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Abstract: The objectives of this study were (1) to assess the fate and impact of CO2 injected into
the Morrow B Sandstone in the Farnsworth Unit (FWU) through numerical non-isothermal reactive
transport modeling, and (2) to compare the performance of three major reactive solute transport
simulators, TOUGHREACT, STOMP-EOR, and GEM, under the same input conditions. The models
were based on a quarter of a five-spot well pattern where CO2 was injected on a water-alternating-gas
schedule for the first 25 years of the 1000 year simulation. The reservoir pore fluid consisted of water
with or without petroleum. The results of the models have numerous broad similarities, such as
the pattern of reservoir cooling caused by the injected fluids, a large initial pH drop followed by
gradual pH neutralization, the long-term persistence of an immiscible CO2 gas phase, the continuous
dissolution of calcite, very small decreases in porosity, and the increasing importance over time of
carbonate mineral CO2 sequestration. The models differed in their predicted fluid pressure evolutions;
amounts of mineral precipitation and dissolution; and distribution of CO2 among immiscible gas,
petroleum, formation water, and carbonate minerals. The results of the study show the usefulness of
numerical simulations in identifying broad patterns of behavior associated with CO2 injection, but
also point to significant uncertainties in the numerical values of many model output parameters.

Keywords: reactive solute transport; CO2 sequestration; multi-phase fluid flow; Farnsworth Unit;
STOMP; GEM; TOUGHREACT

1. Introduction

The Farnsworth Unit (FWU), a hydrocarbon field in northern Texas, USA, has been
studied by the Southwest Regional Partnership on Carbon Sequestration (SWP) since 2013
as a test site for commercial-scale CO2 sequestration and enhanced oil recovery (EOR) in a
sandstone reservoir [1,2]. Central to assessing the feasibility of CO2 sequestration in the
FWU is determining the behavior of the injected CO2, including where and at what rate
the CO2 will migrate, how the CO2 will be distributed among the pore fluid phases (i.e.,
aqueous, gas, and nonaqueous liquid) and minerals, and how the hydraulic properties of
the reservoir and the composition of the pore fluids will be changed.

Answering these questions requires the ability to quantify the flow of multiple fluid
phases, their transport of solute and heat, and chemical reactions involving the fluid
phases and minerals in the reservoir. Several previous SWP studies have attempted to do
this using numerical reactive transport modeling. Ahmmed [3] used the TOUGHREACT
software [4] to model reservoir behaviors caused by CO2 injection in the immediate vicinity
of an individual well and over the full area of the FWU. His model predicted the pH of
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the formation water to decline to a minimum of 4.7 because of CO2 injection, causing
most of the native minerals in the reservoir to dissolve, except for quartz, kaolinite, and
illite. The model predicted hydrodynamic trapping to be the main mechanism of CO2
sequestration, with ankerite predicted to be the only mineral that sequestered CO2. The
changes in mineral abundance, however, were predicted to be too small to cause much
change in the hydraulic properties of the reservoir. Limitations of the model were that it
did not include petroleum, only CO2 was injected into the reservoir rather than water and
CO2 through a water alternating gas (WAG) scheme as actually implemented in the field,
the model did not implement the actual regional pressure gradient occurring in the field,
and the model was only carried out to 30 years.

Pan et al. [5] used the TOUGHREACT software to evaluate reactive transport in the
Morrow B Sandstone resulting from WAG injection over a 5-spot well pattern. Because
of the symmetry of the 5-spot well pattern, the model domain consisted of a triangle
representing only one-eighth of the total 5-spot pattern area where the injection well and
production well were separated by 504 m. Pan et al. [5] incorporated several chloride and
sulfate minerals plus muscovite and dawsonite in their model as potential precipitates that
were not incorporated in Ahmmed’s [3] model. However, except for halite, these minerals
were not predicted to precipitate as described in the model by Pan et al. [5]. Besides
the relatively small size of their model domain, limitations of the model constructed by
Pan et al. [5] were that it did not treat petroleum and used mineral reactive surface areas
per unit mass that are significantly larger than indicated by Gallagher’s [6] characterization
of the Morrow B. Similar to Ahmmed et al. [3], Pan et al. [5] found the native reservoir
minerals, quartz, kaolinite, and illite to increase in abundance over time, whereas the other
native reservoir minerals dissolved. Like Ahmmed et al. [3], Pan et al. [5] found ankerite to
be a mineral sink for injected CO2, but also magnesite and siderite. Pan et al. [5] found their
predicted changes in mineral abundances to cause only minor changes in the hydraulic
properties of the reservoir—a maximum increase in porosity and permeability of 2.7 and
8.4%, respectively, occurring close to the injection well.

Khan [7] also used the TOUGHREACT software to model reactive transport in the
Morrow B Sandstone as a result of WAG injection but considered a larger model do-
main than Pan et al. [5] consisting of the western part of the FWU. Like Ahmmed [3]
and Pan et al. [5], Khan [7] considered water and CO2 in his models but not petroleum.
Khan’s [7] simulations predicted much of the injected CO2 to leak from the reservoir into
the overlying shales or to migrate across the western boundary of the FWU within a few
decades. Khan’s [7] predicted mineral precipitation and dissolution behaviors resembled
those of Ahmmed [3] and Pan et al. [5]. The native reservoir minerals, ankerite, albite, and
illite were predicted to dissolve because of CO2 injection but quartz; kaolinite; smectite;
and the carbonate minerals calcite, dolomite, and siderite were predicted to precipitate.
However, Khan’s [7] predicted porosity changes of order 0.001% were much smaller than
those of Pan et al. [5].

Sun et al. [8] used the Computer Modeling Group Green House Gas (CMG-GHG)
simulator, GEM [9,10], to model reactive transport of CO2 injected through a WAG scheme
over a model domain consisting of a 5-spot well pattern like that considered by Pan et al. [5].
The total simulation time in Sun et al. [8] was 1000 years, with injection occurring during
the first 20 years. In contrast to Ahmmed [3], Pan et al. [5], and Khan [7], Sun et al. [8]
predicted most of the injected CO2 to be sequestered as an immiscible gas phase. Most
of the remaining CO2 in the model of Sun et al. [8] was sequestered through residual
trapping. Like Ahmmed [3], Pan et al. [5], and Khan [7], Sun et al. [8] predicted the smallest
amount of CO2 sequestration to occur through mineral trapping. Sun et al. [8] predicted
quartz, kaolinite, and siderite to precipitate in their simulations but albite, calcite, chlorite,
dolomite, illite, and smectite to dissolve. Sun et al. [8] did not include ankerite or magnesite
in their models, two potentially important mineral sinks for CO2. Sun et al. [8] predicted
porosity changes of less than 1% in their models.
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White et al. [11] have developed a multi-fluid phase (water–oil–gas) reactive transport
simulator called STOMP-EOR, which they applied to study the physical behavior of fluids
in the western FWU. Like GEM, STOMP-EOR solves coupled conservation equations for
energy, water mass, CO2 mass, CH4 mass, and the masses of multiple petroleum com-
ponents in variably saturated geologic media. Although STOMP-EOR has the capability
to compute reactive transport, STOMP-EOR had not yet been used in reactive transport
modeling studies of the FWU.

Because the previous SWP investigations of the FWU used three different numerical
simulators—TOUGHREACT, GEM, and STOMP-EOR, this raises the question of how
consistent the simulators are in terms of their ability to model the same input conditions.
Thus, one of the objectives of the present study was to try to answer this question by
building identical five-spot pattern models with the same grid design and parameter values
for all three simulators and comparing the results. Because TOUGHREACT currently does
not have the capability to treat a separate petroleum fluid phase, the comparison of the
TOUGHREACT, GEM, and STOMP-EOR models required that water and CO2 were the
only pore fluids. The TOUGHREACT simulator is analogous to the STOMP-CO2 simulator,
both considering only energy conservation, and conservation of water, CO2, and salt mass.
The equations of state differ significantly between STOMP-CO2 and STOMP-EOR, with
CO2 properties being computed from the Span and Wager [12] equation of state, and
cubic equations of state, respectively. A further comparison was made between GEM
and STOMP-EOR for identical five-spot pattern models that included water, CO2, and
petroleum pore fluids.

In addition to providing a rigorous comparison of the TOUGHREACT, GEM, and
STOMP-EOR simulators, the first of its kind and which will help build confidence in
these simulators for future research, the present study also extends the previous reactive
transport modeling studies of the FWU in the following ways:

• The studies by Ahmmed [3], Pan et al. [5], and Khan [7] considered only water and
CO2 as the pore fluids and not oil. The present study included a simulation scenario
that considered water, CO2, and oil.

• Although Sun et al. [8] considered water, CO2, and oil in their reactive transport model,
their model had some differences with actual field conditions: (1) They did not use the
actual fluid injection temperature in the field, but rather the 75 ◦C temperature in the
reservoir, and (2) they used generic mineral reactive surface areas from Pan et al. [5]
and Xu et al. [13] rather than reactive surface areas determined from the field properties
of the Morrow B. The present study used the field-based fluid injection temperatures
and mineral reactive surface areas.

2. Geological Setting

The Farnsworth Unit is located in the western Anadarko Basin (Figure 1), a structural
basin that formed primarily during the Mississippian and Pennsylvanian periods in re-
sponse to the collision of southeastern North America with Gondwanaland. The Morrow
B Sandstone, the main target for hydrocarbon production and CO2 sequestration in the
study, is part of the Upper Morrowan-age (Early Pennsylvanian) stratigraphic succession
in the basin. This succession is characterized by alternating intervals of glacially induced
marine transgression and regression. During times of marine transgression, increasingly
fine-grained clastic sediments were deposited, culminating in the deposition of nearshore
and offshore mud. During times of marine regression, streams flowed through the FWU
from the northwest, carving channels through the older transgressive sediments. During
subsequent marine transgression, the fluvial sediments deposited in these channels were
winnowed to form coarse-grained lag deposits and then were buried by fine-grained clas-
tic sediments. Thus, the Morrow B Sandstone consists of relatively narrow channels of
coarse sandstone enclosed within fine-grained sediments, creating conditions favorable for
stratigraphic CO2 trapping.
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14.5%, respectively. The Morrow B is overlain by the Morrow Shale and an Atokan-age 
sequence of low-permeability evaporites and limestone called the Thirteen Finger 
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Figure 1. Location of the Farnsworth Unit and the Anadarko basin within the seven-state region of
the SWP.

The Morrow B Sandstone is subarkosic, with quartz and albite as the main constituents.
The remainder of the Morrow B is composed of minor amounts of chlorite; the carbon-
ate minerals, calcite, siderite, and ankerite; and the clay minerals, smectite, illite, and
kaolinite. The Morrow B ranges in thickness from 0 to 16.5 m within the Farnsworth
Unit, with an average thickness of 10 m [6,14]. The permeability and porosity of the
Morrow B are very heterogeneous, with average values of approximately 48.2 mD and
14.5%, respectively. The Morrow B is overlain by the Morrow Shale and an Atokan-age se-
quence of low-permeability evaporites and limestone called the Thirteen Finger Limestone
(Figure 2; [6,14–17]). Together, the Morrow Shale and Thirteen Finger Limestone act as a
caprock for the Morrow B Sandstone [14,15].
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3. Model Construction and Scenarios
3.1. General Model Characteristics

The field development design within the Farnsworth Unit is a sequence of five-spot
well patterns, in which four injection wells are placed at the corners of a square and a
production well is placed at the center of the square. The numerical model generated in the
present study is based on that five-spot well pattern, specifically on the pattern centered
on production well, 13-10A, but because of the symmetry of the well spacing and in the
expected model results, the model considers only one-quarter of the full pattern. Thus,
the grid employed in the numerical model consisted of a three-dimensional block with
an injection well at one corner and a production well at the opposite corner (Figure 3).
The numerical grid had horizontal lengths of 504 m each subdivided by 11 equally spaced
nodes, and a vertical length of 10 m, coinciding with the thickness of the Morrow B at
well 13-10A, subdivided by 4 equally spaced nodes. The small model scale and spatial
homogeneity of model parameters within the model domain were chosen to facilitate
comparison of results from the three simulators.
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All three numerical simulators solve mass and energy conservation equations for multi-
phase pressure distribution and fluid flow, solute transport, and heat transport [18–20].

In TOUGHREACT and STOMP-EOR, these equations are solved using the inte-
grated finite difference method. In GEM, these equations are solved using the finite
difference method.

Hydrological parameter values used in the models were obtained from studies by
Pan et al. [5] and are shown in Table 1.

The initial Morrow B pore water composition used in the models was taken from
Ahmmed et al. [21] and is shown in Table 2.

The minerals shown in Table 3 include both the minerals that were initially present
in the Morrow B (primary minerals) and new minerals that were expected possibly to
precipitate during the model simulations (secondary minerals). The mineral reactive
surface areas were obtained from Khan [7], which were calculated from the average radii
of mineral grains in the Morrow B reported by Gallagher [6]. Kinetic parameters for
mineral precipitation and dissolution were obtained from Palandri and Kharaka [22] and
Xu et al. [19]. Mineral precipitation and dissolution reactions initially proceeded according
to a neutral pH reaction mechanism because of the initially near-neutral pH of the Morrow
B formation water. With the injection of CO2, the formation water became progressively
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acidified and mineral precipitation and dissolution reactions then proceeded according
to an acidic pH reaction mechanism. Chemical reactions that did not involve minerals
were assumed to reach equilibrium within each time step, for example, the intra-aqueous
species reactions.

Table 1. Hydrogeologic parameters used in the STOMP-EOR, TOUGHREACT, and GEM simulations.

Matrix compressibility (1/Pa) 4.5× 10−10

Diffusion coefficient (m2/s)
1. Gas
2. Aqueous solutes

1.1× 10−5

2.1× 10−9

Rock matrix density (kg/m3) 2500
Porosity 0.145
Intrinsic Permeability
1. Horizontal (m2)
2. Vertical Ratio

4.74× 10−14

0.10
Relative Permeability (Corey, 1954 model)
1. Saturation endpoints
2. Water/gas endpoints

Slr = 0.3 and Sgr = 1× 10−4

Krw = 0.7 and Krg = 1
Capillary Pressure None
Salt mass fraction in pore water 0.003
Initial aqueous phase saturation
1. Water–CO2 models
2. Water–CO2–oil models

0.99
0.73

Initial gas-phase saturation 0.01
Initial oil-phase saturation (Water-CO2-oil models) 0.27
Initial field temperature (◦C) 75.56
Injection pressure (MPa) 34.47
Injection temperature (◦C) 40
Production well screen pressure (MPa) 29.99
WAG Cycle Ratio (Months) 3 : 6
1. Thermal conductivity of saturated rock (W/m K)
2. Specific heat (J/kg K)

2.28
700

Table 2. Concentrations of aqueous component species in the FWU reservoir from well battery AWT4.

Primary Aqueous Species (mol/L):

Ca2+ 8.25 × 10−4 Ba2+ 1.00 × 10−5

H+ 1.00 × 10−7 AlO−2 2.80 × 10−7

K+ 1.83 × 10−4 SO2−
4 1.35 × 10−4

Mg2+ 5.10 × 10−4 Cl− 5.90 × 10−2

Na+ 6.18 × 10−2 HCO−3 1.33 × 10−2

Fe2+ 3.60 × 10−13 SiO2 6.69 × 10−4

Data from Ahmmed et al. [21].

All three numerical simulators use similar kinetic formulations [9,11,13], in which
mineral dissolution and precipitation rates are calculated from

rm = Âmkm

(
1− Qm

Keq, m

)
(1)

where rm is the rate of dissolution or precipitation, Âm is the reactive surface area of mineral
m, km is the rate constant, Keq, m is the chemical equilibrium constant, and Qm is the activity
product, expressed as

Qm =
naq

∏
k=1

avkm
k (2)
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where naq is the number of aqueous components, vkm is the stoichiometric coefficient of
component k in reaction m, and ak is the activity of the component k.

Table 3. Initial mineral volume fractions, possible secondary mineral phases, reactive surface areas, and kinetic properties
at 25 ◦C.

Minerals Initial Volume
Fraction %

Reactive Surface
Area cm2/g

Neutral pH Mechanism

Rates Constant 25 ◦C [mol m−2 s−1] Activation Energy [kJ mol−1]

Albite 17.973 11.45 1.0× 10−12 67.83
Calcite 0.4279 11.07 1.55× 10−7 23.50

Clinochlore 0.8559 11.41 1.0× 10−13 62.76
Quartz 58.6261 9.80 1.023× 10−14 87.70

Illite 0.5991 43.63 1.7× 10−13 35.00
Kaolinite 7.018 46.15 1.01× 10−13 62.76
Dolomite 0 10.49 6.0× 10−10 41.80
Magnesite 0 10 4.57× 10−10 23.50
Smectite-ca 0 9.8 1.0× 10−14 58.62

Siderite 0 9.8 1.26× 10−9 41.80
Ankerite 0 9.84 1.26× 10−9 41.80

Mineral volume fraction data from Munson [14] and Gallagher [6].

Reaction rate constants at a temperature of interest are computed from

km = k25 exp
[
−Ea

R

(
1
T
− 1

T0

)]
(3)

where Ea is the activation energy and k25 is the reaction rate constant at 25 ◦C.
Other initial conditions are that the model domain had a constant pressure of 30 MPa

and a constant temperature of 75 ◦C.
The boundary conditions for the models constructed for each simulator were the

same. All the faces of the model domains had zero fluid flux boundary conditions. The
lateral faces of the model domains had zero heat flux boundary conditions. A vertical
injection well was placed at one corner of the model domain, and a production well was
placed at the opposite corner (Figure 3). The wells were screened over an elevation from
0.0 m to 10.0 m. A WAG scheme was employed at the injection well in which water was
injected at a rate of 0.336 kg/s at 40 ◦C for 90 days, after which CO2 was injected at a rate of
0.454 kg/s for 180 days at 40 ◦C. This WAG scheme was employed for the first 25 years of
each simulation, after which injection ceased and the simulation was allowed to continue
to run to a total time of 1000 years to be able to track long-term effects of CO2 injection.
A constant bottom hole pressure of 30.0 MPa was assigned to the production well. The
production and injection rates represent 1

4 of the average pumping rates in the field from
wells 13-9 and 8-4, as the model domains intersect only one-quarter of the perimeter of
the wells.

During execution of the model, time step sizes were continuously and automatically
adjusted to achieve convergence. In general, time step sizes increased with time as gradients
in model parameters diminished.

3.2. Model Scenario 1: Injection of CO2 into a Saline Water Aquifer

Pore fluids in the Morrow B Sandstone consist of water, petroleum, and methane.
Thus, to model as robustly as possible the behavior of CO2 injected into the Morrow
B and to assess the CO2 sequestration capacity of the Morrow B, all three pore fluids
should be treated. This in fact was the objective of the present study’s second model
scenario described below. However, another objective of the present study was to assess
the consistency of major reactive solute transport simulators with one another for CO2
sequestration modeling, specifically, the GEM, STOMP-EOR, and TOUGHREACT simula-
tors. The TOUGHREACT simulator did not currently have the capacity to treat petroleum
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as a separate pore fluid. Thus, to the compare the performance of TOUGHREACT to the
GEM and STOMP-EOR simulators, a scenario was chosen involving injection of CO2 into
the Morrow B where water was the only pore fluid present. This scenario has further
value in that it provides a baseline for comparison. As noted above, the same parameter
values (Tables 1–3), boundary conditions, and initial conditions were used with all three
simulators to model this scenario.

3.3. Model Scenario 2: Injection of CO2 into a Depleted Hydrocarbon Reservoir

This scenario investigates the effects of the coexistence of petroleum and water on CO2
sequestration in the Morrow B Sandstone. The parameter values, boundary conditions,
and initial conditions were the same as in Model scenario 1, except that the initial water
saturation was reduced from 99% to 73% and oil saturation was raised from 0 to 16%. The
initial gas saturation remained the same as in Model scenario 1 at 1%.

The composition of the petroleum used in the models is shown in Table 4 and is
based on the FWU petroleum composition reported by Gunda et al. [23]. The presence of
petroleum with water in a porous medium can significantly alter the sequestration behavior
of CO2 compared to the case when only water is initially present in the porous medium. A
significant fraction of the injected CO2 is expected to dissolve into the petroleum, leaving
less CO2 to exist as a separate immiscible gas phase and to dissolve into the formation water,
affecting the physical flow behavior of the pore fluids through altered relative permeability
values. Lower CO2 concentration in the formation water will raise its pH, fundamentally
affecting the concentrations of other aqueous species and the precipitation and dissolution
of minerals. As noted above, only GEM and STOMP-EOR were used to investigate Model
scenario 2, as TOUGHREACT did not currently have the capability to treat a separate
petroleum fluid phase.

Table 4. Model petroleum component properties and initial mole fractions.

Component Mole Fraction Molar Weight
(kg/kmol)

Critical
Temperature (K)

Critical
Pressure (bar)

CO2 0.0 44.01 304.21 73.77
CH4 0.385 16.04 188.85 46.00
C2 0.039 30.07 197.45 48.83
C3 0.025 44.10 247.19 42.44

C4+ 0.028 58.12 289.89 37.76
C5+ 0.020 72.15 328.13 33.76
C6 0.018 86.18 365.70 29.68

HC1 0.335 189.95 577.54 22.48
HC2 0.150 545.65 864.34 16.25

Component definitions, properties, and abundances derived from Sun et al. [8].

4. Results
4.1. Model Scenario 1
4.1.1. Temperature and Pressure Distributions

Figures 4 and 5 show plan views of the evolution of reservoir pressure and temperature
predicted in the STOMP-EOR, TOUGHREACT, and GEM models in the middle layer of the
model grid as a result of water and CO2 introduced through the injection well at the lower
left corner of each plot. All three models predicted an increase in fluid pressure from the
initial value of 30 MPa during the 25 years of injection, reaching a maximum of ~33 MPa.
After the injection period ended, all three models predicted fluid pressures to decline, but
not at the same rate. The fastest fluid pressure decline was predicted in the TOUGHREACT
model, where fluid pressures returned to initial reservoir values within 100 years. The
STOMP-EOR model predicted a slower decline in pressure, requiring several centuries for
fluid pressure to return to the initial reservoir value. In the GEM model, fluid pressure had
not yet returned to the initial reservoir value by the end of the 1000 year simulation time,
reaching a minimum value of ~31.5 MPa.
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The temperature evolutions predicted by all three models were similar. In each model,
temperature near the injection well dropped from the initial reservoir temperature of 75 ◦C
to 40 ◦C, the temperature of the injected fluids. Lower temperatures gradually propagated
across the model domain toward the production well located at the upper left corner of
the plots, continuing until the end of the simulations after 1000 years. However, after the
injection well was shut in, temperature near the injection well gradually began to rise,
reaching ~60 ◦C in the TOUGHREACT and GEM models and ~70 ◦C in the STOMP-EOR
model after 1000 years.

4.1.2. Evolution of Pore Fluid and Mineral Composition

In addition to altering the pressure and temperature distribution in the reservoir, the
injected water and CO2 alter the pore fluid composition of the reservoir. Figure 6 shows
CO2 gas saturation after 25, 100, 600, and 1000 years along a vertical profile between the
injection well and production well as predicted by the STOMP-EOR, TOUGHREACT, and
GEM models. The results of the models were most dissimilar at early times (see Figure 6a–c
at 25 years), but all show CO2 to concentrate in the upper part of the profile, which is
due to buoyancy. Similar maximum gas saturations around 0.38 are also predicted by all
three models. Over time the model CO2 gas saturations converged to a similar, vertically
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differentiated pattern with saturations decreasing from the top of the model domain to
the bottom. The CO2 gas saturations in each model also largely stabilized after 100 years,
changing little until the end of the simulations at 1000 years. However, even at longer times
some differences are visible in the results. The STOMP-EOR model predicted the highest
overall gas saturations and the TOUGHREACT model predicted the CO2 gas plume not
to migrate all of the way to the production well on the right boundary of the plots. The
differences in gas saturation may be a function of different CO2 solubility relationships
used in the three simulators [24–26].
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CO2 gas saturation as a function of time is shown in Figure 7a. All three models show a
sharp increase in gas saturation during the injection period. In addition, in all three models,
gas saturation remains significantly elevated over the entire 1000-year simulation period,
though in the TOUGHREACT model, gas saturation steadily declines after the injection
well is shut in, whereas in the STOMP-EOR and GEM models, gas saturation remains
relatively constant at its maximum level. The long-term persistence of this immiscible
CO2 gas phase is largely a product of the no-flow boundary conditions that encompass
the model domain. Once the production well is turned off after 25 years, the CO2 can no
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longer exit the model domain and can only diminish in abundance by dissolving into the
formation water. Much of the injected CO2 dissolves into the Morrow B formation water
and this has a direct effect on its pH and HCO−3 concentration, as indicated by Equation (5)
and as shown in Figure 7b,c. The injection of CO2 causes an immediate drop in the pH
and an increase in the HCO−3 concentration, though not by the same amounts. The GEM,
TOUGHREACT and STOMP-EOR models predict minimum pH values of 4.6, 4.7, and 4.8,
respectively, at the onset of CO2 injection. All three models predicted a gradual increase in
pH over time; this occurs within the first few years after the injection ceased until the end
of the simulation. The eventual pH increase is probably caused by reactions with various
minerals in the Morrow B that consume H+.
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predicted by the STOMP-EOR, TOUGHREACT, and GEM models after (a–c) 25 years, (d–f) 100 years, (g–i) 600 years, and
(j–l) 1000 years.

All three models predicted an initial increase in HCO−3 concentration over time,
though these concentrations varied by ~1.5 orders of magnitude among the three sim-
ulators, with the lowest concentrations predicted by the GEM model, followed by the
STOMP-EOR and TOUGHREACT models, respectively. In the GEM and TOUGHREACT
models, HCO−3 concentration continued to rise throughout the rest of the simulation,
whereas in the STOMP-EOR simulation, HCO−3 concentration began to decline after about
200 years. Several competing factors affect the concentration of HCO−3 . Some HCO−3 may
be generated through the gradual dissolution of residual CO2 gas into the formation water
and by the dissolution of calcite, a native reservoir mineral, which also neutralizes pH
(Equations (4) and (5); Figures 8 and 9). Some HCO−3 is removed from the formation water
by the precipitation of other carbonate minerals such as dolomite, magnesite, and ankerite
(Equations (6)–(8)).

CO2(aq) + H2O↔ H+ + HCO−3 (4)

H+ + CaCO3(Calcite) → Ca2+ + HCO−3 (5)

Ca2+ + Mg2+ + HCO−3 → CaMgCO3(Dolomite) + H+ (6)

Mg2+ + HCO−3 → MgCO3(Magnesite) + H+ (7)

Ca2+ + 0.3Mg2+ + 0.7Fe2+ + 2HCO−3 → CaMg0.3Fe0.7(CO3)2(Ankerite) + 2H+ (8)
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The sharp initial drop in pH predicted by all three models during the first years of
the injection period leads to the dissolution of the native reservoir minerals, calcite, albite,
clinochlore, and illite in all three models. In addition, STOMP-EOR and GEM predict
kaolinite to dissolve, whereas TOUGHREACT predicts kaolinite to precipitate. By the end
of the 1000-year simulation period, all three models predict calcite, clinochlore, and illite to
have continued to dissolve. STOMP-EOR and TOUGHREACT also predict albite to have
continued to dissolve, whereas GEM predicts albite to have begun precipitating. STOMP-
EOR and GEM predict kaolinite to continue to dissolve and TOUGHREACT predicts
kaolinite to continue to precipitate until the end of the simulation at 1000 years.
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The predicted steady dissolution of calcite by all three models does not lead to a
corresponding steady increase in Ca concentration in the formation water. Rather, Ca
concentration gradually decreased over time in the TOUGHREACT and GEM models, and
in the STOMP-EOR model, Ca concentration increased for the first 10 years, decreased
from 10 to 200 years, and then gradually increased for the remainder of the simulation.
Decreases in Ca concentration were driven by the precipitation in all three models of the
Ca minerals, dolomite, and Ca-montmorillonite. In the STOMP-EOR and GEM models,
further Ca was removed from the formation water by the precipitation of ankerite, siderite,
and magnesite. No Fe minerals were predicted to precipitate in the TOUGHREACT model.
Thus, the Fe concentration of the formation water in the TOUGHREACT model remained
constant over time. However, ankerite and siderite were predicted to precipitate in the
STOMP-EOR and GEM models, though much more so in the GEM model. This was
enough to cause a steady decrease over time in the concentration of Fe in the formation
water in the GEM model, but not enough to prevent a slight increase over time in the
STOMP-EOR model. The GEM model predicted a brief initial period of increase in Mg
concentration in the formation water over the first 25 years, followed by a gradual decline.
The initial increase in Mg concentration is probably caused by the dissolution of clinochlore.
However, with increasing time, the precipitation of dolomite, ankerite, magnesite, and Ca-
montmorillonite led to a net decrease in Mg concentration. In the TOUGHREACT model,
the absence of dissolution of any Mg minerals during the early years of the simulation
and the precipitation of dolomite caused a decrease in Mg concentration in the formation
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water. At later times, high levels of clinochlore dissolution caused Mg concentration in the
formation water to increase. In the STOMP-EOR model, Mg concentration increased almost
continuously throughout the simulation, with the exception of a brief decline between
approximately 50 and 100 years. The dissolution of clinochlore is likely the main source for
the Mg concentration increase.
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Quartz is the only native reservoir mineral that was predicted to precipitate in all
three models (Figure 9c,d). In contrast, kaolinite, another native reservoir mineral, was
predicted to dissolve in the GEM and STOMP-EOR models but was predicted to precipitate
in the TOUGHREACT model.

All three of the models predicted very small, nearly continuous decreases in porosity
over the course of the simulations (Figure 8d). The largest porosity decrease was predicted
by the STOMP-EOR model at 0.0017. These porosity changes are likely to be too small to
have a significant impact on the hydraulic properties of the Morrow B Sandstone and its
capacity to sequester CO2 in either the formation water or as an immiscible gas phase.

Figure 10 shows how the three models predict the injected CO2 to be distributed
among an immiscible gas phase, the formation water, and carbonate minerals. The STOMP-
EOR and GEM models predict most of the injected CO2 to be sequestered within an
immiscible gas phase throughout the 1000 years of the simulation. All three models
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similarly predict the formation water to be the next most important sink for the injected
CO2. Carbonate minerals are a negligible sink for the injected CO2 in the first years of
the simulation. Indeed, in the GEM model, calcite dissolution outpaces the precipitation
of other carbonate minerals for the first 200 years, after which net carbonate mineral
sequestration of CO2 begins to occur. However, in all three models, carbonate minerals
become an increasingly important sink for injected CO2 over time, and by the end of
the simulation after 1000 years, they approach the formation water in importance as a
mineral sink. The TOUGHREACT model predicts a relatively small amount of CO2 to be
partitioned into an immiscible gas phase compared to the other two models. In fact, by the
end of the 1000-year simulation period, the TOUGHREACT model predicts the immiscible
gas phase to be the smallest sink for the injected CO2. As noted for Figure 6, the differences
in the amounts of immiscible CO2 gas predicted by the three simulators may be a function
of the different CO2 solubility functions that they employ [24–26].
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Figure 10. Mass of injected CO2 that is sequestered in an immiscible gas phase, in the formation
water, and in carbonate minerals as predicted by the STOMP-EOR, GEM, and TOUGHREACT models
in Model Scenario 1.

4.2. Model Scenario 2

Figures 11 and 12 show plan views of the evolution of reservoir pressure and tem-
perature predicted in the STOMP-EOR and GEM models in the middle layer of the model
grid as a result of water and CO2 introduced through the injection well at the lower left
corner of each plot. The two models predicted an increase in fluid pressure from the initial
value of 30 MPa during the 25 years of injection, reaching a maximum of ~34 MPa in
STOMP-EOR and GEM. After injection ceased, fluid pressure was predicted to decline
continuously in the STOMP-EOR model, reaching 32 MPa after 100 years and returning
to the initial reservoir pressure of 30 MPa after 1000 years. A similar pressure evolution
pattern was produced by the GEM model as long as siderite and ankerite were omitted
from the model, as is the case for the results shown in Figure 11. Although the geochemical
input parameters for siderite and ankerite were the same in the GEM and STOMP-EOR
models, including siderite and ankerite in the GEM model caused pressure to continue to
increase over time instead of returning to the initial value after injection ceased. This result
seems to represent a limitation of the GEM model. A comparative analysis showed that
the presence or absence of siderite and ankerite in the GEM model did not significantly
impact the results for any model outputs except kaolinite, magnesite, and temperature.
Compared to the case when siderite and ankerite were present, when siderite and ankerite
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were absent the GEM model predicted kaolinite abundance to be ~65% lower, magnesite
precipitation was almost entirely prevented, and temperature was approximately 2.5 to
6 ◦C lower. The GEM results shown in the remaining plots are for the case when siderite
and ankerite were included in the model.
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Figure 12. Plan views of the evolution of temperature in the middle cell layer of the model grid predicted by the STOMP-EOR
models (a–c) and GEM models (d–f) after 25, 100, and 1000 years, respectively.

The temperature evolutions predicted by the STOMP-EOR and GEM models in Sce-
nario 2 are similar to one another and to the results in Scenario 1. In each model, tem-
perature near the injection well dropped from the initial reservoir temperature of 75 to
40 ◦C during the injection period. After injection ceased, temperatures gradually rose and
became more homogeneous across the model domain, though they had not yet completely
returned to the initial reservoir temperature of 75 ◦C after 1000 years.

Figure 13 shows the changes in CO2 gas saturation along a cross section between the
injection well and the production well as a function of time for the STOMP-EOR and GEM
models. The results of the STOMP-EOR and GEM models differ significantly in detail
but have some broad similarities in that they both show a plume of CO2 gas to migrate
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about halfway across the cross section by about 25 years and to remain relatively stationary
thereafter. The model results of Scenario 2 differ significantly from those of Scenario 1.
In Scenario 2, CO2 gas saturation never develops a strong vertical differentiation as in
Scenario 1, and the injected CO2 plume in Scenario 2 does not arrive at the production well
by the end of the simulations at 1000 years. Maximum gas saturations in Scenario 2 are
higher than in Scenario 1. However, comparing Figure 14a to Figure 7a, both of which
show gas saturation averaged over the entire volume of the model domain, reveals that
gas saturation in Scenario 2 is overall lower than in Scenario 1. This is probably because in
Scenario 2, CO2 can dissolve in both oil and water, whereas in Scenario 1, the only pore
fluid into which CO2 can dissolve is water.
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Figure 14 also shows the pH and concentrations of HCO−3 , Ca2+, Fe2+, and Mg2+

in the Morrow B formation water as a function of time, also averaged over the entire
volume of the model domain. The trends in pH and concentrations of HCO−3 , Ca2+, and
Mg2+ over time predicted by the STOMP-EOR and GEM models in Model Scenario 2 are
qualitatively similar to those in Model Scenario 1 but differ significantly in their numerical
values. In Model Scenario 2, the STOMP-EOR model consistently predicts higher pH and
concentrations of HCO−3 , Ca2+, and Mg2+ compared to the GEM model, whereas the GEM
model predicts higher concentrations of Fe2+ than in the STOMP-EOR model at early times,
and the STOMP-EOR model predicts higher Fe2+ concentrations at later times. In Model
Scenario 2, after an early increase in the GEM model, gas saturation decreases and largely
parallels that predicted by the STOMP-EOR model.

The Scenario 2 STOMP-EOR and GEM models made some similar predictions about
the evolution of carbonate mineral abundance (Figures 15 and 16). Both models predicted
continuous dissolution of calcite. The two models differ further in that large amounts of
siderite, magnesite, and ankerite precipitated in the GEM model but only tiny amounts
of ankerite and no siderite precipitated in the STOMP-EOR model. Minimal magnesite
precipitated at early times in the STOMP-EOR model but by the end of the simulation after
1000 years, considerable magnesite had precipitated. The carbonate mineral abundances
predicted in Scenario 2 resemble those in Scenario 1 in some respects. Dolomite continued
to be the main carbonate mineral predicted to be precipitated in Scenario 2 in the STOMP-
EOR model. In contrast, in the GEM model, siderite was the most abundant mineral
precipitated followed by ankerite, dolomite, and magnesite. The presence of oil did not
greatly impact the patterns of carbonate mineral precipitation in the STOMP-EOR model
but appears to have greatly increased the precipitation of siderite and ankerite in the GEM
model. Carbonate mineral precipitation and dissolution trends were monotonic, reaching
their highest levels at the end of the 1000-year simulation period.
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Changes in the abundances of non-carbonate minerals predicted by the GEM and
STOMP-EOR models are shown in Figure 17. The two models predicted progressive
clinochlore dissolution over time, though the GEM model predicted a much smaller amount.
However, the STOMP-EOR model predicted relatively constant abundances of illite, Ca-
montmorillonite, and albite, whereas the GEM model predicted a large decrease in illite
abundance and a large increase in Ca-montmorillonite and albite abundance. For kaolinite,
the STOMP-EOR model predicted an initial sharp dissolution event followed by relatively
constant abundance, whereas the GEM model predicted precipitation throughout most
of the simulation. Both models predicted continuous quartz precipitation, though the
STOMP-EOR model predicted a much larger amount. The combined effects of mineral
precipitation and dissolution were nearly in balance in the STOMP-EOR model, with a
small porosity increase of ~0.001 predicted during the 25 year injection period, about half
of which was then gradually eliminated over the remainder of the 1000 year simulation
(Figure 18). The GEM model did not predict porosity to change during the injection period,
but after about 100 years, porosity decreased steadily from an initial value of ~0.145 to
~0.138 after 1000 years.

Figure 19 shows how the injected CO2 is distributed among an immiscible gas phase,
oil, formation water, and carbonate minerals. Both the GEM and STOMP-EOR model
predicted oil to be the largest sink for the injected CO2, with the GEM model predicting
higher amounts of CO2 dissolution in oil than the STOMP-EOR model. Both models
predicted less CO2 to occur as immiscible gas than to dissolve in oil, and less CO2 to
dissolve in the formation water than to occur as immiscible gas. In addition, the temporal
trends of CO2 occurring in immiscible gas strongly resembled one another in the two
models, as did the temporal trends of CO2 dissolved in formation water. As for Model
Scenario 1, in Model Scenario 2 carbonate minerals sequester only a small fraction of the
injected CO2, though the amount that they sequester continuously increases over time. By
the end of the 1000-year simulation, the STOMP-EOR model predicts the amount of CO2 to
be sequestered in carbonate minerals to be close to the amounts occurring in immiscible
gas and the formation water. In the GEM model, CO2 sequestration in carbonate minerals
has increased so much by the end of the simulation that this amount exceeds the amounts
in all other CO2 sinks except oil.
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5. Discussion

The present study showed that although the models for the different simulators in
each scenario were set up in the same way, they produced some significantly different
results. In Model Scenario 1, the STOMP-EOR, TOUGHREACT, and GEM models predicted
similar evolutions in temperature and pressure, though the pressures in the GEM model
were approximately 1–2 MPa higher after 1000 years than in the other two models. This
may have driven slightly higher concentrations of CO2 into solution in the formation water
in the GEM model, which would then account for its generally slightly lower pH. All three
models in Scenario 1 predicted calcite to dissolve, which is a consequence of the lowering
of the pH due to the injection of CO2. However, the lower pH predicted by the GEM model
corresponds with its lower overall amount of carbonate mineral precipitation compared to
the other two models.

In Scenario 1, the three models also predicted significant differences in the abundances
of non-carbonate minerals. The overall net changes in mineral abundances, though, were
similar enough to cause similar decreasing trends in porosity over time, amounting to only
about a tenth of a percent over the 1000 years of the simulation for the reservoir as a whole.
Such a small change in porosity would cause a similarly small change in permeability of
only tenths of a percent, meaning that the hydraulic properties and behavior of the Morrow
B reservoir as a whole would not be expected to change significantly as a result of the
planned CO2 injection.

In Scenario 2, despite the differences in predicted pressures, the amount of CO2
predicted by GEM to dissolve into water and oil does not differ much from the amount
predicted by STOMP-EOR. The pH is consistently lower in the GEM model than in the
STOMP-EOR model, but this does not consistently suppress the precipitation of carbonate
minerals in the GEM models. Instead, overall, more carbonate mineral precipitation is
predicted to occur in the GEM model than in the STOMP-EOR model. This contributes to
the greater decrease in porosity predicted by the GEM model than by the STOMP-EOR
model, though in both models the porosity decrease is relatively small and not enough to
cause significant changes in the hydraulic properties of the reservoir as a whole.
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Some of the differences in predicted mineral abundances between the GEM model
and the other two models may pertain to GEM’s use of damping factors for mineral
precipitation and dissolution reactions. The damping factors are multipliers applied to
the reaction rates in order to aid convergence and are allowed to vary between 0 and
1000. According to the CMG-GEM user’s guide [27], damping factors for mineral reactions
are justified because published reaction rate parameters in the literature, such as the
rate constant and reactive surface area, are often measured on a core scale in the lab.
To use these parameter values appropriately in a field-scale model, the values must be
upscaled corresponding to the larger grid block sizes and the scale of the model. When
laboratory-derived reaction parameters are used without upscaling, then the resultant
reaction rates become spuriously high, which causes numerical convergence difficulties
during the simulation. Thus, specifying mineral reaction damping factors reduces the
reaction rates to more realistic values, which also helps the model to converge better. In the
present study, a damping factor of 0.001 was used in the GEM models, the maximum value
that allowed the models to converge. In contrast, the STOMP-EOR and TOUGHREACT
models converged without damping factors.

6. Summary and Conclusions

Two model scenarios for CO2 injection into the Morrow B Sandstone in the Farnsworth
Unit were investigated in the present study. In Model Scenario 1, water was the only pore
fluid initially present. In Model Scenario 2, water and petroleum were both initially
present as pore fluids. Model Scenario 1 allowed a comparison of the performance of
the TOUGHREACT, STOMP-EOR, and GEM simulators to be made. Model Scenario 2
allowed a comparison of the STOMP-EOR and GEM simulators to be made. Both model
scenarios also provided fundamental insights into the behavior and effects of the injected
CO2. In Model Scenario 1, the models from the three simulators predicted a similar rise in
pressure up to ~33 MPa during the 25-year injection period but predicted different rates
of pressure decline after injection ceased. The three models predicted similar patterns of
reservoir cooling to a minimum temperature of 40 ◦C near the injection well, followed by
similar patterns of temperature homogenization after injection ceased. All three models
predicted the long-term persistence of an immiscible CO2 gas phase but differed by up to
approximately a factor of two in the amounts that persisted. All three models predicted
sharp declines in pH from the initial value of 7 to between approximately 4.6 and 4.9,
gradually rising with increasing time due to water–rock reactions. All three models
predicted calcite to dissolve through the simulations and for dolomite to be the main
carbonate mineral sink for the injected CO2. However, the models differed in the amounts
of other carbonate minerals (siderite, magnesite, and ankerite) that were predicted to
precipitate. The three models differed more strongly in terms of their predictions about
silicate minerals. All three models consistently predicted quartz and Ca-montmorillonite
to precipitate and clinochlore and illite to dissolve, but in significantly different amounts.
However, the predicted differences in neither silicate nor carbonate mineral abundance
were sufficient to cause large changes in porosity, which showed a slight decreasing trend
in all three models. The STOMP-EOR and GEM models predicted similar amounts of
immiscible CO2 gas to be the main sink for the injected CO2 over the 1000 years of the
simulations, while the amount predicted by the TOUGHREACT model was much lower
and not the main injected CO2 sink. All three models predicted similar amounts of injected
CO2 to be sequestered in aqueous solution. Carbonate minerals were predicted by all three
models to be a smaller sink for injected CO2 than the formation water, though carbonate
minerals were the only CO2 sink that grew in magnitude over time.

In Model Scenario 2, only the GEM and STOMP-EOR simulators were tested. Both
the GEM and STOMP-EOR models made similar predictions of initial cooling around the
injection well followed by thermal homogenization that were made in Model Scenario 1.
The STOMP-EOR model made a qualitatively similar prediction of pressure evolution as in
Model Scenario 1. However, the GEM model predicted an ongoing increase in pressure after
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injection ceased until the end of the simulation at 1000 years unless the minerals siderite
and ankerite were removed from the model. The GEM model predicted gas saturations to
be about twice as high as the STOMP-EOR model during the early years of the simulation,
but after about 200 years the two models predicted similar gas saturations. Both models
predicted lower overall gas saturations in Model Scenario 2 than in Model Scenario 1. Both
the GEM and the STOMP-EOR models predicted a sharp decrease in pH during injection
in Model Scenario 2. However, whereas the GEM model predicted a similar minimum
pH of 4.6 in the two model scenarios, the STOMP-EOR model predicted a significantly
higher minimum pH of 5.6 in Model Scenario 2 compared to the minimum pH of 4.9
it predicted in Model Scenario 1. Both models continued to predict calcite to dissolve
continuously in Model Scenario 2. The STOMP-EOR model again predicted dolomite to
be the main carbonate mineral sink for injected CO2, whereas the GEM model predicted
siderite and ankerite to be more important mineral sinks. The two models predicted
significant differences in silicate mineral abundance. Together, the differences in carbonate
and silicate mineral abundances led to significant differences in porosity, with the STOMP-
EOR model predicting an overall porosity decrease to 0.1445 and the GEM model to about
0.1385. Overall, CO2 injection was predicted to have a small impact on porosity over
1000 years. Both models in Scenario 2 predicted oil to be the main sink for injected CO2.
Both models predicted immiscible gas and the formation water, respectively, to be smaller
sinks for injected CO2. STOMP-EOR predicted carbonate minerals to be the smallest sink
for injected CO2. For GEM this was also true for about the first 300 years of the simulation,
but the end of the 1000 years of the simulation, GEM predicted carbonate minerals to be
the second most important sink for injected CO2 after oil.

Although the models in each scenario were set up the same and although the model
results have many qualitative similarities, the models differ in many of the details of their
results. The results indicate that executing models on multiple simulators can more clearly
identify areas of confidence as well as uncertainty in projected outcomes in the field.
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