node
in the network and its communication structure to share the information between the WSN
nodes and the controller. Our hypothesis is that by centralizing the prediction we can
improve the prediction accuracy and network performance if compared with the case that
every node runs the prediction. This is important for two main reasons: (i) improving
network performance means improving the delivery rate and decreasing delay of energy
information required for control decisions without impacting on other packets traffic, and
(ii) in case of missing packets, the controller will be able to predict the missing information.
The second point is not possible to solve in the cases without prediction or executing
the prediction on every node unless the node retransmits the packet, which means more
packets traffic.

Previous works tested Markov chain [18,19] for energy consumption prediction in SD-
WSNs but, to the best of our knowledge, only our previous work [20] implemented
the Markov chain running in the controller to predict the network energy consumption
of each node in the network. Here, we extend our previous research by implementing
and comparing two strategies: the prediction algorithm runs on all the sensor nodes and
the prediction algorithm runs only on the controller node. The metrics we used to compare
the performance were prediction accuracy, energy consumption, packets delay, delivery
rate, and control packets overhead. Despite being widely used to support prediction
in networks, machine learning strategies do not apply to our problem as one could not run
the ML prediction algorithm on resource-constrained devices given a large amount of data
necessary [21].

Our key findings are that by moving the prediction processing overhead to the SDN
controller, we obtain a better prediction accuracy, improved network performance, and
reduced energy consumption. However, this approach increases the traffic of packets
related to energy consumption information.

The remainder of this paper is organized as follows. Section 2 reviews related works
about energy consumption prediction using Markov chain in WSN. Section 3 explains
the Markov chain based energy consumption prediction. Section 4 details our energy
prediction proposal. Section 5 shows and discusses the experiments and results, and
Section 6 concludes the paper.
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2. Related Work

In this section, we analyze the literature about energy consumption prediction in WSN
using Markov chain models. We emphasize the analysis of works studying energy con-
sumption prediction on SDN-based networks.

Main results presented by the works implementing Markov chain for energy con-
sumption prediction in WSN have shown a reduction of the traffic of packets containing
energy information and the energy consumption itself [17,22,23]. Moreover, the energy
models used in these works did not include important elements that affect the accuracy,
e.g., the sensing module or the processing module energy consumption [24]. More accurate
models provide more accurate and precise network lifetime estimation but require more
memory and processing resources. Thus, the implementation of accurate energy models
in resource-constrained devices is a current challenge.

Recent works propose different strategies to improve energy efficiency and network
performance based on the prediction of energy-wise information. In [25], authors propose
to predict link quality metric based on an energy density factor using a fuzzy interference
system. Then, in [26] authors propose a black widow optimization based algorithm to
predict sinks location in mobile WSNs. Their results showed an improvement in energy
efficiency; moreover, these works did not address the problem of centralization of energy
information and its impact on the network performance.

In traditional WSN networks, it is common that individual nodes run the energy
consumption prediction algorithm and inform the result to a central node. The SDN
paradigm has open the opportunity to migrate processes from individual nodes to the SDN
controller, such as communication channel assignment [27], traffic analysis [28], intrusion
detection [29,30], or energy consumption prediction.

In a previous work [20], we implemented a centralized energy consumption prediction
for SDWSNs. Similar approaches were implemented by Rahimifar et al. [18] and by
Miranda et al. [19]. In [18,20], the SDN controller receives energy consumption information
from the nodes in the network; the main difference is that in [18] the nodes do the prediction
and send an energy consumption rate to the controller, while in [20] the nodes send to
the controller the information required to do the prediction using Markov chain. Unlike the
works in [18,20], in [19] the WSN nodes communicate the energy information to a specific
sink instead of to the controller. Moreover, they propose a centralized detection as well.

From the results in [18–20], we know that the energy prediction strategy can reduce
the average energy consumption of the nodes and delay of the packets containing energy
information. However, these works do not investigate the impact of their proposals
in performance metrics such as control and data packets overhead, delivery rate, and
delay. Moreover, the energy models used are not “complete”. According to the works
in [31,32], processing and sensing processes represent around 15% of the total consumption.
Furthermore, the authors of [24] showed that the consumption by states transitions could
have a significant part in the final result. Thus, accurate energy consumption models
should consider processing, sensing, communication and transitions energy consumption.

From previous works, we noticed that (i) energy prediction proposals for WSN using
Markov chain are based on energy models that omit the processing and/or sensing energy
consumption, (ii) the energy consumption prediction proposals have been tested through
simulations but there is a lack of experiments in real devices, and (iii) the centralized
prediction works based on Markov chain have shown promising results, but there are not
enough results to measure the impact of its implementation in the network performance.

In this work, we addressed these gaps in the literature by implementing a centralized
Markov chain-based energy consumption prediction using an energy model that considers
processing, sensing, communication, and transitions consumption. Our objective is to pro-
pose an energy consumption prediction algorithm leveraged by SDN that is accurate and
lightweight in terms of processing and communication resources. We evaluated the perfor-
mances of our proposal through simulations, emulating sky motes, and experiments on
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real devices using TelosB motes. To evaluate the impact on the network performance, we
measured the delivery rate, delay, packets overhead, and energy consumption.

3. Energy Consumption Prediction

This section has three main parts: first, we explain the basics of Markov chain and how
we apply it to predict energy consumption in WSN; second, we propose an energy con-
sumption model for WSN; and third, we explain the integration of the energy consumption
model and the Markov chain for energy consumption prediction.

3.1. Markov Chain

A Markov chain is a stochastic process commonly used to model dynamic systems,
such as computer behavior [33]. A Markov chain is composed of a set of states and
the transition probabilities from one state to another, where the probability of the next state
depends only on the current state (Markov property).

The Markov chain is represented by a probability matrix or by a transitions diagram,
among other representations. In the case of using a matrix, the entries are the probabilities
of a transition from one state to another. For example, for a probability matrix P, the element
P12 is the probability of a transition from the state “1” to the state “2”. Assuming X0 is
the initial state-space distribution and X1 is the state-space distribution in the next time-
step, X1 = X0P. Then, X2 = X1P = X0PP, hence Xn = X0Pn, where Pn is the probability
matrix to the power of n.

Then, assume ER represents the state’s energy consumption prediction. To calculate
ER, we need to predict the number of visits to each state for the time we want to predict
the energy consumption. The number of visits to state j starting from state i for n steps is
Nj = ∑n

t=1 Pt
ij, where Pt

ij is the probability of going from state i to state j to the power of t.
Moreover, the number of visits for all states is calculated as shown in Equation (1), where
Pt is the probability matrix to the power of t.

N =
n

∑
t=1

Pt (1)

Then, the energy consumption by all the states ER is calculated as shown in Equation (2),
where ET

s is a vector that contains the average energy consumption of each state transpose.

ER = X0NET
s (2)

Substituting ET
S in Equation (2) by a matrix Ks that represents the cost of one transi-

tion, we predict the energy consumption for all transitions during n steps. We obtain Ks
calculating the element-wise product (◦) of probability matrix P and transitions cost matrix
B, as shown in Equation (3). Then, EB in Equation (4) is the energy consumption only by
transitions after n steps, where e is a vector with all the entries 1.

Ks = P ◦ B (3)

EB = X0N
(

KseT
)

(4)

Therefore, the total energy consumption predicted for the next n steps is

Etotal = ER + EB (5)

3.2. Energy Consumption Model

The energy consumption prediction using Markov chain requires that the energy
consumption of each state in the set is known. Furthermore, we need a mechanism to
evaluate the prediction accuracy of our proposal. To fulfill both requirements, we propose
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an energy consumption model that considers processing, sensing, communication, and
transitions consumption.

3.2.1. Sensing Module

The sensing modules operate mostly using two states: active and sleep mode. In the ac-
tive state, the module takes the measurement and transmits it to the MCU. In the sleep
mode, it turns off most of its submodules to reduce the energy consumption and remains
waiting for a signal to acquire the next measurement. Considering both states and the tran-
sitions between them, the sensing module energy consumption (represented as ESen) is
calculated using Equation (6). The term Esen−act represents the active state, Esen−sleep
the sleep mode, Esen−on the turning on transition, and Esen−o f f the turning off transition.

ESen = Esen−act + Esen−sleep + Esen−on + Esen−o f f (6)

To calculate the energy consumption for a certain period, the terms Esen−act and
Esen−sleep are expressed in terms of power consumption and time. Then, we calculate
the transitions energy consumption by multiplying the average transition energy consump-
tion by the total transitions counted in this period of time. Thus, ESen is expressed as shown
in Equation (7), where Psen−act and Psen−sleep are the active and sleep mode states average
power consumption; Tsen−act and Tsen−sleep are the time spent on the active and sleep mode
states; esen−on and esen−o f f are the average energy consumption of one turning on and
turning off transitions; and Non and No f f are the number of transitions.

ESen = Psen−actTsen−act + Psen−sleepTsen−sleep + Nonesen−on + No f f esen−o f f (7)

3.2.2. Processing Domain

The processing module’s energy consumption model is based on the work in [31],
which considers at least three states: active, idle, and sleep. For our proposal, we change
the sleep state for power-saving states. This means more than one state is meant to reduce
energy consumption. Thus, the processing energy consumption ECPU for a certain period
is calculated as shown in Equation (8).

ECPU = Pcpu−actTcpu−act + Pcpu−idTcpu−id + ∑S
s=1 P{pp,s}T{pp,s} + ∑G

g=1 NgP{cput,g} (8)

The terms Pcpu−act, Pcpu−id, and P{pp,s} are the active, idle, and power-saving states aver-
age power consumption, respectively. The terms Tcpu−act, Tcpu−id, and T{pp,s} are the time
spent in the active, idle, and power-saving states, respectively. The terms Ng and P{cput,g} are
the number of g transitions and their average power consumption. The transitions energy
consumption is calculated by multiplying the number of transitions and their average
energy consumption.

3.2.3. Communication Domain

Two approaches are used to calculate the energy consumption in the communication
module. One approach is based on the number of bits transmitted and received [32,34].
The other approach is based on operation states, measuring the time spent on each state to
estimate the total energy consumption [31,35], as explained for the processing and sensing
modules. We chose to use the operation states approach to give homogeneity to the model.

Figure 1 depicts a simplified block diagram for a WSN communication module, based
on four IEEE 802.15.4-compliant radios modules (CC2420 [36], CC1120 [37], MRF24J40 [38],
and CC2520 [39]). Then, based on the simplified block diagram, four states were defined:
transmitting, receiving, idle, and sleeping. When the module is in the transmitting state,
the transmitter circuitry and the control logic block are active. In the receiving state,
the receiver circuitry and control logic block are active. When the receiver and transmitter
circuitry are turned off and the control logic block is turned on, the module is in the idle
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state. Last, when the receiver and transmitter circuitry are turned off and the control logic
block is in the sleeping mode, the module is in the sleeping state.

Transmitter 

circuitry

Receiver

 circuitry

Control 

Logic

Antenna

MCU

Figure 1. Communication module: simplified diagram.

Equation (9) express the energy consumption for a certain period of time. The terms
PTx, PRx, Pcom−id, and Pcom−sl are the transmitting, receiving, idle, and sleeping states average
power consumption. The terms TTx, TRx, Tcom−id, and Tcom−sl are the time spent on
transmitting, receiving, idle, and sleeping states. The terms Nq and P{ct,q} are the number of q
transitions and its average power consumption, respectively.

ECom = PTxTTx + PRxTRx + Pcom−idTcom−id + Pcom−slTcom−sl + ∑Q
q=1 NqP{ct,q} (9)

3.3. Energy Consumption Prediction Implementation

As our proposal is for WSN, we decided to implement our energy consumption model
on TelosB motes, an IEEE 802.15.4-compliant platform with an MSP430 microprocessor
and 48 kB of flash memory. We modeled the TelosB mote energy consumption considering
the device would run a temperature monitoring application, considering that the whole
WSN was programmed using Contiki-3.0 [40]. Next, we describe the states of each module.

The temperature sensor of the TelosB is a Sensirion STH11 and it operates in two states:
active and sleep. Regarding the processing energy consumption, Contiki avoids staying
idle and it supports only two low-power modes: LPM1 and LPM3. Using the default
configuration, the microprocessor never enters in LPM3 state. Thus, the processing module
operates in two states: active and LPM1. The communication module behavior is defined
by the CC2420 Contiki implementation. Contiki uses a radio duty cycle mechanism named
ContikiMAC [41]. This mechanism uses a power-aware wake-up mechanism with a set
of timing constraints aiming to keep the transceiver turned off as long as possible. An
important issue is that using ContikiMAC, the communication module does not enter
in the idle state. Furthermore, whenever ContikiMAC turns off the radio, the frequency
synthesizer is disabled, which means the module is in the power down state. Based on
these characteristics, the communication module operates in three states: transmitting,
receiving, and power down.

Based on the TelosB energy consumption characteristics, we defined five states for
the Markov chain: Sensing, Processing, LPM1, Transmitting, and Receiving. Each state is
composed of three substates, one for each module. Table 1 describes the configuration of
each Markov chain state.
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Table 1. Set of states of the Markov chain.

State
Domain

Sensing Processing Communication

Sensing active active sleeping

Processing sleeping active sleeping

LPM1 sleeping LPM1 sleeping

Transmitting sleeping active transmitting

Receiving sleeping LPM1 receiving

The probability matrix is constructed after a training period where each node moni-
tors its transitions. Each node constructs a transitions matrix to organize the number of
transitions between states and a transitions vector to store the total of transitions of each
state. Then, dividing each row of the transitions matrix by the total number of transitions,
as shown in Equation (10), we obtained the probability matrix. Then, we can calculate
Equations (2) and (4) to obtain the energy consumption prediction. Note that P depends on
the node’s behavior, which means that it can change every time it is calculated, according
to the transitions (a and v) counted.

P =


a11/v1 a12/v1 a13/v1 a14/v1 a15/v1
a21/v2 a22/v2 a23/v2 a24/v2 a25/v2
a31/v3 a32/v3 a33/v3 a34/v3 a35/v3
a41/v4 a42/v4 a43/v4 a44/v4 a45/v4
a51/v5 a52/v5 a53/v5 a54/v5 a55/v5

 (10)

4. Centralized Energy Consumption Prediction

According to the literature review, previous works implementing centralized energy
consumption prediction in WSN maintain the prediction processing overhead on the sensor
nodes. The WSN nodes monitor their behavior, execute the prediction algorithm, estimate
an energy consumption rate, and send this information to a sink or controller. We propose
to move most of the processing required for the prediction to the SDN controller, assuming
that the SDN controller does not have energy, processing power, or memory space con-
straints. In this manner, the WSN nodes monitor their behavior and the controller executes
the prediction algorithm.

In detail, the WSN nodes execute a training period to calculate their probability matrix.
Each node has to register all the transitions and order them in a matrix, just as explained in
Section 3.3. When the training process ends, the node calculates the probability matrix and
the energy spent up to this moment; then, it sends this information to the SDN controller.
The SDN controller creates an energy profile for each node. This profile contains the prob-
ability matrix and an energy consumption time series, constructed from the information
sent by the WSN nodes and the prediction results.

The SDN controller executes the prediction algorithm (Algorithm 1) to calculate the en-
ergy consumption for the next n steps. Then, the SDN controller informs the prediction
value obtained to the respective WSN node. In this manner, after n steps the node can
calculate the prediction error by comparing the prediction and the energy consumption
obtained through the energy model. If the error is above a threshold previously defined,
the WSN node initiates a new training period to update the energy information in the en-
ergy profile in the SDN controller. On the other hand, if the error is below the threshold,
the SDN controller continues the time series construction using the value predicted.
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Algorithm 1 Markov chain running on the controller

1: n: number of steps
2: prediction: energy consumption prediction for n steps
3: error: prediction error
4: threshold: maximum error accepted
5: p_matrix: transitions matrix
6: s_consumption(n): energy consumption prediction during n steps for states
7: t_consumption(n): energy consumption prediction during n steps for transitions
8: ————————————————————————-
9: Running on WSN nodes

10: launch the training
11: wait the training period ends
12: calculate p_matrix
13: send p_matrix to the controller
14: while true do
15: wait n steps
16: calculate energy consumption
17: calculate error(energy consumption, last prediction)
18: if error > threshold then
19: obtain a new p_matrix
20: send new p_matrix to controller
21: end if
22: end while
23: ————————————————————————-
24: Running on the SDN controller:
25: wait for WSN information
26: function PREDICTION(p_matrix, n)
27: calculate s_consumption(n) and t_consumption(n)
28: prediction=s_consumption + t_consumption
29: update time series
30: send prediction to sensor nodes
31: end function

Implementation

The implementation was conducted using Contiki-3.0 [40], a widely used open-source
operating system for WSN, and IT-SDN version 0.4 [9,42] (Available at http://www.larc.
usp.br/users/cbmargi/www/it-sdn/, last time accessed 12 August 2021). IT-SDN is an
open-source SDWSN framework implemented in our group, with results showing that its
performance is similar to RPL for topologies up to 289 nodes.

Previous works used time steps of 1000 ms [17] and 100 ms [43]. Moreover, we
decided to use a time step of 1 ms to obtain a more accurate probability matrix. For
example, ContikiMAC [41] channel checking takes 0.884 ms plus the radio turning on
and turning off time. Thus, time steps of 1000 ms and 100 ms lose information in our
evaluation environment.

The communication between sensor nodes and the controller was implemented using
the IT-SDN communication stack. IT-SDN [9,42] is an SDWSN framework composed of
three communication protocols: the Southbound protocol, the Neighbor Discovery proto-
col, and the Controller Discovery protocol. The Southbound protocol defines the message
formats for communication between the WSN and the controller. The WSN nodes use
the Controller Discovery protocol to find a route to the controller and the Neighbor Dis-
covery protocol to collect neighborhood information. The controller uses the neighbor
information to define the routes according to the policies programmed. Then these routes
are configured in the WSN nodes.

The Southbound protocol has six packet types: flow request, flow setup, flow ID
register, acknowledgment, neighbor report, and data packet. Moreover, we created two

http://www.larc.usp.br/users/cbmargi/www/it-sdn/
http://www.larc.usp.br/users/cbmargi/www/it-sdn/
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more packets to address energy and prediction information communication: one packet
exclusively to send energy information (i.e., from sensor nodes to the controller), and
another packet exclusively to send the controller’s reply (i.e., from the controller to sensor
nodes). The energy information packets are routed using a flow identifier and the reply
packets are source-routed from the controller.

All the energy information packets contain a byte specific for prediction mechanism
identification. Thus, in the case of having more than one prediction algorithm, the receiver
will know how to process the packet. For example, running the prediction on the WSN
nodes and running the prediction on the SDN controller. Each case requires different infor-
mation to be shared, thus using this identifier we inform which one we are implementing.
Furthermore, using this identifier we are able to mix both approaches. Table 2 shows
packets’ sizes in bytes for both cases.

Table 2. Energy information packets’ sizes.

Energy Information

Approach Packet size (B)

Running on the controller 89

Running on the WSN node 15

Controller reply

Running on the controller 12 + 2 × hops

5. Experiments and Results

In this section, we describe the experiments we used to measure the performance
of our energy consumption model and our centralized energy consumption prediction
proposal. Then, we analyze and discuss the results obtained.

5.1. Energy Consumption Model Accuracy

The energy consumption model accuracy was evaluated using an N6705C DC power
analyzer from Keysight. First, we measured the states and transitions average energy
consumption using the power analyzer. Then, we deployed a network as shown in Figure 2
to obtain the energy consumption estimation from one node in an SDWSN and measure
its energy consumption with the N6705C at the same time. The controller software runs
on a desktop computer Intel Core i5 CPU 750 and 8 GB of memory RAM. All the nodes
in the WSN are TelosB motes, including the gateway used to communicate the WSN
and the SDN controller. Figure 3a depicts the connection to collect energy consumption
measurements using the N6705C equipment and Figure 3b depicts the connection between
the SDN controller and the WSN gateway.

SEMBEI

Sensor node
Sink

Controller

Sensor node with 

power analyzer

Figure 2. Network deployed for energy consumption measurements.
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(a) (b)

Figure 3. Connection diagrams for (a) energy consumption measurement using the N6705C of
Keysight and (b) the SDN controller and TelosB gateway.

We compared the node estimation and the N6705C measurement to calculate the en-
ergy consumption model accuracy. During the testing, all the sensor nodes send tempera-
ture measurements to the sink and energy consumption measurements to the controller
every 20 s. The experiment was replicated ten times, taking ten energy consumption
measurements per time. We obtained an average error of 4.98% and a confidence interval
of 1.53% using a significance level of 0.05.

5.2. Prediction Mechanisms Performance Evaluation

The energy consumption prediction proposal performance was evaluated from simu-
lations using COOJA [44] and emulating sky motes, which is a TelosB equivalent available
in COOJA simulator. We also executed experiments running the prediction algorithm
in the WSN nodes, such as proposed by Rahimifar et al. [18], which for the best of our
knowledge, it is the most recent work about energy consumption prediction using Markov
chain in SDWSN.

Both approaches were simulated using multihop grid topologies from 16 nodes to
81 nodes, including one controller node and one sink node. We also simulated the scenario
without prediction to use it as a baseline. In this case, all WSN nodes send their energy
consumption to the SDN controller every 60 s. In parallel, we run a temperature monitoring
application where every node sends a temperature sample (2 bytes message) every 60 s
as well. Furthermore, all nodes wait 60 s plus a random value between 0 and 60 s before
initializing the prediction algorithm and the temperature application. We use the random
value to prevent all nodes from transmitting energy and temperature packets at the same
time, which would create packets collisions.

The metrics to evaluate the energy consumption prediction proposals include predic-
tion performance and network performance metrics. These metrics are prediction accuracy,
total delay, total delivery rate, packets overhead, and energy consumption. The total delay
is the average time the packets spent to reach the destination. The prediction accuracy is
evaluated in two ways: prediction error and valid predictions rate. The prediction error
is the average error of all the predictions during the test. The valid predictions rate is
the number of predictions with an error lower than 5% divided by the total predictions
performed. We chose 5% based on the average estimation error we obtained using our
energy consumption model (Section 5.1). The total delivery rate is calculated by dividing
the number of packets successfully received by the number of packets sent. The packets
overhead is quantified as the number of packets per minute. The energy consumption is
the average energy consumption per minute of all nodes, excluding the sink node and
the controller node.

The total delay, total delivery, and overhead metrics are classified by type of packet.
Control packets are those related to the IT-SDN control plane, data packets are the applica-
tion packets sent to the sink, and energy packets are the packets related to the prediction
mechanisms and energy information. The graphics in this section show the average results
calculated among replications. Table 3 shows the abbreviations used for each scheme, and
Tables 4 and 5 summarize the simulation and energy consumption parameters, respectively.
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Table 6 represents the cost per transitions in microjoules, i.e., matrix B in Equation (3).
The cases with cost zero are transitions that never occurred or that we were not able to mea-
sure with our equipment. Last, according to our tests, the initial state is always Processing.
Thus, the initial vector X0 = [0 1 0 0 0].

Table 3. Abbreviations for the schemes simulated.

Abbreviation Scheme

No-Prediction Without prediction

Markov-Node Markov chain running
in the sensor node

Markov-PC Markov chain running
in the controller

Table 4. Simulation parameters.

Simulation Parameters

Topology Square grid

Number of nodes 16, 25, 36, 49, 64, 81

Number of sinks 1

Data traffic rate 1 packet every 60 s

Data payload size 2 bytes

ContikiMAC channel check rate 8 Hz

Radio medium Unit disk graph medium

Distance between nodes 50 m

Transmission range 55 m

IT-SDN parameters

Neighbor discovery protocol Collect-based

Link metric ETX

Controller discovery protocol none

Route calculation algorithm Dijkstra

Route recalculation threshold 20%

Flow table size 15 entries

Table 5. Energy consumption parameters.

Energy Consumption Parameters

Transmission current consumption 20.3 mA

Receiving current consumption 18.75 mA

Processing current consumption 2.21 mA

Sleeping mode current consumption 0.67 mA

temperature sensor current consumption 2.3 mA

Operation voltage 3 V
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Table 6. Transitions’ energy consumption (µJ).

Sensing Processing LPM1 Transmitting Receiving

Sensing 0 0 0 0 0

Processing 75.6 0 1.35 5.94 0

LPM1 75.6 1.35 0 0 7.38

Transmitting 0 10.8 0 0 0

Receiving 0 21.6 0 0 0

5.2.1. Results Analysis

Figure 4a depicts the percentage of valid predictions and Figure 4b depicts the average
prediction error metric. The Markov-PC scheme obtained the highest percentage of valid
predictions and the lowest prediction error, which means it is the most effective to reduce
energy packets updates. Moreover, we observed that the topology size has more impact on
the Markov-PC scheme than on the Markov-Node scheme. In terms of percentage of valid
predictions, the average results in the Markov-scheme decrease 8.68%, from 16 nodes to
81 nodes, while for the Markov-Node scheme the decrease is 1.76%.

(a) (b)

Figure 4. Markov chain prediction accuracy: (a) shows the percentage of valid predictions (<5%) for
the case running on the sensor node and running on the SDN controller and (b) shows the average
prediction error for these two cases as well.

Figure 5 depicts the average energy consumption including the scenario without
prediction. Comparing both Markov chain schemes with the No-Prediction scheme,
the Markov-PC scheme reduces the average energy consumption of the networks with
sizes from 16 to 49 nodes, whereas the Markov-Node scheme increases the average energy
consumption for all sizes. This means that the Markov-Node scheme energy consump-
tion trade-off is not positive: it spends more energy than the amount it is able to save.
On the other hand, the Markov-PC scheme, the one with the better prediction perfor-
mance, saves approximately 1% of energy consumption in the topologies between 16 and
49 nodes but increases this metric 1% for 64 nodes and 5% for 81 nodes. If we go back to
the percentage of valid predictions in Figure 4a and compare those results with the energy
consumption results for Markov-PC scheme, we can say that it is necessary over 40% of
valid predictions to save energy.
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Figure 5. Energy consumption of No-Prediction and Markov chain schemes: values in milijoules.

Figure 6a,b depicts the control and energy packets overhead, respectively. Regarding
control packets overhead, the results show similar values for all the schemes in topologies
from 16 to 36 nodes. This means that the prediction schemes implementation do not
increase the control overhead for small networks. Moreover, we observed that the Markov-
PC reduces the control overhead in around 3% and 9% for 49, 64, and 81 nodes. On the other
hand, the Markov-Node scheme increases the control overhead between 4.9% and 5.4% for
topologies with 64 and 81 nodes. This increase is related to the control packets delivery
rate, which is analyzed further below.

(a) (b)

Figure 6. Packets overhead of Markov chain and No-Prediction schemes: (a) shows the number of
control packets and (b) shows the number of energy packets.

Then, the results in Figure 6b show that the Markov-Node scheme reduces the energy
packets traffic while the Markov-PC scheme increases it. Even though the Markov-PC
scheme has a lower prediction error and a higher percentage of valid predictions than
the Markov-Node scheme, the increase is because in the Markov-PC scheme the controller
replies every energy information update with the energy consumption prediction result,
but in the Markov-Node scheme this is not necessary. This means that using the Markov-PC
we need 50% or more valid predictions to at least equal the No-Prediction scheme. On
the other hand, around 27% of valid predictions (Figure 4a) in the Markov-Node scheme
are enough to reduce up to 25% of the energy packets traffic.

Figure 7a–c depicts the delivery rate for control, data, and energy packets, respectively.
From those figures, we observed that the Markov-PC scheme equals or improves the de-
livery rate with respect to the No-Prediction scheme results. For example, in the case of
the energy packets delivery rate, the result for the Markov-PC are between 1.8% and 4.4%
over the No-Predictions scheme.
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On the other hand, using the Markov-Node scheme the delivery rate is below the No-
Prediction scheme results in most cases. This is interesting since the Markov-Node scheme
obtained the lowest energy packets overhead, with up to 40% less than the Markov-PC
scheme. To understand this, we have to remember that in WSNs all packets share the same
band and channel in some cases. Despite the Markov-Node obtained the lowest energy
packets overhead, it also obtained the highest control packets overhead, which can affect
the energy packets delivery rate. Furthermore, in the Markov-Node scheme all energy
packets go upward (i.e., from sensor nodes to the controller) while in the Markov-PC
scheme half of them go upward and the other half go downward (i.e., from the controller to
sensor nodes). This helps to alleviate the congestion of the routes hence the delivery rate.

The control packets delivery rate results also helped us to understand the increase
in the control overhead using the Markov-Node scheme for 64 and 81 nodes noticed before
(Figure 6a). In Figure 7a, we observed that for topologies from 16 to 49 nodes, the decrease
is less than 1.25%, while for 64 and 81 nodes, the decrease is around 3% and 4%, which
is a match to the increase in the control packets overhead. These metrics are related since
the overhead is caused by the retransmissions for the lost packets. A lower delivery rate is
a sign that more retransmissions were required.

(a) (b)

(c)

Figure 7. Total Delivery rate of Markov chain and No-Prediction schemes: (a) shows the delivery
rate of control packets, (b) shows the delivery rate of the data packets, and (c) shows the delivery
rate of energy packets.

Figure 8a–c depicts the average delay for control, data, and energy packets, respec-
tively. The first we observed is that the Markov-Node scheme obtained the highest delay
in all the packet types, with a significant difference in the energy packet. In this case,
the delay is from 65% to 122% higher than the delay in the No-Prediction scheme. Unlike
the Markov-Node scheme, the Markov-PC scheme was able to maintain the control and
data packets delay with respect to the No-Prediction scheme, but also it was able to reduce
the delay up to 18% in the case of the energy packets.
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(a) (b)

(c)

Figure 8. Packets delay of Markov chain and No-Prediction schemes: (a) shows the average delay of
control packets, (b) shows the average delay of the data packets, and (c) shows the average delay of
energy packets.

The increase in the delay using the Markov-Node scheme is caused by its process-
ing overhead. As shown in Figure 9, the Markov-Node scheme doubles the processing
overhead of the Markov-PC and No-Prediction schemes. This processing overhead delays
energy packets forwarding. Furthermore, as energy and data updates have the same
period, it also delays data packets forwarding. The Markov-PC and No-Prediction schemes
have similar processing overheads. Thus, recalling the overhead and delivery rate results,
despite the fact that the Markov-Node scheme reduces the number of energy packets
in the network, the high delay caused by processing overhead could be affecting both
energy packets and data packets delivery rate.

Summarizing, the Markov-PC scheme overcomes the Markov-Node scheme in all
the metrics evaluated, except for the energy packets overhead. This means, executing
the prediction in the SDN controller we obtain better accurate prediction and delivery
rate, and less energy consumption, control packets overhead, delay and sensor nodes’
processing overhead. Then, with respect to the No-Prediction, the Markov-PC scheme
reduces the energy consumption for topologies between 16 nodes and 49 nodes and
increases it for topologies between 64 and 81 nodes. We also observed the Markov-PC
scheme increases the energy packets delivery rate and reduces their delay. Moreover,
in terms of control and data packets delivery rate and delay, the Markov-PC and No-
Prediction scheme obtained a similar performance.
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Figure 9. Processing overhead in seconds of No-Prediction and Markov chain schemes.

Thus, considering the whole picture, the Markov-PC scheme obtained better perfor-
mance than the Markov-Node scheme, but also it provides benefits in terms of energy
efficiency and network performance if compared with the No-Prediction scheme.

6. Conclusions

In this work, we proposed a centralized energy consumption prediction mechanism
for WSN leveraged by SDN. Our hypothesis was that by moving the prediction processing
overhead to the SDN controller we can improve the prediction accuracy and consequently
the network performance. To test our hypothesis, we proposed an energy consumption
model and implemented a prediction algorithm using Markov chain. Then, we evaluated
the prediction and network performance when running the algorithm in every node and
running it only in the SDN controller. Furthermore, to determine the real benefit, we
compare the performance of both approaches with the case without prediction.

Results showed that by moving the prediction algorithm processing overhead from
every node to the SDN controller we improved the prediction accuracy, delivery rate and
delay of control, data and energy packets. Moreover, we reduced the control packets
overhead, however there is a significant increase in the energy packets traffic.

Concerning the No-Prediction scheme, the Markov-PC scheme reduced the energy
consumption, the control packets overhead and the energy packets delay. Furthermore, it
improved the energy packets delivery rate. In the remaining metrics, excluding the energy
packets overhead, the Markov-PC and the No-Predictions scheme obtained similar perfor-
mance. These results show our centralized approach improves the prediction accuracy and
network performance with less than 50% of predictions attempts correct. Therefore, there
is room to improve the prediction accuracy and, thus, the network performance.
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