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Abstract: This paper introduces a new method of electricity generation using a Wiegand sensor.
The Wiegand sensor consists of a magnetic wire and a pickup coil wound around it. This sensor
generates a pulse voltage of approximately 5 V and 20 µs width as an induced voltage in the pickup
coil. The aim of this study is to generate a DC voltage of 5 V from the sensor, which is expected
to be used as a power source in self-powered devices and battery-less modules. We report on
the design and verification of a self-oscillating boost converter circuit in this paper. A DC voltage
obtained by rectifying and smoothing the pulse voltage generated from the Wiegand sensor was
boosted by the circuit. A stable DC output voltage in the order of 5 V for use as a power supply in
electronics modules was successfully obtained. A quantitative analysis of the power generated by
the Wiegand sensor revealed a suitable voltage-current range for application in self-powered devices
and battery-less modules.

Keywords: self-powered device; battery-less modules; energy harvesting; Wiegand sensor; self-
oscillating boost converter

1. Introduction

In the Internet of Things (IoT) society, electronic devices and modules can be con-
nected to the internet and exchange information through various sensors [1]. These are
generally called IoT devices. The number of IoT devices is increasing rapidly and is ex-
pected to reach 80–120 billion by 2025 [2]. A significant number of batteries that need
expensive and time-consuming maintenance are required for these devices, which also
cause environmental pollution. Energy harvesting, such as collecting small amounts of
energy from the surroundings and converting them into electrical energy, is expected
to solve this problem [3,4]. Energy from the surrounding environment, if available, can
continuously supply electrical power, and thus, be used as an independent power source
for long periods of time, without replacing the power harness and battery. With develop-
ments in miniaturization and energy-saving approaches, low-power power supplies can
gradually satisfy the many requirements of IoT devices [5]. This research introduces the
use of a self-oscillating boost converter circuit for electricity generation using a Wiegand
sensor [6,7] as an energy-harvesting element.

The Wiegand sensor generates pulse voltages that do not depend on the frequency
of the external magnetic field [8]. These pulse voltages are generated with a constant
intensity, even under ultra-slow changes in the magnetic field. Therefore, the Wiegand
sensor has attracted significant attention as a power supply for the battery-less operation of
electronic devices and for energy harvesting [9]. The contribution of this research involves
the development of a DC power supply for electronic devices and modules using the
Wiegand sensor. It is essential to build a DC power supply of 5 V because it can be used for
multiple IoT devices. The power generated by the Wiegand sensor is in the order of 1 mW,

Energies 2021, 14, 5373. https://doi.org/10.3390/en14175373 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-3680-728X
https://doi.org/10.3390/en14175373
https://doi.org/10.3390/en14175373
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14175373
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en14175373?type=check_update&version=2


Energies 2021, 14, 5373 2 of 12

even when the frequency of the applied magnetic field is as low as 1 kHz [8]. In this study,
we designed and verified a self-oscillating boost converter circuit [10–12] connected to the
Wiegand sensor as a power generator. DC power generation of 5 V was realized using
the Wiegand sensor; this may not be achievable using other methods under an excitation
frequency of 1 kHz.

The remainder of this paper is organized as follows: Following the introduction of
the Wiegand sensor and its pulse generation in Section 2, the circuits for DC conversion
of the pulse voltage and the self-oscillating boost converter are presented in Section 3. In
Section 4, we present the circuit properties of the self-oscillating boost converter connected
to the Wiegand sensor, derived both experimentally and through simulations. Finally, the
conclusions of this study are presented in Section 5.

2. Wiegand Sensor as a Voltage Source
2.1. Measurement of Pulse Voltage from the Wiegand Sensor

We used a magnet wire composed of iron–cobalt–vanadium (FeCoV) with a diameter
of 0.25 mm and a length of 11 mm. The Wiegand sensor used in this study consisted of
a wire and a pickup coil with 3000 turns wound around it. The magnetic properties of
this wire are essentially the same as those we have previously reported in detail [13]. Its
magnetic structure is shown in Figure 1. The outer layer and inner core exhibit soft and
hard magnetic properties with lower (1.6 kA/m) and higher (6.4 kA/m) coercive forces,
respectively. The direction of magnetization of these layers can be either in parallel or
antiparallel configurations, as shown in Figure 1—a specific feature of the Wiegand wire.
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An excitation coil with 25 mm length, 22 mm diameter, and 90 turns was used. An 

Figure 1. Two states of magnetization direction of the Wiegand wire: (a) parallel and (b) antiparallel
states of the soft layer and hard core.

When a magnetic field exceeds the coercive force of the soft layer, the latter exhibits
a fast magnetization reversal, which is called the Wiegand effect [6]. A pulse voltage is
induced in the pickup coil wound around the wire [8,14]. The Wiegand sensor consists of a
Wiegand wire and a pickup coil. As fast magnetization reversal is initiated independently
from the changing ratio of the applied magnetic field, the intensity and width of the pulse
are constant [15]. Figure 2 shows the measured waveform of the pulse voltage generated
from the Wiegand sensor. We measured the waveform of the open-circuit voltage across
both ends of the pickup coil using an oscilloscope [8,9]. The intensity and frequency of the
alternating applied magnetic field were 3.2 kA/m and 1 kHz, respectively. An excitation
coil with 25 mm length, 22 mm diameter, and 90 turns was used. An alternating magnetic
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field was applied to the Wiegand sensor by using the excitation coil, a signal generator, and
a bipolar amplifier. Positive and negative pulses with widths of 20 µs were alternatingly
induced in the pickup within 1 ms. These were attributed to electromagnetic induction
caused by the change in magnetic flux corresponding to the alternating magnetization
reversal of the soft layer.
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Figure 2. Measured waveform of the pulse voltage generated by the Wiegand sensor. The frequency
of the applied magnetic field was 1 kHz.

2.2. Pulse Voltage from the Wiegand Sensor Used as a Voltage Source in Simulation

As previously reported, we can determine the equivalent circuit model of the Wiegand
sensor [16]. The intrinsic pulse voltage, Vin, of the Wiegand sensor was defined to evaluate
the application circuits of the Wiegand sensor through MATLAB®/Simulink® simulations.
Figure 3 shows the waveform of the intrinsic pulse voltage, Vin, generated from the
Wiegand sensor. The performances of the simulated and experimental circuits were in
agreement when employing the equivalent circuit model of the Wiegand sensor, which
consisted of Vin as a voltage source, an internal resistance of 180 Ω, and an inductance of
17 mH [16].
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2.3. DC Conversion of Wiegand Pulse Voltage

AC–DC conversion is used to obtain a DC voltage from the Wiegand pulse voltage,
as shown in Figure 4. The alternatingly positive and negative pulse voltages are rectified
by the rectifier circuit using diodes. A smoothing filter circuit using a capacitor converts
the pulse voltages to DC. Figure 5 shows the DC conversion circuit, diode parameters,
capacitor, and resistor used in our experiments and simulations. D1–D4, indicated in
Figure 5, represent the diodes (RBR3MM30A) for rectification. RLoad is a 5.5 MΩ load
resister. C1 was used as a smoothing capacitor in the range of 1–220 nF to analyze a
processed and constant DC voltage. C1 = 1, 10, 20, 50, 100, or 220 nF was connected to
the full-wave bridge rectifier, and waveforms of the output voltage, Vout, were measured.
Figure 6a shows that Vout saturates at 2.77 V, regardless of the capacitance of C1. The
relaxation time of the saturation is longer for a smaller C1. Figure 6b shows the simulated
waveforms of the output voltage, which agree with the experimental results. LTspice® was
used for the circuit simulation [16].
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The frequency of the ripple was 2 kHz, i.e., twice the excitation frequency, because of
the full-wave rectifier. The output voltage ripple is high for C1 ≤ 20 nF, and it is very low
for C1 > 20 nF. The ripple rate, Ripple, was calculated using the following equation:

Ripple =
Vmax − Vmin

Vaverage
× 100 [%] (1)

where Vmax, Vmin, and Vaverage are the maximum, minimum, and average voltages, respec-
tively, applied for 1 ms during one cycle of excitation. The ripple rates calculated from the
experimental and simulated output voltages are shown in Figure 7.
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3. Self-Oscillating Boost Converter Circuit

As mentioned in Section 2.2, the maximum voltage obtained at the smoothing capacitor
after DC conversion of the Wiegand pulse voltage is 2.77 V. It is fundamental to obtain a
DC voltage of 5 V for operating several electronics modules. In this study, we apply a self-
oscillating boost converter circuit for a Wiegand pulse voltage. The feature of the booster
converter is that the energy stored in an inductor increases the output voltage, which
then exceeds the input voltage. Figure 8 shows the typical circuit of a boost converter.
The alternating sequence of storing energy in the inductor and transmitting it back to
the circuit boosts the voltage. The energy is stored in inductor L when M, a field-effect
transistor (FET), is in the ON state, whereas the stored energy is transferred from L to
capacitor C when M is in the OFF state. As a result, Vout higher than Vin is obtained.
Generally, the switching ON/OFF of M, controlled by an external signal, is used to apply
this alternating sequence [10]. As this study aims to develop self-powered electronic
modules, the external signal for an alternating sequence cannot be used. Therefore, a
self-oscillating boost converter is employed. Figure 9 shows the self-oscillating boost
converter circuit used in this study for a Wiegand pulse voltage. The input voltage, Vin,
of a 20-µs-wide pulse used as the power source generates an oscillating voltage at VC1.
The frequency of these oscillations corresponds to a resonant frequency determined by the
inductor L and capacitors C1 and Cgs [11,12]. This oscillation voltage at VC1 switches the
consecutive ON and OFF states of M, as shown in Figure 9.
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• ON state of M
When the oscillating pulse voltage at VC1 exceeds the gate threshold voltage, Vth, of
the FET, the FET is turned ON, and Vds drops to the ground level. This allows current
IL to flow in L, where the energy is stored. The current flows through the diode, D,
and supplies the output voltage, Vout.

• OFF state of M
When the oscillating pulse voltage at VC1 is below Vth, the FET is turned OFF. The
energy stored in L during the FET is transmitted to the capacitor of the output, C2,
through diode D.

D prevents a backflow current to L. By repeating the ON/OFF switching sequence of
the FET, a DC output voltage exceeding Vin is obtained.

4. Experimental Results and Discussion
4.1. Design of a Self-Oscillating Boost Converter for Wiegand Pulse

In this study, we designed and fabricated a rectifying and boosting circuit for the
Wiegand pulse voltage in Figure 10. The circuit consists of a bridge rectifier with diodes
and self-oscillating boost converter components, such as inductors, capacitors, n-channel
FET, and diodes, as described in the previous section and in Figures 8 and 9. Details of the
parameters of the circuit elements are indicated in Figure 10 and Table 1. The input voltage
is supplied from a Wiegand sensor. An alternating magnetic field of 3.2 kA/m was applied
to the wire. The frequency of this field was 1 kHz. The Wiegand sensor is advantageous in
terms of its efficient power generation at low frequency ranges below 1 kHz [8].
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Table 1. Parameters of the circuit elements for the Wiegand pulse voltage with a self-oscillating boost
converter.

Component Value/Type (Model Name)

Capacitance: C1 20 nF
Capacitance: C2 60 nF
Inductance: L1 4.5 mH
Resistance: R4 800 Ω
Diode: D1–D5 low VF, Schottky (RBR3MM30A)
MOSFET: M1 n-channel (RE1C002UN)

Resistance: RLOAD 1 kΩ–5 MΩ

Figure 11 shows the simulated waveforms of the voltages and currents in the self-
oscillating boost converter. The rectified voltage of the Wiegand pulse is oscillated by
a resonance of C1 and L1. This oscillated voltage, VC1, switches the FET ON/OFF. Vds
confirms the ON/OFF status of the FET. As a result of the oscillated IL1 and ID5 and the
smoothing capacitor C2, a constant DC voltage is obtained as the output. Vout is 5.1 V,
which is higher than the input voltage of VC1, and a DC voltage of 2.77 V is obtained
without the booster circuit, as shown in Figure 6.
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Vout depends on the circuit parameters of L1 and C1, as shown in Figure 12. Vout
increases as C1 decreases. The combination of L1 = 4.5 mH and C1 = 20 nF is optimum
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for producing a DC voltage of approximately 5.1 V, thus meeting the aim of this study to
generate a DC voltage of 5 V that can be used as a power source for various electronic
modules. The dependency of the output voltage ripple on capacitor C2 was also studied.
As shown in Figure 13, Vout is not dependent on C2, and is stable with fewer ripples
when C2 > 60 nF.
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4.2. Experimental and Simulated Results of the Self-Oscillating Boost Converter

Figure 14 shows the experimental and simulated waveforms for the output and other
voltages of the self-oscillating boost converter circuit presented in Figure 10 and Table 1.
We measured the waveforms of voltages at Vout, Vds, and VC1, as indicated in the circuit
diagram in Figure 10, by using an oscilloscope. Since the applied field frequency was 1 kHz,
the full-time scale of 0.5 ms in Figure 14 corresponds to one cycle of the generated Wiegand
pulse. The observed oscillations of Vds, VC1, and Vout agreed with the corresponding
simulated values.
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Figure 14. Waveforms of Vout, Vds, and VC1 in the self-oscillating boost converter.

Figure 15 shows the time dependency of Vout. The simulated and observed saturated
voltages are almost equivalent. We have discussed the experimental and simulated results
of the circuit shown in Figure 10. The load resistance RLoad = 5 MΩ was used, corresponding
to an almost “open circuit condition” for the output. Figure 16 shows the dependence of
Iout and Vout on the load resistance RLoad. Vout decreases as RLoad increases. Figure 12
shows that Vout changes with C1, reaching 5 V on adjusting C1. However, the ripple of
Vout degrades at C1 < 10 nF.
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Figure 17 shows the electric power Pout utilized at RLoad. A maximum power of 63 µW
was experimentally obtained at RLoad = 10 kΩ, which does not match with the resistance of
the pickup coil, such as 180 Ω for the Wiegand sensor [9]. This mismatch is attributed to
the elements and operation of the self-oscillating boost circuit. In fact, we have reported
that the maximum power was obtained at a load resistance of 2 kΩ, higher than the DC coil
resistance for the Wiegand sensor connected with rectifying and smoothing circuits [8].
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Figure 17. Dependence of the output power, Pout, on load resistance, RLoad.

In this study, an alternating magnetic field is externally applied to the Wiegand sensor
as excitation energy, leading to the generation of the Wiegand pulse voltage. An attractive
feature of the Wiegand sensor is that the generated pulse voltage is independent of the
frequency of the applied alternating magnetic field. Figure 18 shows the measured Vout and
its ripple rate function under an excitation frequency of 1 kHz and lower; Vout decreases
with the frequency. However, Vout of approximately 5 V and a low ripple rate are obtained
at a frequency range of up to 0.6 kHz. When the frequency is 0.4 kHz, the output voltage
still reaches 3.3 V with a ripple rate lower than 5%. This result indicates that the self-
oscillating boost converter can be used in practical applications as a power source for
electronic modules.
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4.3. Application of the Wiegand Sensor as a Power Source

Figure 19 summarizes the relationship between Vout and Iout, obtained using the
Wiegand sensor with a self-oscillating boost converter. It shows the voltage and current
range functions for the load resistance used for practical application as a power source.
A stable output of 5 V is maintained for currents up to 1 µA. This voltage/current range
is used in low-energy IoT devices [17]. Furthermore, it is compatible with the existing
energy-harvesting IC, such as power-storing buck DC–DC converters used for photovoltaic
and vibration power generation elements [18]. Typically, a DC–DC converter is used in
combination with storage batteries to ensure high efficiency and a maximized current
supply in the order of 1 mA [19]. Therefore, the developed circuit system with the Wiegand
sensor can be used with a storage battery; it allows for a higher capability of current
consumption and can be used as a power supply for IoT devices.
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5. Conclusions

We designed a self-oscillating boost converter circuit connected to the Wiegand sensor.
The Wiegand sensor consists of an FeCoV magnetic wire with a diameter of 0.25 mm, length
of 11 mm, and pickup coil with 3000 turns wound around the wire. This magnetic wire,
i.e., the Wiegand wire, generates a peak pulse voltage of 4.62 V and 20 µs width during
the magnetization reversal of its outer layer under a lower coercive field. An alternating
magnetic field of 3.2 kA/m at 1 kHz was applied to the Wiegand sensor and alternating
positive and negative pulse voltages were induced in the pickup coil. A DC voltage of
2.77 V was obtained by a bridge rectifier and a smoothing capacitor connected to the
Wiegand sensor. This DC voltage could be intensified to approximately 5 V through a
self-oscillating boost converter circuit. The experimental results of the voltage/current and
ripple characteristics agreed with the simulation results. This study represents a significant
development pertaining to the use of the Wiegand sensor as a power source for battery-less
devices and modules.
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