
energies

Article

Prediction and Evaluation of Dynamic Variations of the
Thermal Environment in an Air-Conditioned Room Using
Collaborative Simulation Method

Lin He 1, Shunan Zhao 1, Guowen Xu 2, Xin Wu 2, Junlong Xie 2 and Shanshan Cai 2,*

����������
�������

Citation: He, L.; Zhao, S.; Xu, G.; Wu,

X.; Xie, J.; Cai, S. Prediction and

Evaluation of Dynamic Variations of

the Thermal Environment in an

Air-Conditioned Room Using

Collaborative Simulation Method.

Energies 2021, 14, 5378. https://

doi.org/10.3390/en14175378

Academic Editor: Boris Igor Palella

Received: 12 July 2021

Accepted: 23 August 2021

Published: 30 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 State Key Laboratory of Air-Conditioning Equipment and System Energy Conservation & GREE Electric
Appliances, Inc. of Zhuhai, Zhuhai 519070, China; helin@cn.gree.com (L.H.); zhaosn@cn.gree.com (S.Z.)

2 School of Energy and Power Engineering, Huazhong University of Science and Technology,
Wuhan 430074, China; m201871202@hust.edu.cn (G.X.); m201971239@hust.edu.cn (X.W.);
jlxie@mail.hust.edu.cn (J.X.)

* Correspondence: shanshc@hust.edu.cn

Abstract: In this study, a collaborative simulation method is proposed to predict dynamic variations
of the thermal environment in an air-conditioned room. The room thermal environment was predicted
and analyzed by varying the structural and control parameters of the air conditioner considering
the dynamic coupling effect. Connections and regularities were established between the applicable
parameters and evaluation indices of the thermal environment. The simulation results demonstrated
the interactions among the system structural parameters, control parameters, and the thermal
environment. Within a certain parameter range, the evaporator structure exhibited a significant
effect on temperature uniformity and vertical air temperature difference, followed by predicted
mean vote (PMV) and draught rate (DR). The associated evaluation indices were sensitive to fin
spacing, tube spacing, and tube outer diameter, in the same order, which were structural parameters
of the evaporator. The effect of the air supply angle on the vertical air temperature difference
was evident; however, its influence on the PMV, DR, and temperature uniformity did not indicate
consistent variations.

Keywords: air conditioning system; room thermal environment; dynamic coupling; evaluation
indices; collaborative simulation

1. Introduction

Investigations on the thermal environment test of a room air conditioner are normally
performed in accordance with the existing standards, such as ISO 7730 and ISO 17772-1 [1,2].
In the existing standards, the evaluation indices of the thermal comfort include temperature
fluctuation, temperature uniformity, predicted mean vote (PMV), draught rate (DR), etc.
Such indices are closely associated with the dynamic procedure of the air conditioning
system and its associated effects on the temperature and velocity fields in the room. The
dynamic procedure of an air conditioning system depends on the structures of the main
components (such as air supply outlet and evaporator) [3], control parameters and strate-
gies (such as setting temperature, air supply angle, proportional integral derivative control,
and fuzzy control) [4,5], and ambient conditions (including outdoor temperature, air veloc-
ity, return air temperature, and positioning for installation) [6,7]. Dynamic variations of
the air conditioning system directly affect the supply air conditions and further vary the
distribution characteristics of the room thermal environment [8,9]. Therefore, to predict
the dynamic procedure and evaluate associated indices of the thermal environment of
an air-conditioned room, the models of the air conditioning system and room need to
collaborate. Such prediction and evaluation methods can not only help improve the testing
efficiency but also provide a theoretical reference for designing parameters and optimizing
air conditioners [10].
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The dynamic model of an air conditioning system is based on the heat transfer mecha-
nism of the air-conditioning unit and thermodynamic characteristics of each component.
It is generally established using MATLAB Simulink to calculate key parameters of the air
conditioning unit, such as the energy efficiency ratio and supply air conditions [11,12].
However, many studies combine air conditioning systems with the traditional room ther-
modynamic model by calculating room load, which cannot clearly reflect the distribution
characteristics of the spatial environment. Numerical simulation tools using computational
fluid dynamics methods, such as Fluent, can perform a comprehensive simulation and anal-
ysis of thermal environment variations, which can be used to moderately predict the testing
procedure of air conditioning units [13,14]. However, studies on the dynamic variation
characteristics of room thermal environments mainly analyze the influences of parameters
such as return air location, supply air outlet size, and supply air state parameters on the
flow and temperature fields in an air-conditioned room under the boundary conditions
of fixed wall temperature, heat flux, fixed supply air temperature, and velocity [15,16].
Consequently, it is difficult for the existing methods to accurately explore the dynamic pro-
cedure and collaborative interaction between the air conditioning unit and room thermal
environment during the actual testing and operation periods.

Co-simulation is a modelling approach full of potential. To predict the building energy
consumption and indoor environment, some researchers integrated one-dimensional build-
ing energy simulation and three-dimensional computational fluid dynamics programs to
provide complementary information. Results indicated that the coupling program matched
with the experimental data; it behaved more accurately and realistically than the stand-
alone simulation [17]. Another study proposed an integrated simulation framework for the
comprehensive analysis of HVAC systems in off-highway mechanical cabins. The typical
one-dimensional/three dimensional co-simulation approach is enhanced by combining
an artificial neutral network to simplify the overall complexity of the model [18]. The
TRNSYS-FLUENT quasi-dynamic co-simulation method was provided in one study to
evaluate the energy effect of a phase change material heat exchanger by considering one-
dimensional energy simulation and two-dimensional CFD (computational fluid dynamics)
model [19]. Co-simulations are also widely used for connecting system performance with
control strategies. A co-simulation tool was reported to couple the energy system model
by Dymola–Modelica and the building model by EnergyPlus. It aimed to investigate
the optimal control of a HAVC system with thermal comfort and minimum energy con-
sumption [20]. Another co-simulation method is built between EnergyPlus Functional
Mockup Units (FMUs) with the Python environment to investigate the operations of the
ground source heat pump. EnergyPlus output the necessary status parameters to Python
and obtained the control signals from Python in the co-simulation platform [21]. Besides,
multiple researches have developed co-simulations between EnergyPlus and MATLAB
in the BCVTB platform to analyze the performance of HVAC (heating, ventilation, and
air conditioning) units [22], energy consumptions in buildings, and the variations on
the zone environment [23]. Among these studies, the energy simulation is normally the
one-dimensional models with control strategies and interactions among different compo-
nents to be fully considered. Some software and simulation tools are also proposed in
the current literature to predict the dynamic thermal variations and energy efficiency in
buildings [24–27]. However, the studies in the current literature mainly focused on the
building applications without analysis of the potential connections between the structure
characteristics of air-conditioner and the thermal variations, as well as thermal comfort
related indices in an air-conditioned space.

This study aims to simulate the behaviors of the air conditioners with different struc-
ture and control parameters when they are in the thermal environment/comfort test. A
parallel collaborative simulation model is proposed to solve the coupling issue between
the operation of the air-conditioning unit and dynamic variations of the room thermal
environment. The proposed model comprehensively analyzes interactions among the
system structural parameters, control parameters, and the thermal environment, which
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has never been reported in the open literature and it is the novelty of this work. It is true
that non-uniform flow affects the thermal environment, but structural parameters and
control strategies also have their impacts on the heat transfer capacity, response time, and
efficiency, all of which further affect dynamic variations of the thermal environment.

2. Collaborative Simulation Workflow

A closed-loop coupling simulation model was constructed to accomplish the objective
of this study. In the actual thermal environment/comfort test of an air conditioner with
the ambience of the outdoor unit maintained constant, the structure of heat exchangers
and the control strategy of the air-conditioning unit affect the real-time thermal state in the
room. The real-time thermal state affects the return air status, which affects the real-time
operation of the air-conditioning unit. In order to describe the dynamic feedback between
the air conditioning system and the room thermal environment during the test period, a
collaborative method between the air conditioning model and room model can reflect the
real-time variations, expected to be closer to the actual application. To include the structural
parameters of components in the air conditioning system, a mathematical model is required
to predict the variations among main components. To indicate control strategy, control
models, such as PID, fuzzy PID modules are required to reflect the responses of the air
conditioning system. To predict the flow field in the air-conditioned room, CFD modeling is
a commonly used simulation method. Considering the requirements in different models, as
well as the characteristics in different simulation tools, a collaborative simulation method
can eliminate the limitations of single tool to some extent. During simulation, the air
conditioning system model passes the air supply state data to the inlet boundary of the
room thermal environment model that in turn feeds back the corresponding calculation
results of the room temperature field as an input to the air conditioning system model.
This needs to occur in real time. Therefore, the air supply state parameters of the indoor
unit are provided by the air conditioning system model, and the operation mode of the
air conditioning system is adjusted according to the return air state parameters. The room
thermal environment model considers the temperature fluctuations in the outdoor chamber
and heat transfer in the structure of the building envelope. By continuously exchanging
data, the air conditioning system can adjust its operation mode by checking on the updated
return air status, and the room thermal state can vary according to the updated supply air
status. Such a closed-loop coupling simulation is able to include the real-time interaction
among different systems which is close to the real application of the air-conditioning unit.

This study combined the advantages of Simulink and Fluent. Simulink was used to
establish a dynamic mathematical model of an air-conditioning system, and Fluent was
used to build a transient model of the room thermal environment. The data interface was
developed using the S-function in Simulink and user-defined functions (UDF) in Fluent,
and the data exchange and update were realized by accessing the shared data through file
I/O functions. Thus, a collaborative simulation platform for the prediction and evaluation
of the thermal environment in an air-conditioned room was developed.

The workflow of the collaborative simulation is illustrated in Figure 1. When the
collaborative simulation platform is started, Simulink and Fluent run proactively and work
alternately, and the entire simulation process is fully automated. During the data trans-
mission cycle of a certain time step, the two software packages continuously interchange
data via the parallel collaborative simulation model. The computational efficiency can
be improved by the time-division processing of the outdoor parameters and simplified
processing of the lumped partition model of the air conditioning system.
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Figure 1. Workflow of collaborative simulation.

Under the premise of ensuring the correctness and rationality of the dynamic mathe-
matical model, the proposed collaborative simulation platform can realize efficient dynamic
coupling and collaborative prediction between the air conditioning system model and room
thermal environment model. It includes the dynamic variation of the thermal environment
in an air-conditioned room under actual working conditions. In addition, it can also be
used for the controller design of the air conditioning system. Meanwhile, the parallel
collaborative simulation model has a rationality that can utilize other software systems or
programming languages for data coupling.

3. Collaborative Simulation/Mathematical Model
3.1. Model Assumptions

The establishment of an air conditioning system and room thermal environment
models, and the collaborative simulation calculation of the overall model are based on the
following assumptions:

1. The refrigerant flows in one dimension along the tube, and the pressure loss is neglected;
2. The air out of the tube flows in one dimension, and the physical properties are uniform;
3. Only the radial heat conduction of the tube wall is considered;
4. The phenomenon of air-side dehumidifying and frosting in the evaporator is not considered;
5. Indoor air is regarded as incompressible fluid, which conforms to Boussinesq hypothesis;
6. The radiant heat between solid surfaces, such as walls, ground, and roof, is ignored;
7. The indoor air flow is at a low speed, and the dissipated heat caused by the viscous

force of the fluid is neglected;
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8. The effect of air leakage on doors, windows, and walls was ignored, and the air
tightness of the room was acceptable;

9. The influence of humidity distribution on the thermal environment is ignored.

3.2. Air Conditioning System Model
3.2.1. Mathematical Model of Air Conditioning System

In the dynamic simulation of an air-conditioning system, the compressor and ex-
pansion valve have the characteristics of fast action response and small thermal inertia;
therefore, the steady-state lumped parameter method is adopted. In the compressor model,
the refrigerant mass flow rate, compressor power consumption, and exhaust temperature
can be calculated as follows:

mcom = λVth/vsuc (1)

Nz = Nth/ηiηm, (2)

Td = Tsucε(k−1)/k (3)

where λ represents the gas transmission coefficient of the compressor, Vth is the theoretical
volumetric capacity, vsuc is the suction specific volume of the refrigerant, Nth is the theoret-
ical power consumption, ηi and ηm are the indicated efficiency and mechanical efficiency,
respectively, Tsuc is the suction temperature, ε is the pressure ratio, and k is the polytropic
exponent of compression.

In the expansion valve model, the mass flow rate and outlet enthalpy of the refrigerant
can be obtained as:

mv = Cv Av

√
2ρin,v(Pin,v − Pout,v) (4)

Hout,v = Hin,v (5)

where Cv is the flow coefficient, Av is the opening area, ρin,v is the refrigerant density at the
inlet of the expansion valve, Pin,v and Pout,v are the inlet and outlet pressures, respectively,
and Hin,v is the inlet enthalpy.

The condenser and evaporator have a significant influence on the vapor compression
system characteristics, and the moving boundary method was developed to establish a
dynamic zoned lumped parameter model. The condenser was divided into superheated,
two-phase, and supercooled zones, whereas the two-phase and superheated zones were
the only two zones in the evaporator. Taking the condenser model as an example, the
governing equations were established, including the conservation equation of continuity
and energy for the refrigerant and conservation equation of energy for the tube wall. The
generalized governing equations for every phase region were integrated along the length
of the tube. Subsequently, the compact and ultimate form of the matrix equation in the
condenser model could be expressed by Equation (6), and the detailed expressions were
respectively represented as Equations (7)–(10).

.
xc = D−1

c f(xc, uc) (6)

xc = [ L1,c, L2,c, Pc, Hout,c, Tw1,c, Tw2,c, Tw3,c]
T (7)

uc = [ min,c, Hin,c, mout,c, ma,c]
T (8)

Dc =



d11 0 d13
d21 d22 d23
d31 d32 d33

0
0

d34

0 0 0
0 0 0
0 0 0

d41 d42 d43 0 0 0 0
d51 0 0
0 0 0

d71 d72 0

0
0
0

d55 0 0
0 d66 0
0 0 d77


(9)

f(xc, uc) = [ f1, f2, f3, f4, f5, f6, f7 ]
T (10)
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where xc is the vector of the state variables, uc is the vector of the control input parame-
ters, Dc and f(xc, uc) are the coefficient matrix and function matrix, respectively, and the
corresponding expressions of matrix elements can be found in [23,24]. L1,c and L2,c are the
lengths of the superheated zone and two-phase zone of the condenser, respectively. Pc is
the condensing pressure, Hout,c and Hin,c are the outlet and inlet enthalpy, Tw1,c, Tw2,c, and
Tw3,c represent the tube wall temperatures of each phase region, min,c and mout,c are the
refrigerant mass flow rate at the inlet and outlet, and ma,c is the air mass flow rate.

Combining the relationship between the import and export parameters of each compo-
nent, the visual modeling and simulation of the mathematical model of the air conditioning
system is realized on the Simulink platform. The steady-state model of the compressor and
expansion valve are considered as the boundary conditions of the system model to provide
the inlet and outlet boundary parameters for the dynamic model of the condenser and
evaporator. After initialization, the variable step size algorithm was used to solve the ma-
trix equations in the above simulation model. Consequently, the overall convergence speed
was faster, and the convergence effect was better than that of the fixed step size algorithm.

Although a two-dimensional or three-dimensional air-conditioning model collabo-
rated with three-dimensional fluent model have the ability to describe the variations and the
distributions of air flow in an air conditioned room, the calculations are highly restricted by
the calculation speed and stability. In most cases, the iterations cannot be converged. In the
current literature, very rare studies provided multi-dimensional air-conditioning models
collaborating with three-dimensional fluent model. The one-dimensional air-conditioning
model with phase partition cannot only overcome the difficulties in calculations of distribut-
ing parameter model, but also reflect the heat transfer characteristics and dynamic variation
trend of refrigerant side in different phase regions. Considering such characteristics, the
one-dimensional air-conditioning model was selected in this study.

3.2.2. Experiments in the Psychrometric Chamber

The psychrometric chamber was used to validate the simulation results and verify
the accuracy of the proposed mathematical model of the air conditioning system. As
illustrated in Figure 2, the space of the test equipment is divided into indoor and outdoor
chambers by an insulated partition wall. The surrounding walls, ceiling, and floor were
also insulated. The two chambers were equipped with a heater/cooler, humidifiers, and
other air conditioning equipment to confirm the required indoor and outdoor working
conditions. The pictures for these two chambers are shown in Figure 3.

Figure 2. System diagram of the test equipment in enthalpy difference laboratory (“outdoor chamber”
represents “chamber for testing outdoor unit”, and “indoor chamber” represents “chamber for testing
indoor unit”).
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Figure 3. Pictures of the chamber: (a) outdoor chamber and (b) indoor chamber.

3.2.3. Verification of the Air Conditioning System Model

Table 1 lists the main structural parameters of a KFR-35GW type air conditioner. The
indoor and outdoor conditions were standard refrigeration conditions, indoor air flow
rate was 773.5 m3·h−1, fixed compressor operating frequency was 52 Hz, and refrigerant
circulating mass flow rate in the system was 0.017 kg·s−1. Table 2 shows that when the
air conditioning system is stabilized, the relative error between the simulation data and
experimental results is less than 3%.

Table 1. Main structural parameters of the air conditioner.

Components Structural Parameters

Compressor Rotary compressor, nominal working volume = 10.3 cm3, and

Valve valve size = 2.2 mm

Evaporator

The process is two in and two out, two rows, a single tube with a length of
634 mm, 16 U-shaped tubes, tube outer diameter = 5 mm,

tube spacing = 19.05 mm, row spacing = 11.4 mm, louvered fin
thickness = 0.095 mm, fin spacing = 1.4 mm, a total of 422 pieces

Condenser

The process is four in and four out, two rows, a single tube with a length of
760 mm, 24 U-shaped tubes, tube outer diameter = 7 mm, tube

spacing = 22 mm, row spacing = 19.05 mm; corrugated fin
thickness = 0.095 mm, fin spacing = 1.4 mm, a total of 1115 pieces

Table 2. Relative error of main parameters in air conditioning model.

Parameters Experiment Simulation Error (%)

Condensing pressure (kPa) 2608.0 2662.1 2.11
Evaporating pressure (kPa) 1018.0 1003.5 1.42
Refrigerating capacity (W) 3361.6 3396.6 1.01

Compressor power consumption (W) 769.7 773.1 0.44
Indoor air drying bulb temperature (◦C) 15.53 15.41 −0.77

3.3. Thermal Environment Model of the Room
3.3.1. Mathematical Model of the Room Thermal Environment

To numerically evaluate the thermal environment of an air-conditioned room, param-
eters such as supply and return air in the room were set, and air current and temperature
distribution were calculated. Figure 4 shows that the air-conditioned room is simplified
into a 3D geometric model with the dimensions of 5.2 m × 3.5 m × 2.67 m in a ratio of
1:1, which mainly includes walls, air supply outlet, return air inlet, and windows. The
origin of coordinates was the center of the bottom floor. The air conditioner indoor unit
was installed at the center of the front wall in the X direction, at a height of 2.3 m from the
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floor. The air supply outlet was in the lower front of the air conditioner, and the return air
inlet was placed above the air conditioner.

Figure 4. Geometric model of an air-conditioned room.

A hexahedral structured grid was adopted for mesh generation, and the grids at
the air supply outlet and return air inlet were properly encrypted. The mathematical
model applied the standard k–ε 3D turbulence model, in which the governing equations
comprised the conservation equations for mass, momentum, and energy. The general form
of the equations can be expressed as follows:

∂(ρϕ)

∂t
+ div(ρuϕ) = div(Γ · gradϕ) + S, (11)

where ρ is the density of the fluid, ϕ is a generic variable that represents the velocity,
temperature, and other solving variables, t is the time, u is the velocity, Γ is the generalized
diffusion coefficient, and S is the generalized source term.

The boundary condition settings of the model are listed in Table 3. The air supply
velocity direction was perpendicular to the boundary surface of the air supply outlet. The
controllable temperature of the exterior wall was constant in the laboratory, resulting in
variations in the interior wall temperature. The governing equations were used to load
every boundary condition, energy transfer of air flow and wall surface was calculated, and
temperature and velocity fields of the room were determined.

Table 3. Settings of the boundary conditions.

Boundary Name Type Setting Project Unit Settings

Air flow Fluid Material / Air

Wall Polyurethane board Constant
wall temperature K 308

Air supply outlet Velocity-inlet
Speed m·s−1 3

Temperature K UDF

Return air inlet Outflow Gauge pressure Pa 0

3.3.2. Experimental Work in the Thermal Environment Laboratory

To verify the accuracy of the mathematical model of the room thermal environment,
an experimental test was carried out in an air-conditioned testing laboratory with standard
test conditions. Under the refrigeration condition, the dry bulb temperature of the outdoor
air is 35 ± 0.5 ◦C, the wet bulb temperature of the outdoor air is 24 ± 0.5 ◦C, and the setting
temperature of the air conditioner is 27 ◦C. Under the heating condition, the corresponding
environmental parameters are 7 ± 0.5 ◦C, 6 ± 0.5 ◦C, and 20 ◦C, respectively. The thermal
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load of the laboratory is 70% of its rated capacity. Under the test conditions, when the
indoor thermal environment is finally stabilized, the average room temperature is 26 ◦C,
with a deviation of 1 ◦C from the set temperature, while the average relative humidity of
the room is ultimately maintained at about 40%. Figure 5 illustrates that the laboratory
was composed of an indoor chamber and an outdoor chamber. The indoor unit was
placed in the indoor room to test the thermal comfort of the environment created by the
air conditioner. The outdoor and environmental control units were placed in the outdoor
room. The outdoor dry and wet bulb temperatures and other parameters could be adjusted
by the environmental control unit. A total of 147 temperature measurement points were
arranged in the room space, as per the pictures shown in Figure 6. Data collection began
after the air conditioner was tested, with a data collection interval of 1 min, and the test
duration was 3 h as required by the standard: that is, 2 h after the test air conditioner starts
or enters the specified stable state, plus 1 h of continuous data recording.

Figure 5. Schematic of an air-conditioned testing laboratory with a comfortable thermal environment.

Figure 6. Pictures of the air-conditioned testing laboratory used in this study: (a) the appearance
of the inner chamber; (b) the interior of inner chamber from the door side; (c) the interior of inner
chamber from the window side.

3.3.3. Verification of the Thermal Environment Model

During the model verification, the dynamic air supply outlet parameters of the air
conditioner were defined. The air supply temperature was fitted into a function varying
with time, followed by compiling and loading the UDF of the air supply temperature into
the Fluent model. Considering the fact that during thermal environment test, there is no
humidity source placed in the test chamber, the humidity effect gradually weakens. Besides,
based on the experimental results of different groups, the sensible heat ratio is basically
the same (around 92%). Therefore, the variations of psychrometrics are not included in the
current study. Figure 7a,b, respectively, present a comparison of the numerical simulation
results of room temperature under steady state and transient processes with the experimen-
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tal results. When the room thermal environment reaches the steady state, the relative error
between the simulated temperatures of 147 measuring points and experimental results is
less than 5%. In addition, the hourly relative error between the mean value of the simulated
temperatures in the transient process and those obtained experimentally is less than 10%.
The other error indexes are listed in Table 4, indicating that the model has an acceptable
accuracy [28].

Figure 7. Comparison of the simulation and experimental results at room temperature: (a) steady
state; (b) transient process.

Table 4. Error evaluation indexes of the simulation results.

Type of Error Steady Transient

RMSE 1.44 3.20
MAPE (%) 3.19 11.48

CVRMSE (%) 0.89 −2.32

4. Collaborative Simulation Results and Discussions
4.1. Prediction and Evaluation of the Thermal Environment Using Collaborative Simulation

During the collaborative simulation, the structural parameters, listed in Table 1, were
adopted to the air conditioning system model, and the boundary conditions listed in Table 3
were used in the room thermal environment model. The target room temperature was set at
27 ◦C according to the standard requirements [1]. The system controller used the difference
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between the return air and set temperatures as the input and the compressor operating
frequency as the output; thus, the room temperature could be adjusted. Table 5 describes
the designed control strategy. Meanwhile, when sharing the data files, the process blocking
time was set to 30 s.

Table 5. System controller strategy.

Specific Control Logic

A
When the room temperature is 2 ◦C higher than the set temperature, the operating frequency
gradually increases to the target high frequency of 85 Hz from the strike frequency of 15 Hz,

then the compressor temporarily operates at this frequency.

B
When the temperature difference e is in the range of 0–2 ◦C, the operating frequency

decreases step by step. We assume f = ft−1 − 3e, where ft−1 is the operating frequency at the
last interaction moment.

C
When the room temperature is lower than the set temperature, the operating frequency
continues to decrease, and it is assumed that f = ft−1 + 9e until the operating frequency

reaches a minimum of 15 Hz.

Figure 8a demonstrates the dynamic variations in the operating frequency, air supply
temperature, and average room temperature. The air conditioning system and room
thermal environment become stable after approximately 30 min. Subsequently, a cross
section of X = 0 m was selected. As shown in Figure 8b, after 1 min, the operating frequency
of the air conditioner increases gradually during the start-up, the air supply temperature is
still high, the room is in the initial stage of cooling, and the air is not appropriately mixed.
As illustrated in Figure 8c, after 10 min, the operating frequency gradually decreases;
however, the air supply temperature reaches its lowest value. When the air hits the top
surface of the wall, it spreads rapidly along the wall, and the air temperature near the
top surface is approximately 22 ◦C. As the rest of the room is not uniformly cooled, the
temperature is within the range of 25–27 ◦C. Thus, there is an evident temperature gradient
in the room, and the temperature distribution is uneven. When the collaborative simulation
time reaches 50 min, the ultimate temperature gradient is smaller and the temperature
distribution is more uniform, as shown in Figure 8d.

Additionally, the thermal environment indices were analyzed and evaluated.
(1) Temperature deviation represents the difference between the stable temperature of

the air-conditioned room and set temperature. The temperature deviation in the simulation
was 0.17 ◦C.

(2) Temperature uniformity was utilized to evaluate the differences between the con-
current air temperatures at different measuring points. The instantaneous temperature
uniformity at a certain moment is represented by the standard deviation of all the measur-
ing points at this time. In the simulation, the temperature uniformity of the entire indoor
thermal environment was constant at 0.307 according to the instantaneous temperature
uniformity over the last 20 min.

(3) The vertical air temperature difference was used to evaluate the thermal discom-
fort of the human body. Temperatures of the measuring points at the head (assumed
height = 1.6 m) and ankle (assumed height = 0.1 m) in the same vertical line direction were
obtained, and the average value of differences was calculated over a period of 20 min. As
the temperature distribution difference at the air supply outlet could not be considered in
the simulation, the vertical air temperature difference was −0.365 ◦C, that is, less than 0 ◦C.
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Figure 8. Change process of the room local temperature: (a) Variations of the main dynamic parame-
ters with time; (b–d) Temperature distribution of profile X = 0 m at different times.

(4) PMV is an internationally recognized comprehensive evaluation index that con-
siders many factors related to human thermal comfort. In particular, PMV considers the
seven-level thermal sensation evaluation standard, set using a large sample of people, as
the thermal comfort index. PMV evaluation and human thermal load calculation models
are expressed as follows:

PMV =
(

0.303e−0.036M + 0.028
)

TL (12)

TL = (M − W)− 3.05[5.733 − 0.007(M − W)− Pa]− 0.42×
−58.15)− 1.73 × 10−3M(5.867 − Pa)− 1.4 × 10−3 × M(34 − ta)

−3.96 × 10−8 fcl

[
(tcl + 273)4 − (tr + 273)4

]
− fclhc(tcl − ta)

(13)
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where M is the metabolic rate of the human body, W is the external work, Pa is the partial
pressure of water vapor, ta is the air temperature, fcl is the clothing area coefficient, which
is related to the thermal resistance of clothing, tcl is the surface temperature of clothing, tr
is the mean radiant temperature, and hc is the convective heat transfer coefficient, which
is evaluated from the relative air velocity var, a function of the local air velocity va and
the metabolic rate M [29] as noted in Table 6. The six basic parameter values involved in
the calculation of PMV are presented in Table 6. The metabolic rate of the human body
was selected under the active state of sitting position. Moreover, the thermal resistance of
clothing was selected when wearing underpants, short sleeve shirts, light pants, thin shorts,
and shoes. Other parameters could be deduced or iterated using the above basic parameters,
and the PMV was 0.84. It should be noted that although including human occupants by
organizing them in a series test may give different results, this study aims to simulate
the behaviors of the air conditioners when they are in a thermal environment/comfort
test. In this test, the PMV is one of the indices with the theoretical correlation provided in
the standard. Therefore, in the current study, the experiments with human occupants are
not involved.

Table 6. Basic parameters calculated using PMV.

Parameter Value Parameter Value

Air temperature (◦C) 27.2 Mean radiant temperature (◦C) 30.0

Relative humidity (%) 39.40 Human metabolic rate (W·m−2) 70

Relative air velocity (m·s−1) * 0.26 Clothing thermal resistance (m2·K·W−1) 0.080
* var = va + 0.0052(M − 58.2).

(5) DR represents the percentage of people who are dissatisfied owing to the air flow
dissipating human body heat. Its magnitude depends on the indoor temperature, air
velocity, turbulence intensity, physical activity level, and clothing of the person. The local
DR of measuring point i during collection time can be calculated as follows:

DRi = (34 − ta)(va − 0.05)0.62(0.37vaTu + 3.14), (14)

where Tu is the local turbulence intensity, which is 40%. The DR value calculated using the
collaborative simulation was 6.67%.

(6) The air cooling rate is defined as a rate at which the thermal environment of a room
becomes steady state. In the simulation, when the average room temperature dropped
from 35.5 to 27.2 ◦C, the stabilization time was approximately 31 min, and the cooling rate
of the air-conditioned room was 0.269 ◦C·min−1.

Therefore, the proposed collaborative simulation method can represent the interactions
among the system structure parameters, control parameters, and thermal environment to a
certain extent. Although manufacturers have to mass produce HVAC systems integrated
in multiple zones, the background of this study is to simulate the behaviors of the air
conditioners when it is in a thermal environment/comfort test. Such a test is the one that
each type of the products need to pass before putting into the market. Thus, the simulation
is based on the same laboratory and the standard conditions that are used in the thermal
environment/comfort test.

4.2. Effects of Structural and Control Parameters on the Thermal Environment

In exploring the thermal comfort in an air-conditioned room, environmental factors,
such as outdoor working conditions, room size, and air conditioner position need to satisfy
or maintain the requirements in the standards. Therefore, we focused on analyzing the
effect of the evaporator structure and air supply angle on the prediction and evaluation of
the room thermal environment. Table 7 lists the benchmark values of structural and control
parameters used in the simulation.
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Table 7. Benchmark parameter values in the simulation.

Parameter Tube Spacing
(mm)

Tube Outer
Diameter

(mm)

Fin Spacing
(mm)

Air Supply
Angle

(◦)

Benchmark 19.05 5.00 1.40 90

4.2.1. Effect of the Evaporator Structure

Tube outer diameter, tube spacing, and fin spacing are important structural parame-
ters of a finned tube heat exchanger, which affect its heat transfer capacity (the pressure
drop characteristics were not considered). Here, a finned-tube evaporator was used to
obtain ten groups of structural parameters by varying the reference parameters by 40%,
as presented in Table 8. Because the structural parameters do not directly affect the room
thermal environment, dynamic variations of the relevant parameters in the simulation are
not displayed.

Table 8. Structural parameters of different evaporators.

Structure Number Tube Spacing
(mm)

Tube Outer
Diameter

(mm)

Fin Spacing
(mm)

1 18.10 5.00 1.40
2 20.00 5.00 1.40
3 22.86 5.00 1.40
4 19.05 4.75 1.40
5 19.05 6.00 1.40
6 19.05 7.00 1.40
7 19.05 5.00 1.12
8 19.05 5.00 1.33
9 19.05 5.00 1.47

+10 * 19.05 5.00 1.40
* Evaporator reference structure.

As shown in Table 9 and Figure 9, within the specified range, larger tube spacing,
larger tube outer diameter and smaller fin spacing (structures 3, 6, and 7) tend to increase
the amount of heat transfer, resulting in a lower room temperature when the room thermal
environment reaches a steady state, whereas the temperature uniformity and vertical air
temperature difference increase, PMV decreases, and DR increases. Considering the results
for structure 3, variations of the stable temperature, temperature uniformity, vertical air
temperature difference, PMV, DR, and air cooling rate are −0.61, 5.86, 6.03, −3.57, 2.55,
and 0.37%, respectively. Moreover, the evaporator structure has a significant effect on
the temperature uniformity, vertical air temperature difference, PMV, and DR. When the
benchmark parameters vary identically, the relevant evaluation indices are sensitive to the
evaporator structural parameters, i.e., fin spacing, tube spacing, and tube outer diameter,
in that order. Considering the PMV values of structures 7, 3, and 5 with a 20% change from
the benchmarks, the variations are −5.95, −3.57, and −1.19%, respectively.
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Table 9. Effects of the evaporator structure on the thermal environment.

Structure
Number

Temperature
Deviation

(◦C)

Temperature
Uniformity

(-)

Vertical Air
Temperature
Difference

(◦C)

PMV
(-)

DR
(-)

Air
Cooling

Rate
(◦C·min−1)

1 0.220 0.302 −0.359 0.85 6.63% 0.276
2 0.125 0.312 −0.371 0.83 6.72% 0.266
3 0.004 0.325 −0.387 0.81 6.84% 0.270
4 0.188 0.305 −0.363 0.84 6.66% 0.277
5 0.133 0.311 −0.370 0.83 6.71% 0.266
6 0.128 0.312 −0.371 0.83 6.72% 0.265
7 −0.099 0.337 −0.400 0.79 6.94% 0.273
8 0.083 0.317 −0.376 0.82 6.77% 0.267
9 0.256 0.298 −0.354 0.86 6.59% 0.279

10 0.170 0.307 −0.365 0.84 6.67% 0.269

Figure 9. Color map of the evaporator structure effects on the thermal environment.

4.2.2. Effect of the Air Supply Angle

As illustrated in Figure 10, the air supply angle of the air conditioner indoor unit
was set to 105◦, 90◦, and 75◦. As shown in Figure 11a, when the air supply angle is
105◦, the low-temperature air from the air supply outlet is closer to the return air inlet,
which directly results in a low return air temperature as the input for the control model.
Consequently, after the air conditioner starts, the operating frequency does not reach the
set high-frequency and subsequently declines. Therefore, the room cooling process is slow,
and a high stable temperature is achieved. Figure 11b shows that when the air supply
angle is 75◦, the temperature overshoot process causes the time to reach a steady state
temperature to be approximately identical to that of the air supply angle of 105◦; however,
the stable temperature is lower and there is a certain temperature fluctuation.



Energies 2021, 14, 5378 16 of 19

Figure 10. Air supply angle of indoor unit.

Figure 11. Dynamic variation of room temperature when varying air supply angle: (a) 105◦; (b) 75◦.

Table 10 presents the effects of the air supply angle on the thermal environment. When
the air supply angle is 90◦, the steady state temperature, temperature uniformity, vertical
air temperature difference, PMV, DR, and air cooling rate change by 0.33, 5.54, 40.00, 13.10,
−21.44, and −2.60% compared to those of the air supply angle of 105◦. Moreover, when
the air supply angle is 75◦, variations of each evaluation index are −2.40, 22.48, 117.79,
−17.86, 18.59, and 7.43%, respectively. Thus, the effect of air supply angle on the vertical
air temperature difference is evident; however, the effect on the PMV, DR, temperature
uniformity, and other indices does not indicate consistent differences. Different indices
may lead to different optimal air supply angles. Therefore, variations of air supply angle
has a complex influence on the room thermal environment.
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Table 10. Effects of the air supply angle on the thermal environment.

Air
Supply
Angle

Temperature
Deviation

(◦C)

Temperature
Uniformity

(-)

Vertical Air
Temperature
Difference

(◦C)

PMV
(-)

DR
(-)

Air
Cooling

Rate
(◦C·min−1)

75◦ −0.482 0.376 −0.784 0.69 7.91% 0.289
90◦ 0.170 0.307 −0.365 0.84 6.67% 0.269
105◦ 0.259 0.324 −0.511 0.95 5.24% 0.262

Consequently, the structural and control parameters of air conditioning systems dif-
ferently affect the thermal environment state and evaluation indices of the air-conditioned
room. The obtained results help test the thermal comfort of air conditioners, reasonably
improve the detection efficiency of the laboratory, and provide a theoretical reference for
designing parameters and optimizing air conditioners.

It should be noted that the current model may not be able to analyze the non-uniform
flow caused by the indoor heat exchanger and the air supply outlet. However, it is able
to analyze the effect caused by the structure variations of main components and control
methods in the vapor compression cycle. Structural parameters and control strategies have
impacts on the heat transfer capacity, response time, and efficiency, all of which further
affect the supply air status and the dynamic variations of thermal environment state. The
differences in the supply air condition and cooling rate may lead to the variations on the
other evaluation indices of the thermal environment.

5. Conclusions

To predict dynamic variations of a thermal environment in an air-conditioned room, a
collaborative simulation method was proposed to achieve efficient coupling and collabora-
tive prediction between the air conditioning system model and room thermal environment
model. The prediction error of the proposed model was less than 10%. Due to the lack
of actual control strategy, the idealization of the room model, and the simplification of
the air outlet structure, the collaborative simulation model has some deviation with the
experimental results. However, the collaborative simulation method can represent the
interactions among the structural parameters, control parameters, and room thermal en-
vironment. The effects of the evaporator structure and air supply angle on the thermal
environment state and evaluation indices were thoroughly analyzed using the collaborative
simulation method.

The results demonstrated that both the structural and control parameters differently
affected the thermal environment state and evaluation indices of the air-conditioned room
within a certain parameter range. The evaporator structure exhibited a more significant
effect on the temperature uniformity and vertical air temperature difference, followed by
PMV and DR. The evaluation indices were sensitive to the evaporator structural parameters,
i.e., fin spacing, tube spacing, and tube outer diameter, in this order. The effect of the air
supply angle on the vertical air temperature difference was evident; however, its influence
on the PMV, DR, and temperature uniformity did not indicate consistent differences.
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