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Abstract: Internet of Things (IoT) performs a vital role in providing connectivity between computing
devices, processes, and things. It significantly increases the communication facilities and giving
up-to-date information to distributed networks. On the other hand, the techniques of artificial
intelligence offer numerous and valuable services in emerging fields. An IoT-based healthcare
solution facilitates patients, hospitals, and professionals to observe real-time and critical data. In
the literature, most of the solution suffers from data intermission, high ethical standards, and
trustworthiness communication. Moreover, network interruption with recurrent expose of sensitive
and personal health data decreases the reliance on network systems. Therefore, this paper intends
to propose an IoT solution for AI-enabled privacy-preserving with big data transferring using
blockchain. Firstly, the proposed algorithm uses a graph-modeling to develop a scalable and reliable
system for gathering and transmitting data. In addition, it extracts the subset of nodes using the
artificial intelligence approach and achieves efficient services for the healthcare system. Secondly,
symmetric-based digital certificates are utilized to offer authentic and confidential transmission
with communication resources using blockchain. The proposed algorithm is explored with existing
solutions through multiple simulations and proved improvement in terms of realistic parameters.

Keywords: Internet of things; embedded applications; big data; insecure channels; constraint network

1. Introduction

In recent decades, wireless communication plays a vital role in the medical industry’s
growth, smart cities, vehicular and transportation systems using IoT networks [1–3]. The
wireless nodes are dispersed in the observing field for collecting the related data and
further transmit it towards the cloud paradigm. The application users using the internet
and access the needed information directly on their smartphones and computing machines.
Almost all critical applications need an on-time response from the sensing objects and
facilitate their users. The architecture of wireless networks consists of small, less expansive,
and low-powered intelligent sensors distributed either uniformly or randomly in various
fields, i.e., military, agriculture, healthcare, smart cities, and grids for information observ-
ing [4–6]. The sensory data is collected based on particular events or periodic intervals
and transmitted to centralized servers. In medical applications [7–9], the medical experts
access the patients’ information from centralized or distributed servers using the internet
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through some developing next-generation wireless techniques. However, the traditional
data analysis techniques are incompatible to extract useful health information; therefore,
most academics are focusing on intelligent methods with the internet of medical things
for a precise and thorough exploration of patients’ sensitive data. Health services widely
adopt the internet of medical items due to its significant impact on diagnosing disease
and facilitating treatments with the least communication cost. The medical applications
are comprised of three main phases. In the first phase, wearable sensors collected the pa-
tients’ data and forwarded them to a local administrator or coordinator. The second phase
communicates the patients’ data to the server or sinks node with the intermediate devices
over the wireless transmission system. Finally, the medical data is stored on some cloud
service providers; thus, medical professionals judge the patients’ condition and provides
suitable actions. In the flat-based structure with the same processing, receiving, forward-
ing, and storage capabilities. Moreover, in the flat-based structure, many researchers
have been proposed a cluster-based solution [10–12] to divide the medical sensors into
different clusters with one cluster head in each cluster. Some applications are also based
on a hierarchical structure [13–15], and the data aggregation capabilities are separated
based on different levels. The massive medical data is stored on cloud servers and moves
wirelessly over the insecure forwarding medium. Therefore, secure and privacy-preserving
solutions for sustainable systems are demanding factors and need to maintain the resources
efficiently [16–19]. The purpose of this research work is to explore blockchain, which is an
emerging technology [20,21] to improve the performance of the healthcare system against
security extortions with efficient data management. The technology of blockchain is a
distributed database, which is comprised of various blocks that are linked together using
irreversible chains. A block is a single element, and it is composed of information related to
a specific transaction. Recently, blockchain is an emerging technology and has been applied
by many researchers to secure confidential data over insecure transmission systems [22,23].

The main contributions of our proposed solution are:

i. It presents a graph-oriented model for collecting and distributing network informa-
tion with an accessible and efficient system.

ii. Artificial intelligence techniques are utilized for producing the least error-prone
communication with decreasing delays by avoiding unnecessary malicious traffic.

iii. A reliable and authentic sharing system is modeled against threats by supporting
symmetric digital certificates.

iv. The distributed security is provided by exploiting blockchain technology in which
data is encrypted and dispersed in a decentralized model.

v. The measurement of the proposed work with a set of simulation-based experi-
ments has demonstrated significant performance with other schemes in a trustless
environment.

The rest of the research article is organized as follows. A discussion of related work is
presented in Section 2. Section 3 offers and explains the main components of the proposed
algorithm. Section 4 analyzes the performance of the proposed algorithm than existing
work through simulations. Section 5 concludes the paper.

2. Related Work

In wireless technology using IoT [24–26], several smart sensors and physical objects
are distributed in smart cities to support real-time systems. Furthermore, one or more Base
Station (BS), which has unlimited resources, is connected to the internet, facilitating many
application users simultaneously. In a wireless sensor network (WSN)-based medical sys-
tem, the Denial of Service (DOS) attacks are categorized into three different approaches, i.e.,
standalone, distributive/cooperative, and hierarchical [27,28]. Each sensor node has been
equipped with its defense agent in a standalone approach and can only identify the attack
by itself. In the distributed defense approach, a global defense system is generated based on
various agents’ collaboration. Its performance is better than the standalone defense system
and is usually preferred for flat topologies. In a hierarchical defense approach, the cluster



Energies 2021, 14, 5364 3 of 17

head is responsible for detecting an attack for its members and performing appropriate
security actions with efficient energy efficiency [29,30]. The authors [31] proposed intrusion
detection in homogeneous and heterogeneous WSNs, proposing two detection models for
classifying the malicious nodes. The detection probability is based on the distance traveled
by the malicious node, the likelihood of detecting the malicious node, and the average
distance traveled by the malicious node parameters. In [32], authors have proposed a
multi-level intrusion detection system based on an immune theory known as Danger
theory. The proposed solution uses the various functions of immune cells to design the
multi-level intrusion detection system. The proposed solution is based on battery power,
message or data size, and data transfer parameters to detect malicious activities.

Furthermore, a few nodes were placed near BS to perform immune nodes’ roles and
specific processing capabilities. In [33], the authors proposed an improved secure authenti-
cation and data encryption scheme for medical systems using the Internet of things (IoT). It
provides user anonymity and avoids network threats of replay and password/sensed data
disclosure. Moreover, the authors modified the authentication process and decreasing the
redundancy in the design phase. It was verified that the proposed solution is more efficient
in terms of performance than other schemes. The authors of [34] established an association
with body sensors using tokens, and afterward, a secret key is shared to provide data
security. The proposed solution encrypts and decrypts the health data with two phases of
the authentication method using the private key. The collected data is forwarded to the
server using blockchain technology. The security analysis described the feasibility of the
proposed solution for securing healthcare information. In [35], the authors proposed a user
authentication scheme and data transmission mechanism to provide privacy and security.
It offers efficient monitoring facilitates to medical experts and comprehensive treatment
to patients. It uses smart cards and passwords, so only authorized medical experts can
access patient information. In addition, a secure cryptosystem has been applied to form a
data transmission mechanism. Furthermore, the proposed work can cope with common
network attacks. The authors in [36], proposed a fine-grained EHR access control scheme
and provides a secure standard model. The proposed solution generates offline encrypted
data before knowing EHR data and access policies and it offers secure communication for
the mobile cloud. The extensive simulation experiments are performed and it is proven
effective performance in the comparison of other solutions. In [37], the authors emphasize
flexible compute-intensive task offloading to a local cloud, which aims to improve the
network performance for energy consumption, cost, and operation speed. They proposed
a fruit fly optimization-based task offloading (FOTO) algorithm, which improves the data
offloading and allocation of network resources with affordable energy consumption. Its
performance is verified in terms of different realistic factors and demonstrates a significant
improvement from other existing work.

The secure knowledge and cluster-based intrusion detection mechanism proposed
in [38], aims to handle generated intrusions. It stores the particular events triggered
by the node in the network field, and the knowledge base is situated on the BS. Based
on inference engine cluster heads, the proposed solution stores the events data into the
knowledge base. The authors of [39] proposed intrusion detection based on state context
and hierarchical trust in WSN. The proposed solution is based on the dynamic state context
and hierarchical trust of sensor nodes. In the proposed solution, the trust evaluation and
the self-adaptation detection threshold are used to detect malicious nodes’ behavior. In [40],
the authors developed a biometric-based security framework using resource-constrain-
oriented and wearable sensors. It extracts the heartbeats from ECG signals and analyses
time-domain-based biometric features. The proposed framework is significantly optimizing
the security and transmission for medical applications. In [41], the authors explored
privacy-protected data collection challenges and presented a practical framework called
Privacy Protector, patient privacy-protected data collection. It consists of secret sharing and
shares repairing for compromised and lost patients’ information. The proposed framework
uses a distributed database, which comprises multiple cloud servers and guaranteed data
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privacy. The authors of [42] developed a secure data collection scheme for IoT-based
healthcare systems named SecureData, which aims to cope with data security. It comprises
four main layers. It utilizes a lightweight field-programmable gate array (FPGA) hardware-
based cipher and secret cipher share algorithms. For the cloud computing layer, the
proposed solution applied a distributed database technique that includes several cloud
data servers to ensure privacy for patients’ data. The performance results are validated
through simulations and it is proven that the proposed solution is significantly efficient for
saving security risks for IoT-based healthcare applications.

IoT technology is widely utilized for data collection and offers heterogeneous services
for healthcare systems. The public health data collecting a vast number of patient’s data,
which need to be processed and evaluated to diagnose diseases for a timely and appropriate
cure. However, due to the restricted structure and rapid collapse of medical sensors’, there
are many communication threats that expose patients’ information, therefore, it is a demand
for trustworthiness with a secured network. It is also noticed that most of the existing
solution increases the management cost in sustaining and handling the network data.
Moreover, many secured solutions have been developed for IoT networks and tackle
with privacy-preserving, but with the unnecessary complexity and runtime overhead.
Therefore, this research article presents an AI-enabled privacy-preserving with big data
transferring using blockchain technology, which aims to offer a secured network and
attain data confidentiality with optimized services. It also enhances the availability of
network resources and provides reliability for public health data without compromising
the constraint parameters and communication links.

3. Proposed Algorithm

In this section, we explain the detailed overview of our proposed algorithm. The
proposed algorithm is based on two main components. The first component uses a graph-
based modeling and artificial intelligence technique to arrange the network for stable
communication, which is comprised of regions with cluster heads. The sub-graphs are also
constructed to reduce the complexity and congestion in the forming of consistent routes
from local sensors to sink nodes and eliminate the redundant links. On the other hand, the
second component presents an authentication phase based on symmetric digital certificates,
which increases the network strength against unauthorized nodes. Moreover, data security
for integrity is obtained using blockchain technology, which leads to trustworthy commu-
nication in distributed approach and ensures a sustainable healthcare system. Figure 1
demonstrates the main components of the proposed algorithm. Moreover, its communica-
tion flow is depicted in Figure 2. For the convenience of describing the proposed solution,
the used notations are summarized in Table 1.
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Table 1. List of notations.

Notations Definitions

G(N, ε) graph with N nodes and ε edges
G′(N′, ε′) The Subgraph with N ′ And ε′ edges
Wi Weighted edges
T(v) trust value
NEi residual energy
NDi node density
Tx transmission power
RSSI received signal strength interference
Mk beacon message threshold
d distance
IV initialization vector
Reqp request packet
Ts timestamp
⊕ XoR function
Sk Secret key
MSk Master secret key
cert digital certificate
M0, M1, . . . . Mn chain of messages

With the ability to develop the proposed algorithm using IoT technology and capa-
bilities of wireless sensors, we simulate the performance for a realistic scenario under the
following assumptions:

i. The IoT-based network is restricted for battery power, memory, transmission, and
processing factors.

ii. They are immobile and equipped with Global Positioning System (GPS).
iii. The wireless channels are asymmetric.
iv. Corresponding nodes can adjust the transmission power using the distance prop-

erty.
v. Intruders are malicious objects and can generate bogus packets for the response.
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3.1. Intellectual Graph-Based Modeling

The proposed algorithm’s main aim is to use graph-based modeling and split the
network nodes into various groups. Unlike most of the other techniques, the graph-based
approach does not know the dimension for grouping and takes an input of undirected
weighted graph G(N, ε), which comprises vertices N and bidirectional edges ε. Initially,
nodes are placed on their appropriate positions in G(N, ε) using the cost function f (c),
which is comprised of distance and energy parameters. In addition, each node marks
the entry of its neighbors on the local_table. After the formation of an undirected graph
G(N, ε), the BS runs the Prims algorithm [43] to identify the subset of nodes without any
redundant cycles and parallel edges ε. It gives sub-graph G′(N′, ε′), where N′ is extracted
vertices and ε′ is extracted edges. It increases the size of G′(N′, ε′) by extracting one
node at a time from G(N, ε) such that N′ = N and ε′ is a subset of ε. The summation of
weighted values ∑ Wi of extracted vertices and edges is minimized to obtain the optimal
performance, where Wi can be computed as given in Equation (1).

Wi = Wi+ f (c) (1)

It aims to determine the subset of the edges that forms a tree, which comprises the
subset of nodes. Such an approach explicitly decreases the overhead in developing an
optimal delivery service for the e-health system by removing the redundant links. Next,
the proposed algorithm computes the trust value T(v) for the nodes in obtaining sub-
graph G′(N′, ε′), and selects the trustworthy with the highest transmission power cluster
heads. The trusted value of the sensor node i is computed in an aggregated manner using
three-node parameters, i.e., residual energy NEi, node density NDi, and received signal
strength interference RSSIi as given in Equation (2). The trust value increases the network
performance in terms of least data distance and neighboring cost with high signal strength.

T(vi)= NEi+NDi + RSSIi (2)

In Equation (1), NEi is the fraction of residual energy over the initial energy at the
end of the duty cycle. It increases the probability for the selection of cluster head when it
increases from the preset threshold. Secondly, the density of the node NDi denotes the rela-
tion tightness between the neighbors, and it is calculated using the derived G′(N′, ε′). The
higher the nodes’ density increases the probability of the node selecting the cluster head.
In the end, the node i whose link estimation RSSI value is on an extreme level than its
neighbors is given a high probability for the selection of cluster head. Let us consider Tx
is the transmission power, and α denotes the depleted radio power in transmitting the
beacon messages Mk over the distance d, then RSSIi is computed as given in Equation (3).

RSSIi = Tx− α (Mk) . d (3)

Accordingly, based on the highest T(vi) value, the proposed algorithm chooses the set
of particular cluster heads. The cluster heads select the next-hop nodes from sub-graph
G′(N′, ε′) and formulate individual clusters. Next, cluster heads send the status message
to their members, and upon receiving the ACK messages, the particular cluster head
constructs a cluster_table. Moreover, the IDs of the selected cluster heads are stored with
the BS in its global table. Similarly, the member nodes also map the ID of their selected
cluster heads in their local_tables. Furthermore, the neighboring cluster heads sharing their
information, and accordingly, every cluster head makes an entry in the local cluster_table.
All the tables are updated when any changes incur in the processes of network structure.

3.2. Secured Transmissions

This section presents the security component for the proposed algorithm and aims to
prevent network intruders from the transmission system. It is comprised of registration,
verification, and encryption phases. In this component, the BS is treated as a central
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authority (CA) and can be valuable for two-way mutual authentication along with privacy-
preserving routing. All the selected cluster heads must be registered with BS and obtained
digital certificates. Without the digital certificate, the particular cluster head can not
participate in the routing phase. The registration and verification phases consist of the
following steps.

Cluster head i generates a secret key Sk and shared it with BS over the secure channel.
It embedded Sk with identity ID, timestamp Ts and create a request packet Reqp(ID, Sk, U).
The Reqp is forwarded to BS for issuing digital certificates. The Reqp is encrypted using a
master secret key of MSk of BS as given in Equation (4).

E(MSk (ID||Ts||U)+r0 (4)

where r0 denotes the random number.
Upon receiving the Reqp from cluster head, BS first verifies identities IDs from its

global table, and accordingly, it generates the cert including RSA signature [44] S′ to verify
its authenticity as given in Equation (5).

BS→ i : cert(ID , Ts, Sk, S′) (5)

After obtaining the BS certificates, the cluster heads i and j exchange their certificates
with each other to prove two-way mutual authentication before transmitting. Furthermore,
the digital certificates are usable for only the particular period ∆t, and afterward, the cluster
heads are required to resend Reqp towards BS for the issuance of cert.

In addition, the r0 is useful to prevent the malicious node from resending the Reqp
packet towards BS. Such a mechanism in the proposed algorithm prevents the replay
threat and ensures reliable message forwarding between routing nodes. Further, digital
certificates are digitally signed by the master secret key of BS MSk that indicates its validity.
Before transmitting the routing data, both clusters heads i and i + 1 exchange cert with
each other. Upon receiving, they are decrypted to recover the secret keys Sk as given in
Equation (6).

Sk : D(cert(MSk), i) (6)

After the completion of the registration and mutual verification phases, the block of
data messages M0, M1, . . . ., Mn ε M set as encrypted blocks Ci independently by using
Sk and XoR ⊕ function as given in Equation (7).

Ci = M ⊕ Sk (7)

The cluster head i + 1 is selected from the chain and decodes the incoming encrypted
blocks with the same Sk. Later, it performs the same hashing procedure to generate
Ci+1 with its actual data message M and ⊕ operation. Furthermore, received hash code
Ci is linked to ensuring blockchain and distributed security E to support data integrity as
given in Equation (8).

E = Xor(Ci , . . . . Cn) (8)

Afterward, the pattern of Ci blocks are encrypted using MSk of BS and forwarded to
cloud systems. Upon receiving, the decryption function is applied to integrate the Ci and
MSk.

Algorithm 1 gives the flow of the proposed work.
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Algorithm 1: AI-enabled privacy-preserving big data algorithm.

1. Initialization
2. Input: sensors, data messages
3. Output: graph-oriented transmission paths
4. for Sensor Si ε G(N, ε) do
5. extract subset of nodes
6. initial routes to sink
7. end
8. for Sensor Si ε G′(N′, ε′) do
9. compute trust T(vi) = NEi+ NDi + RSSIi
10. generate sub-regions
11. end
12. BS generates digital certificates
13. encryption function
14. If decryption is successful then
15. cert is validated
16. Else
17. cert is rejected
18. end
19. end
20. block of data M0, M1, . . . ., Mn ε M
21. for Mi ε M do
22. produce cipher blocks Ci
23. Ci = M ⊕ ki+1
24. end
25. hashes with end-to-end encryption
26. E = Xor(Ci , . . . . Cn)
27. End

4. Performance Analysis

This section explains the comparative analysis of the proposed work along with the
simulation environment. To verify the complexity and energy usage of the proposed
work, the experiments were conducted using two different scenarios, i.e., with the varying
number of nodes and varying data rates. The performance is evaluated using various
network metrics such as network delivery ratio, network latency, energy consumption,
malicious attacks, runtime overhead, link disconnectivity, and complexity. The number of
nodes varied from 50 to 250, and data rates increased from 8 bytes to 40 bytes per second.
We increased the data generation rates to verify the runtime and processing overheads of
the proposed algorithm on nodes as compared to other solutions. Initially, the energy level
was set to 2j. In the implementation phase, a discrete event-based network simulator NS-3
was used, which is widely utilized in [45,46]. The simulation was run for 2000 sec. The
transmission power was set to 5 m. The number of jamming nodes was assumed as 5. The
default simulation parameters are displayed in Table 2.

In Figures 3 and 4, the experimental analysis shows that the proposed AI-EPP has
improved network delivery by 14% and 15% than the existing solutions. Such improvement
is the choice of the graph-based artificial intelligence technique for splitting the observing
field. It eliminates the process of direct data delivery toward a destination and utilizes
the constraint resources efficiently. Moreover, the clusters cooperate in multi-hop with a
secure strategy and reduce the probability of packet drop rate in the presence of malicious
and unexpected events. The proposed AI-EPP algorithm produces much more stable and
consistent data transportation because of using the up-to-date measurement of the network
field. It decreases the chances to adopt the longer route and distribute the forwarders
load in a balanced manner by splitting it into various chunks. In Figures 5 and 6, the
experimental results have shown that the proposed AI-EPP pointedly decreases the ratio
of network latency by 41% and 39% than other solutions. The existing solutions incur high
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blockage and interruption costs under varying network nodes. Therefore, such a solution
increases the ratio of anonymous calls of route maintenance and route re-adjustment.
Furthermore, such solutions do not determine the reliability of wireless channels under a
dynamic environment, which results in the inability to transmit sensors’ data on a robust
route. Accordingly, the most processing time is wasted in computing the optimal route
and leads to high data delay. However, the proposed AI-EPP algorithm separates the
IoT network into various regions using hop count and network data is transmitted by
multi-tiers. Further, it minimizes the route breakages and the re-establishment of alternate
routes in case of a high data generation rate. Moreover, it efficiently manages wireless links’
and their available capacity for the delivery of sensitive data on time.

In Figures 7 and 8, the experimental analysis presents the improvement in terms of
energy consumption of proposed AI-EPP by 28% and 30% than the existing solutions. This
is due to selecting the most competent nodes in terms of resource as cluster heads with the
least transmission distance to both centroid and BS. The proposed AI-EPP offers a graph-
based technique based on dividing the nodes into different clusters, reducing the proportion
of energy consumption on the node level. The public key certificate-based cryptography
mechanism in the proposed AI-EPP significantly reduces the chances of intrusions for re-
directing the data packets towards prohibited points and decreases the unnecessary energy
consumption of nodes. The proposed solution also exploits the lightweight computing
functions for providing data security and avoids the chances for a malicious node to
generate high intrusion on the transmission channels. In Figures 9 and 10, the experimental
analysis shows that the proposed AI-EPP reduces the ratio of malicious packets by 40%
and 37% compared to existing solutions. This is due to the proposed AI-EPP algorithm
incorporating the public key-based digital certificates for routing nodes, and accordingly,
only the authorized nodes are eligible for data transmission. The computed trust value
in the proposed AI-EPP is based on the nodes’ local information rather than the global
facts of the entire network field that significantly increases the strength for identifying the
malicious nodes with nominal cost. Furthermore, AI-EPP offers centralized authority for
digital certificates’ issuance and manages data routing, minimizing malicious activities.

Figures 11 and 12 illustrate the analysis of the proposed AI-EPP algorithm with
other solutions in terms of runtime overhead. The results have proven its significant
improvement by 33% and 21%, respectively. It is due to providing the minimum routing
cost solution in determining the optimal routes for medical data. In addition, a graph-
based approach imposes the least overheads on exchanging the control messages among
sensors and increases the routes’ strength. Moreover, the BS acts as a central authority to
provide the selected routes’ authorization and avoid the extra messages among neighbors
to negotiate. Unlike other solutions that enforce high control overhead for achieving data
security, the proposed AI-EPP algorithm preserves privacy among medical sensors using
the least computational-powered exclusive-OR function. Figures 13 and 14 demonstrate
the performance analysis of the proposed AI-EPP algorithm than existing solutions for link
disconnectivity under a varying number of nodes. It is seen that the AI-EPP algorithm
improved by 13% and 17%, respectively. The cost function operates on multiple factors and
each time its archives optimal data routing even in the presence of network threats. The
symmetric digital certificates offer trustworthiness criteria for mutual authentication among
nodes with the collaboration BS. Unlike other solutions that impose an unbalanced load on
routing nodes, the proposed AI-EPP algorithm efficiently utilizes the link performance in
terms of interference and strength of the transmission system. Figures 15 and 16 depict
the performance analysis of the complexity for the AI-EPP algorithm against an existing
solution. To analyze the complexity, we estimate the processing time while requesting the
needed data from the application user and obtain the process data back to their ends. It is
seen that the proposed solution reduces the processing time by 37% and 23% as compared
to other solutions. This is due because it optimizes the communication services for time and
constraint resources. Furthermore, flooding of control messages is reduced that significantly
decreased the complexity time for data processing. Moreover, BS performed the role of
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establishing trust monitoring and authorization policies among the IoT network, which
ultimately decreases the overheads on the nodes and offers timely service for application
users.

Table 2. Simulation parameters.

Parameters Values

Initial energy 2j
Deployment Random

Jamming nodes 3–15
Traffic type CBR

Transmission power 5 m
Medical sensors 50–250
Cloud servers 2

Simulation interval 2000 sec
Round 25 sec

Packet size 32 bits
Control bits 20 bits
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In Figures 7 and 8, the experimental analysis presents the improvement in terms of 
energy consumption of proposed AI-EPP by 28% and 30% than the existing solutions. This 
is due to selecting the most competent nodes in terms of resource as cluster heads with 
the least transmission distance to both centroid and BS. The proposed AI-EPP offers a 
graph-based technique based on dividing the nodes into different clusters, reducing the 
proportion of energy consumption on the node level. The public key certificate-based 
cryptography mechanism in the proposed AI-EPP significantly reduces the chances of in-
trusions for re-directing the data packets towards prohibited points and decreases the un-
necessary energy consumption of nodes. The proposed solution also exploits the light-
weight computing functions for providing data security and avoids the chances for a ma-
licious node to generate high intrusion on the transmission channels. In Figures 9 and 10, 
the experimental analysis shows that the proposed AI-EPP reduces the ratio of malicious 
packets by 40% and 37% compared to existing solutions. This is due to the proposed AI-
EPP algorithm incorporating the public key-based digital certificates for routing nodes, 
and accordingly, only the authorized nodes are eligible for data transmission. The com-
puted trust value in the proposed AI-EPP is based on the nodes’ local information rather 
than the global facts of the entire network field that significantly increases the strength for 
identifying the malicious nodes with nominal cost. Furthermore, AI-EPP offers central-
ized authority for digital certificates’ issuance and manages data routing, minimizing ma-
licious activities. 
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Figure 9. Malicious attacks comparison using simulations with varying number of nodes.
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Figure 10. Malicious attacks comparison using simulations with varying data rates. 

Figures 11 and 12 illustrate the analysis of the proposed AI-EPP algorithm with other 
solutions in terms of runtime overhead. The results have proven its significant improve-
ment by 33% and 21%, respectively. It is due to providing the minimum routing cost so-
lution in determining the optimal routes for medical data. In addition, a graph-based ap-
proach imposes the least overheads on exchanging the control messages among sensors 
and increases the routes’ strength. Moreover, the BS acts as a central authority to provide 
the selected routes’ authorization and avoid the extra messages among neighbors to ne-
gotiate. Unlike other solutions that enforce high control overhead for achieving data se-
curity, the proposed AI-EPP algorithm preserves privacy among medical sensors using 
the least computational-powered exclusive-OR function. Figures 13 and 14 demonstrate 
the performance analysis of the proposed AI-EPP algorithm than existing solutions for 
link disconnectivity under a varying number of nodes. It is seen that the AI-EPP algorithm 
improved by 13% and 17%, respectively. The cost function operates on multiple factors 
and each time its archives optimal data routing even in the presence of network threats. 
The symmetric digital certificates offer trustworthiness criteria for mutual authentication 
among nodes with the collaboration BS. Unlike other solutions that impose an unbalanced 
load on routing nodes, the proposed AI-EPP algorithm efficiently utilizes the link perfor-
mance in terms of interference and strength of the transmission system. Figures 15 and 16 
depict the performance analysis of the complexity for the AI-EPP algorithm against an 
existing solution. To analyze the complexity, we estimate the processing time while re-
questing the needed data from the application user and obtain the process data back to 
their ends. It is seen that the proposed solution reduces the processing time by 37% and 
23% as compared to other solutions. This is due because it optimizes the communication 
services for time and constraint resources. Furthermore, flooding of control messages is 
reduced that significantly decreased the complexity time for data processing. Moreover, 
BS performed the role of establishing trust monitoring and authorization policies among 
the IoT network, which ultimately decreases the overheads on the nodes and offers timely 
service for application users. 

Figure 10. Malicious attacks comparison using simulations with varying data rates.
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Figure 11. Runtime overhead comparison using simulations with varying number of nodes.

Energies 2021, 14, 5364 14 of 18 
 

 

50 100 150 200 25012

14

16

18

20

22

24

26

28

30

32

 

 

ru
nt

im
e 

ov
er

he
ad

(%
)

number of nodes

 AI-EPP
 Secure knowledge and cluster-based intrusion detection
 QoS aware trust based routing algorithm

 
Figure 11. Runtime overhead comparison using simulations with varying number of nodes. 

10 15 20 25 30 35 40
12

14

16

18

20

22

24

26

28

30

32

 

 

ru
nt

im
e 

ov
er

he
ad

(%
)

data rates(bytes/sec)

 AI-EPP
 Secure knowledge and cluster-based intrusion detection
 QoS aware trust based routing algorithm

 
Figure 12. Runtime overhead comparison using simulations with varying data rates. 

Figure 12. Runtime overhead comparison using simulations with varying data rates.

Energies 2021, 14, 5364 15 of 18 
 

 

50 100 150 200 250

8

10

12

14

16

18

20

22

24

 

 

lin
k 

di
sc

on
ne

ct
iv

ity
(%

)

number of nodes

 AI-EPP
 Secure knowledge and cluster-based intrusion detection
 QoS aware trust based routing algorithm

 
Figure 13. Link disconnectivity comparison using simulations with varying number of nodes. 
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Figure 15. Processing time comparison using simulations with varying number of nodes.
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5. Conclusions 
In this work, an IoT solution is proposed by utilizing AI-enabled privacy-preserving 

with big data transferring using blockchain. The proposed work improves the manage-
ment of data forwarding and offers a secure network infrastructure to maintain infor-
mation privacy along authorize access against unusual events. It is seen that most of the 
existing work developed a solution for improving the public health system and facilitated 
the connected users in terms of optimal services. However, most of them are unreliable in 
terms of data controlling, especially when the load is increasing and communication chan-
nels are overburdened. Moreover, it is also observed that the existing solution offered se-
curity services to constraint devices but compromised the network performance for 
runtime overheads, energy consumption, and data latency. On the other hand, the pro-
posed AI-EPP algorithm uses graph-based optimal modeling to produce trusted nodes for 
routing the data. It also performs registration, verification phases by using symmetric dig-
ital certificates and increasing the transmission credibility with a cloud platform. In addi-
tion, it provides integrity by incorporating blockchain technology in distributed develop-
ment with minor computing overheads on network nodes. The results are tested and an-
alyzed by simulations and the AI-EPP algorithm outperforms existing solutions with con-
sistent and sustainable communication. In the future, we would like to exploit the ma-
chine learning approach to optimize the training process of the AI-EPP algorithm with 
real data sets. Moreover, we aim to collaborate with multiple cloud platforms for data 
accessibility and computational intelligence. 
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5. Conclusions

In this work, an IoT solution is proposed by utilizing AI-enabled privacy-preserving
with big data transferring using blockchain. The proposed work improves the management
of data forwarding and offers a secure network infrastructure to maintain information
privacy along authorize access against unusual events. It is seen that most of the existing
work developed a solution for improving the public health system and facilitated the
connected users in terms of optimal services. However, most of them are unreliable in terms
of data controlling, especially when the load is increasing and communication channels
are overburdened. Moreover, it is also observed that the existing solution offered security
services to constraint devices but compromised the network performance for runtime
overheads, energy consumption, and data latency. On the other hand, the proposed AI-
EPP algorithm uses graph-based optimal modeling to produce trusted nodes for routing
the data. It also performs registration, verification phases by using symmetric digital
certificates and increasing the transmission credibility with a cloud platform. In addition,
it provides integrity by incorporating blockchain technology in distributed development
with minor computing overheads on network nodes. The results are tested and analyzed by
simulations and the AI-EPP algorithm outperforms existing solutions with consistent and
sustainable communication. In the future, we would like to exploit the machine learning
approach to optimize the training process of the AI-EPP algorithm with real data sets.
Moreover, we aim to collaborate with multiple cloud platforms for data accessibility and
computational intelligence.

Author Contributions: Conceptualization, M.E. and K.H.; methodology, M.E. and K.H.; software,
M.E.; validation, I.A., Z.J and M.I.A.; formal analysis, A.A.S.; investigation, I.A.; resources, Z.J.; data
curation, K.H.; writing—original draft preparation, M.E. and K.H.; writing—review and editing,
K.H.; visualization, M.I.A.; supervision, M.E. and A.A.S.; project administration, K.H.; funding
acquisition, M.E. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All Data is available in the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kumar, L.; Sharma, V.; Singh, A. Feasibility and modelling for convergence of optical-wireless network–A review. AEU-Int. J.

Electron. Commun. 2017, 80, 144–156. [CrossRef]
2. Mohamed, E. The relation of artificial intelligence with internet of things: A survey. J. Cybersecur. Inf. Manag. 2020, 1, 24–30.
3. Emira, H.H.A. Authenticating IoT Devices issues based on Blockchain. J. Cybersecur. Inf. Manag. (JCIM) 2020, 1, 35–40.
4. Yildiz, H.U.; Bicakci, K.; Tavli, B.; Gultekin, H.; Incebacak, D. Maximizing Wireless Sensor Network lifetime by communica-

tion/computation energy optimization of non-repudiation security service: Node level versus network level strategies. Ad Hoc
Netw. 2016, 37, 301–323. [CrossRef]

5. Sun, Y.; Song, H.; Jara, A.J.; Bie, R. Internet of things and big data analytics for smart and connected communities. IEEE Access
2016, 4, 766–773. [CrossRef]

6. Haseeb, K.; Bakar, K.A.; Abdullah, A.H.; Ahmed, A.; Darwish, T.; Ullah, F. A dynamic Energy-aware fault tolerant routing
protocol for wireless sensor networks. Comput. Electr. Eng. 2016, 56, 557–575. [CrossRef]

7. Aktas, F.; Ceken, C.; Erdemli, Y.E. IoT-based healthcare framework for biomedical applications. J. Med. Biol. Eng. 2018, 38,
966–979. [CrossRef]

8. Sodhro, A.H.; Luo, Z.; Sangaiah, A.K.; Baik, S.W. Mobile edge computing based QoS optimization in medical healthcare
applications. Int. J. Inf. Manag. 2019, 45, 308–318. [CrossRef]

9. Deebak, B.D.; Al-Turjman, F.; Aloqaily, M.; Alfandi, O. An authentic-based privacy preservation protocol for smart e-healthcare
systems in IoT. IEEE Access 2019, 7, 135632–135649. [CrossRef]

10. Ali, A.; Khan, F.A. Energy-efficient cluster-based security mechanism for intra-WBAN and inter-WBAN communications for
healthcare applications. EURASIP J. Wirel. Commun. Netw. 2013, 2013, 216. [CrossRef]

http://doi.org/10.1016/j.aeue.2017.06.027
http://doi.org/10.1016/j.adhoc.2015.08.026
http://doi.org/10.1109/ACCESS.2016.2529723
http://doi.org/10.1016/j.compeleceng.2016.10.017
http://doi.org/10.1007/s40846-017-0349-7
http://doi.org/10.1016/j.ijinfomgt.2018.08.004
http://doi.org/10.1109/ACCESS.2019.2941575
http://doi.org/10.1186/1687-1499-2013-216


Energies 2021, 14, 5364 16 of 17

11. Han, T.; Zhang, L.; Pirbhulal, S.; Wu, W.; de Albuquerque, V.H.C. A novel cluster head selection technique for edge-computing
based IoMT systems. Comput. Netw. 2019, 158, 114–122. [CrossRef]

12. Guo, X.; Lin, H.; Wu, Y.; Peng, M. A new data clustering strategy for enhancing mutual privacy in healthcare IoT systems. Future
Gener. Comput. Syst. 2020, 113, 407–417. [CrossRef]

13. Suresh, A.; Udendhran, R.; Balamurgan, M. Hybridized neural network and decision tree based classifier for prognostic decision
making in breast cancers. Soft Comput. 2020, 24, 7947–7953. [CrossRef]

14. Aich, S.; Younga, K.; Hui, K.L.; Al-Absi, A.A.; Sain, M. A nonlinear decision tree based classification approach to predict the
Parkinson’s disease using different feature sets of voice data. In Proceedings of the 2018 20th International Conference on
Advanced Communication Technology (ICACT), Chuncheon, Korea, 11–14 February 2018; pp. 638–642.

15. Manikandan, R.; Patan, R.; Gandomi, A.H.; Sivanesan, P.; Kalyanaraman, H. Hash polynomial two factor decision tree using IoT
for smart health care scheduling. Expert Syst. Appl. 2020, 141, 112924. [CrossRef]

16. Dadhich, P. Security of Healthcare Systems with Smart Health Records Using Cloud Technology. In Machine Learning with Health
Care Perspective; Springer: Berlin/Heidelberg, Germany, 2020; pp. 183–198.

17. Lu, Y.; Sinnott, R.O. Security and privacy solutions for smart healthcare systems. In Innovation in Health Informatics; Elsevier:
Amsterdam, The Netherlands, 2020; pp. 189–216.

18. Haseeb, K.; Islam, N.; Almogren, A.; Din, I.U. Intrusion prevention framework for secure routing in WSN-based mobile Internet
of Things. IEEE Access 2019, 7, 185496–185505. [CrossRef]

19. Saba, T.; Haseeb, K.; Ud Din, I.; Almogren, A.; Altameem, A.; Fati, S.M. EGCIR: Energy-Aware Graph Clustering and Intelligent
Routing Using Supervised System in Wireless Sensor Networks. Energies 2020, 13, 4072. [CrossRef]

20. Thakker, U.; Patel, R.; Tanwar, S.; Kumar, N.; Song, H. Blockchain for Diamond Industry: Opportunities and Challenges. IEEE
Internet Things J. 2020, 8, 8747–8773. [CrossRef]

21. Cao, B.; Wang, X.; Zhang, W.; Song, H.; Lv, Z. A many-objective optimization model of industrial internet of things based on
private blockchain. IEEE Netw. 2020, 34, 78–83. [CrossRef]

22. Pourvahab, M.; Ekbatanifard, G. An efficient forensics architecture in software-defined networking-IoT using blockchain
technology. IEEE Access 2019, 7, 99573–99588. [CrossRef]

23. Reyna, A.; Martín, C.; Chen, J.; Soler, E.; Díaz, M. On blockchain and its integration with IoT. Challenges and opportunities.
Future Gener. Comput. Syst. 2018, 88, 173–190. [CrossRef]

24. Miraz, M.H.; Ali, M.; Excell, P.S.; Picking, R. A review on Internet of Things (IoT), Internet of everything (IoE) and Internet of
nano things (IoNT). In Proceedings of the 2015 Internet Technologies and Applications (ITA), Wrexham, UK, 8–11 September
2015; pp. 219–224.

25. Haseeb, K.; Lee, S.; Jeon, G. EBDS: An energy-efficient big data-based secure framework using Internet of Things for green
environment. Environ. Technol. Innov. 2020, 20, 101129. [CrossRef]

26. Mohamed, M. A comparative study on Internet of Things (IoT): Frameworks, Tools, Applications and Future directions. J. Intell.
Syst. Internet Things 2020, 1, 13–39.

27. Mamun, M.S.I.; Kabir, A. Hierarchical design based intrusion detection system for wireless ad hoc network. arXiv 2012,
arXiv:1208.3772.

28. Shin, S.; Kwon, T.; Jo, G.-Y.; Park, Y.; Rhy, H. An experimental study of hierarchical intrusion detection for wireless industrial
sensor networks. IEEE Trans. Ind. Inform. 2010, 6, 744–757. [CrossRef]

29. Sharma, A.; Tayal, S.; Bansal, R.; Verma, S. Energy Efficiency Techniques in Heterogeneous Networks. J. Cybersecur. Inf. Manag.
2021, 2, 13–19.

30. Haseeb, K.; Islam, N.; Almogren, A.; Din, I.U.; Almajed, H.N.; Guizani, N. Secret Sharing-Based Energy-Aware and Multi-Hop
Routing Protocol for IoT Based WSNs. IEEE Access 2019, 7, 79980–79988. [CrossRef]

31. Wang, Y.; Wang, X.; Xie, B.; Wang, D.; Agrawal, D.P. Intrusion detection in homogeneous and heterogeneous wireless sensor
networks. IEEE Trans. Mob. Comput. 2008, 7, 698–711. [CrossRef]

32. Alaparthy, V.T.; Morgera, S.D. A multi-level intrusion detection system for wireless sensor networks based on immune theory.
IEEE Access 2018, 6, 47364–47373. [CrossRef]

33. Li, C.-T.; Wu, T.-Y.; Chen, C.-L.; Lee, C.-C.; Chen, C.-M. An efficient user authentication and user anonymity scheme with provably
security for IoT-based medical care system. Sensors 2017, 17, 1482. [CrossRef]

34. Islam, A.; Shin, S.Y. A blockchain-based secure healthcare scheme with the assistance of unmanned aerial vehicle in Internet of
Things. Comput. Electr. Eng. 2020, 84, 106627. [CrossRef]

35. Liu, C.-H.; Chung, Y.-F. Secure user authentication scheme for wireless healthcare sensor networks. Comput. Electr. Eng. 2017, 59,
250–261. [CrossRef]

36. Liu, Y.; Zhang, Y.; Ling, J.; Liu, Z. Secure and fine-grained access control on e-healthcare records in mobile cloud computing.
Future Gener. Comput. Syst. 2018, 78, 1020–1026. [CrossRef]

37. Lin, K.; Pankaj, S.; Wang, D. Task offloading and resource allocation for edge-of-things computing on smart healthcare systems.
Comput. Electr. Eng. 2018, 72, 348–360. [CrossRef]

38. Mehmood, A.; Khanan, A.; Umar, M.M.; Abdullah, S.; Ariffin, K.A.Z.; Song, H. Secure knowledge and cluster-based intrusion
detection mechanism for smart wireless sensor networks. IEEE Access 2017, 6, 5688–5694. [CrossRef]

http://doi.org/10.1016/j.comnet.2019.04.021
http://doi.org/10.1016/j.future.2020.07.023
http://doi.org/10.1007/s00500-019-04066-4
http://doi.org/10.1016/j.eswa.2019.112924
http://doi.org/10.1109/ACCESS.2019.2960633
http://doi.org/10.3390/en13164072
http://doi.org/10.1109/JIOT.2020.3047550
http://doi.org/10.1109/MNET.011.1900536
http://doi.org/10.1109/ACCESS.2019.2930345
http://doi.org/10.1016/j.future.2018.05.046
http://doi.org/10.1016/j.eti.2020.101129
http://doi.org/10.1109/TII.2010.2051556
http://doi.org/10.1109/ACCESS.2019.2922971
http://doi.org/10.1109/TMC.2008.19
http://doi.org/10.1109/ACCESS.2018.2866962
http://doi.org/10.3390/s17071482
http://doi.org/10.1016/j.compeleceng.2020.106627
http://doi.org/10.1016/j.compeleceng.2016.01.002
http://doi.org/10.1016/j.future.2016.12.027
http://doi.org/10.1016/j.compeleceng.2018.10.003
http://doi.org/10.1109/ACCESS.2017.2770020


Energies 2021, 14, 5364 17 of 17

39. Zhang, Z.; Zhu, H.; Luo, S.; Xin, Y.; Liu, X. Intrusion detection based on state context and hierarchical trust in wireless sensor
networks. IEEE Access 2017, 5, 12088–12102. [CrossRef]

40. Pirbhulal, S.; Samuel, O.W.; Wu, W.; Sangaiah, A.K.; Li, G. A joint resource-aware and medical data security framework for
wearable healthcare systems. Future Gener. Comput. Syst. 2019, 95, 382–391. [CrossRef]

41. Luo, E.; Bhuiyan, M.Z.A.; Wang, G.; Rahman, M.A.; Wu, J.; Atiquzzaman, M. Privacyprotector: Privacy-protected patient data
collection in IoT-based healthcare systems. IEEE Commun. Mag. 2018, 56, 163–168. [CrossRef]

42. Tao, H.; Bhuiyan, M.Z.A.; Abdalla, A.N.; Hassan, M.M.; Zain, J.M.; Hayajneh, T. Secured data collection with hardware-based
ciphers for IoT-based healthcare. IEEE Internet Things J. 2018, 6, 410–420. [CrossRef]

43. Prim, R.C. Shortest connection networks and some generalizations. Bell Syst. Tech. J. 1957, 36, 1389–1401. [CrossRef]
44. Rivest, R.L.; Shamir, A.; Adleman, L. A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM

1978, 21, 120–126. [CrossRef]
45. Apriani, M.; Rousstia, D.; Rifai, F.A.; Harwahyu, R.; Sari, R.F. Implementation of Secure Work From Home System Based on

Blockchain using NS3 Simulation. In Proceedings of the 2020 7th International Conference on Electrical Engineering, Computer
Sciences and Informatics (EECSI), Yogyakarta, Indonesia, 1–2 October 2020; pp. 54–59.

46. Foytik, P.; Shetty, S.; Gochhayat, S.P.; Herath, E.; Tosh, D.; Njilla, L. A blockchain simulator for evaluating consensus algorithms
in diverse networking environments. In Proceedings of the 2020 Spring Simulation Conference (SpringSim), Fairfax, VA, USA,
18–21 May 2020; pp. 1–12.

http://doi.org/10.1109/ACCESS.2017.2717387
http://doi.org/10.1016/j.future.2019.01.008
http://doi.org/10.1109/MCOM.2018.1700364
http://doi.org/10.1109/JIOT.2018.2854714
http://doi.org/10.1002/j.1538-7305.1957.tb01515.x
http://doi.org/10.1145/359340.359342

	Introduction 
	Related Work 
	Proposed Algorithm 
	Intellectual Graph-Based Modeling 
	Secured Transmissions 

	Performance Analysis 
	Conclusions 
	References

