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Abstract: At present, magnetically coupled resonance wireless power transfer (MCRWPT) is the main
technology used in electric vehicle wireless power transfer (WPT) due to its advantages of high trans-
mission power and high efficiency. The resonant compensation circuit of the system generally adopts
the double LCC (DLCC) structure, which has many capacitor and inductor components. Therefore, it
is necessary to optimize the circuit parameters to improve the transmission performance of the system.
In this study, the DLCC compensation circuit was modeled and analyzed to lay the foundation for
parameter optimization. Secondly, the size parameters of the energy transmitting and receiving
coil were determined, and the influence of the change of the primary and secondary compensation
inductance on the circuit element stress and output performance was analyzed to determine the
optimal compensation inductance value. Thirdly, the realization condition of zero voltage switching
(ZVS) was analyzed, the relationship between the input impedance angle of the compensation circuit
and the component parameter value was obtained, and a parameter optimization control strategy
for realizing ZVS was proposed. Finally, through simulation and experiment, it was concluded that
under different power levels, the efficiency of the parameter optimization strategy proposed in this
study is as high as 91.86%, increasing by about 1%. Therefore, the research undertaken in this study
can promote the development of WPT technology and has certain practical significance.

Keywords: MCRWPT; parameter optimization; ZVS; efficiency improvement

1. Introduction

The automobile industry is undergoing a comprehensive energy transition, and devel-
oping electric vehicles has become a clear direction for numerous countries, such as China,
those of Europe, and the United States [1]. Following the advent of intelligent driving, WPT
technology has attracted the close attention of numerous scholars and industry researchers
due to its advantages, such as safety, reliability, and convenience [2]. MCRWPT technology
adds a resonant compensation network to the transmitting and receiving coils, which solves
the problems of high leakage inductance and the low power factor of the system [3]. At
present, this approach is the main technology for wireless power supply of electric vehicles.

Improving the energy transmission efficiency of the WPT system of electric vehicles
is a major challenge in current research. In the power electronic system, the application
of soft switching technology is an effective method to improve the system efficiency and
reduce the interference [4,5]. The high-frequency inverter circuit commonly used in the
electric vehicle WPT system is a voltage-type full-bridge inverter circuit, whose load is
connected with the resonance compensation circuit, which creates the conditions for the
realization of the soft switch [6,7].

Due to the high operating frequency of the electric vehicle WPT system, which usually
reaches the kHz level, when the compensation network reaches the perfectly resonant state
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(PRS), the diode and MOSFET switching devices in the system cannot be in a perfect soft
switching state [8,9]. To minimize switching device loss and EMI interference problems,
switching devices must be in the ZVS state [10–12]. The literature presents three main
realization methods of the inverter ZVS: a control strategy, changing the circuit structure,
and parameter optimization.

In previous research [13,14], the PLL phase-locked loop control method is adopted
to realize ZVS. In this approach, the input current of the primary side is collected, the
phase difference between the voltage and the current is calculated through zero-crossing
detection, and the voltage leads the current by a certain phase by adjusting the opening
frequency of the inverter for phase locking. The authors of [15] proposed a kind of
frequency tracking control method in which the circulation size was detected to determine
the working frequency and the resonant inverter circuit was used to determine if there was
a large deviation from the natural frequency. Then, the controller was used for frequency
conversion and decision-making, and to reduce circulation to an acceptable range, and the
frequency was set as the work frequency of the inverter to achieve soft switch control.

The authors of [16] designed a bidirectional WPT system with a ZVS branch with a
full-bridge converter. The converter used a branch between switching nodes to provide
the ZVS current, and a specially designed modulator was used to obtain an effective ZVS
current waveform. The control strategy designed in [17] includes two control loops. Firstly,
the CC or CV operation mode is realized by the phase-shifting control of the full-bridge
inverter. Secondly, a branch composed of the MOSFET and capacitor in series is connected
in parallel at both ends of the compensating capacitor on the primary side, and the input
phase angle is controlled by changing the compensating capacitor value. The DLCC
compensation structure was improved in [18]. ZPA and ZVS are realized by adjusting the
compensation capacitance value, and the constant voltage output of the system is realized.

The authors of [19] proposed a method to realize the ZVS switch of the primary side in-
verter by optimizing the compensation capacitance value of the secondary side. Simulation
and experimental results verified the effectiveness of the proposed compensation network
and the setting method. The authors of [20] proposed a parameter design method for a
DLCC compensation network in the phase-shift process of the full-bridge inverter without
an auxiliary circuit, identified and analyzed the conditions for realizing ZVS with a lag
switch, and verified the analysis results with a 1 kW radio energy transmission prototype.

At present, the method of realizing ZVS using an inverter is not accurate. Furthermore,
the influence of parameter changes in the compensation circuit on the realization of ZVS has
not been considered comprehensively. A complex closed-loop control strategy is difficult
to implement because of signal interference and time response. Due to the shift of the
transmitting and receiving coil or the change in the load state, it is difficult to realize the
ZVS of the switching tube under a wide range of coupling coefficients and output voltages.
Therefore, to improve the transmission power and efficiency of the system, it is particularly
important to study the WPT system based on ZVS.

This paper is structured as follows. Firstly, the DLCC compensation circuit is modeled
and analyzed, and the expressions of current, voltage, and impedance are obtained, thus
laying the foundation for parameter optimization. Secondly, the size parameters of the
energy transmitting and receiving coils are determined according to relevant standards,
and the influence of the change in the primary and secondary compensation inductance on
the circuit element stress and output performance is analyzed to determine the optimal
compensation inductance value. Thirdly, the realization condition of ZVS is analyzed, the
input impedance expression of the compensation circuit is deduced when the component
parameter values are changed, the expression of the inverter output current and circuit
parameters is established, and the parameter optimization control strategy for realizing
ZVS is proposed. Finally, the effectiveness of the control strategy is verified by establishing
a Simulink simulation and experimental platforms.
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2. DLCC MCRWPT System Modeling Analysis

The DLCC MCRWPT system structure and mutual inductance equivalent circuit are
shown in Figures 1 and 2. The system includes a high-frequency inverter circuit, a DLCC
resonant compensation circuit (magnetically coupled mechanism), and a rectifier filter cir-
cuit. Uin is the input DC voltage; S1, S2, S3, and S4 are MOSFETs; Lf1 and Lf2 are the primary
and secondary compensating inductors, respectively; Lp and Ls are the self-inductance
of the transmitting coil and the receiving coil, respectively; M is the mutual inductance,
M = k

√
LpLs, where k is the coupling coefficient between Lp and Ls; C1 and C2 are series

compensation capacitors of primary and secondary sides, respectively; and Cf1 and Cf2 are
parallel compensation capacitors of primary and secondary sides, respectively. D1, D2, D3,
and D4 are rectifying diodes; Co represents filtering capacitors of the rectifying circuit; RL
is the load; and Req is the equivalent load on the secondary side, where Req = 8RL/π2. u1
and u2 are the input and output voltages of the resonant network, respectively; if1 and if2
are the input and output currents of the resonant network, respectively; ip and is are the
transmitting coil and receiving coil currents, respectively.

− 1
jωC f 1

Ip +
(

jωL f 1 +
1

jωC f 1

)
I f 1 = U1

− 1
jωC f 2

Is +
(

jωL f 2 +
1

jωC f 2

)
I f 2 = −U2

− 1
jωC f 2

I f 2 +
(

jωLs +
1

jωC2
+ 1

jωC f 2

)
Is = jωMIp

− 1
jωC f 1

I f 1 +
(

jωLp +
1

jωC1
+ 1

jωC f 1

)
Ip = jωMIs

(1)
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Ignoring the parasitic resistances of the capacitor and inductor, and the high-order
harmonic components of the voltage of the resonant network, Equation (1) is established
according to the mutual inductance equivalent circuit of the system.

The conditions of the full resonance state of the double LCC compensation circuit are
as follows:

ω0
2L f 1C f 1 = ω0

2L f 2C f 2 = 1 (2)

ω0
2
(

Lp − L f 1)C1 = ω0
2
(

Ls − L f 2

)
C2 = 1 (3)
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In the above equation, ω0 is the resonant angular frequency. According to
Equations (1)–(3), we can obtain:

I f 1 = jω0
3MC f 1C f 2U2 = ω0

6C f 1
2C f 2

2M2ReqU1 =
M2U1Req

ω0
2L f 1

2L f 2
2

Ip = −jω0C f 1U1 = U1
jω0L f 1

Is = jω0C f 2U2 = ω0
4C f 1C f 2

2MReqU1 =
MU1Req

ω0
2L f 1L f 2

2

I f 2 = −jω0
3MC f 1C f 2U1 = MU1

jω0L f 1L f 2

(4)

According to Equation (4), ip and if2 have independent of the load, and the system has
a constant current output characteristic. The output power is as follows:

Po =
M2U1

2Req

ω02L f 1
2L f 2

2 (5)

According to Figure 2, the total input impedance Zin, the equivalent impedance Zs of
the secondary side, and the reflection impedance Zr converted from the secondary side to
the primary side of the DLCC compensation circuit are, respectively:

Zin = jωL f 1 +
1

jωC f 1
//
(

jωLp +
1

jωC1
+ Zr

)
Zs = jωLs +

1
jωC2

+ 1
jωC f 2

//
(

jωL f 2 + Req

)
Zr =

ω2 M2

Zs

(6)

According to the above analysis, it can be concluded that the output characteristics of
the DLCC WPT system are mainly related to the parameters of the compensation circuit
elements, the coupling coefficient of the transmitting and receiving coils, and the secondary
side load. In the following, we optimize the parameters of the system so that the system
has a good output characteristic and driving load capacity.

3. Inductance Parameter Optimization Analysis

In this paper, according to the relevant standards of SAE J2954-2020 and GB/T3877,
the magnetically coupled mechanism was selected, as shown in Figure 3, and its 3D model
was established based on ANSYS EM.
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Figure 3. Diagram of magnetically coupled mechanism: (a) transmitting terminal; (b) receiving terminal; (c) magnetically
coupled structure.

In the figure, the orange portion is the energy transfer coil, the black plate represents
the ferrite core, and the gray area is the aluminum magnetic shielding layer. The specific
geometric parameters of the model are shown in Table 1. In the case that the energy transfer
coil is completely aligned (the distance is 20 cm), the simulation results show that the
coupling coefficient k is about 0.2.

The parameters of the DLCC line compensation circuit are generally determined as
follows: firstly, the output power level is determined, and the Lp and Ls are set appropriately.
Then the maximum coupling coefficient is determined, and the compensation inductance
Lf1 and Lf2 are determined according to Equation (7). Finally, the compensation capacitance
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is determined according to the resonant condition and the system frequency. The basic
parameters of the radio energy transmission system in this paper are shown in Table 2.

L f 1 = L f 2 =

√√√√ kU1

ωo

√
LPLSReq

Po
(7)

Table 1. Model size of magnetically coupled mechanism.

Parameters Value (mm) Parameters Value (mm)

External diameter of transmitting coil 650 × 500 External diameter of receiving coil 320 × 320
Inner diameter of transmitting coil 140 × 290 Inner diameter of receiving coil 100 × 100

Radius of transmitting coil fillet 180 Radius of receiving coil fillet 110
The thickness of the coil 5 The thickness of the magnetic core 5

Table 2. Basic parameters of the MCRWPT system.

Parameters Symbol Value

DC supply voltage [V] Uin 400
Transmitter coil inductance [µH] Lp 48.5

Receiver coil inductance[µH] Ls 39
Coupling coefficient k 0.2

Resonant frequency [kHz] f 85
Output power rating [kW] Po 7.7

Output voltage [V] Uo 200–450
Output current [A] Io 17.1

Let L = Lf1 = Lf2, Lf1×Lf2 = L2; this indicates that the values of Lf1 and Lf2 are not
unique, and are defined as:

L f 1 = σL, L f 2 =
1
σ

L (8)

In theory, Lf1 and Lf2 can be reconfigured by changing the value of σ, assuming that
the basic parameters of the system are constant and ensuring that L is constant. According
to the above analysis, each σ corresponds to a different set of topological parameters.
Therefore, the DLCC compensation circuit can be reconfigured by adjusting the value of σ
without changing the basic system parameters. Next, the transmission characteristics of
the MCRWPT system under different σ conditions are analyzed to determine the optimal
value range of σ.

3.1. Stress Analysis of DLCC Compensation Circuit Elements

The analysis of the voltage and current stress of the capacitor and the inductor resonant
element is a factor that must be considered in compensation circuit design. Excessive
voltage and current stress may increase the power loss of the element, affect the energy
transmission efficiency of the system, and even damage the equipment. According to
Table 2 and Equation (8), five groups of values of circuit elements under different values of
σ are shown in Table 3.

Table 3. Basic parameters of DLCC circuit elements under different σ values.

σ
Parameters

Lf1 [µH] Lf2 [µH] C1 [µH] C2 [µH] Cf1 [µH] Cf2 [µH]

0.8 16.64 25.73 109.42 264.20 213.01 136.31
0.9 18.52 22.84 116.94 216.95 189.32 153.49
1.0 20.58 20.58 125.57 190.33 170.36 170.36
1.11 22.84 18.52 136.63 171.18 153.49 189.32
1.25 25.73 16.64 153.97 155.54 136.31 213.01
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According to Equations (4) and (8), and in combination with the parameters in
Tables 2 and 3, the variation in voltage and current stress of each element of the DLCC
compensation circuit with output power under different σ values is plotted, as shown in
Figure 4. The current Ip flowing through the Lp and the If2 of the compensation circuit are
constant and independent of the output power, which also verifies the constant current
output characteristic of the DLCC circuit structure. If1, Is, ICf1, ICf2, Us, UCf1, UCf2, UC2, and
Uf1 increase with the increase in output power. Under the same output power condition, If1
and If2 do not change with the change in σ, indicating that the value of σ does not affect the
input and output current characteristics of the double LCC compensation circuit. Ip, ICf1,
Up, UC1, UCf2, and Uf2 decrease gradually with the increase in σ, whereas Is, ICf2, Us, UCf1,
UC2, and Uf1 increase gradually. Relatively speaking, the voltage on Cf1 and Cf2 does not
vary significantly with σ, whereas the voltage on C1 and C2 varies considerable with σ; thus,
the reasonable choice of σ should be based on the voltage limit of the resonant capacitor.
In addition, as the most important component of the MCRWPT system, the magnetically
coupling mechanism has a decisive influence on the transmission power and efficiency of
the system, and the power loss of this component is an important contributor to the total
loss of the system. The loss of the magnetically coupling mechanism is comprised mainly
of the coil loss. Ip and Is directly determine the size of the coil loss. Therefore, a reasonable
choice of the σ value can reduce the power loss.
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3.2. High-Frequency Harmonic Suppression

The voltage waveform of the full-bridge inverter circuit is quantitatively analyzed,
and the rectangular wave u1 with the amplitude of Uin is expanded into Fourier series,
which can be obtained as follows:

u1 =
4Uin

π
(sin ωt +

1
3

sin 3ωt +
1
5

sin 5ωt + · · · · · ·+ 1
2k− 1

sin(2k− 1)ωt) (9)

As can be seen from Equation (9), the output voltage contains abundant odd harmonics.
Although the dual LCC compensation circuit only allows specific resonant frequency
components to pass through and has an attenuation effect on the harmonic component, the
suppression effect of the high-frequency harmonics is not ideal due to the large number
of resonant components in the circuit. Normally, higher harmonics increase switching
losses. Because harmonic amplitudes above the fifth order are small, only the fundamental
frequencies (85 kHz), the third (255 kHz), and the fifth (425 kHz) are considered. According
to the relevant parameters in Tables 2 and 3, the If1 harmonic content under different σ
values was simulated in Simulink. As can be seen from Figure 5, with the increase in
σ, the harmonic content of current If1 was lower. Therefore, to obtain better harmonic
suppression performance, the maximum σ should be used.
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4. The Realization of ZVS

The MCRWPT system adopts full-bridge inverter. In practical application, to prevent
the circuits of the upper and lower bridge arms from appearing directly and to avoid
damage to the switching devices, enough dead time should be set for the switches of the
upper and lower bridge arms to ensure the normal operation of the circuit when driving the
switch tube of the full-bridge inverter. When the system operates in a completely resonant
state, that is, the difference between the input voltage and the current is 0, ZVS is difficult
to achieve. To realize ZVS, the input impedance of the system must be inductive. From the
perspective of parameter optimization design, in this study, we realized the inverter ZVS
under a wide range of coupling coefficients and load changes.

4.1. The Realization Conditions of ZVS

For the case in which the system realizes ZVS, the waveform diagrams of the inverter
drive signal, output voltage, and current are shown in Figure 6, and the commutation
process is shown in Figure 7. The process of turning off S1 and S4, and turning on S2 and
S3, are analyzed as follows.
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Prior to t0, S1 and S4 conduct, and u1 is Uin. At the stage of t0–t1, S1 and S4 are turned
off, the inverter output current i f1 passes through the junction capacitance of the switch
tube, the junction capacitance of S1 and S4 (Coss) charges, the junction capacitance of S2 and
S3 discharges, and u1 shows a linear decreasing trend. At the stage of t1−t2, the junction
capacitors of S2 and S3 discharge completely, the voltage at both ends of S2 and S3 drops to
zero, the current if1 does not reverse, and the volume diodes of S2 and S3 continue to flow.
At the moment of t2, the driving signals of S2 and S3 arrive to realize ZVS. At the stage of
t2−t3, if1 reverses, S2 and S3 conduct, and u1 is −Uin. During this process, the dead time
td = t2 − t0, during which the current approximately linearly decreases, and the conditions
for realizing ZVS of the inverter switch tube, are as follows:

it0 + itd >
4CossUin

td
, itd > 0 (10)

where itd is the dead zone ending current and it0 is the shutdown current. When Coss, Uin,
and td are determined, the implementation of ZVS is only related to it0 and itd. it0 and itd
are essentially the if1, so it can be known from Equation (4) that the size of it0 and itd is
related to the system coupling coefficient, load resistance value, and the compensation
circuit element parameters. Therefore, in the case of a wide range of coupling coefficients
and load resistances, ZVS can be realized by optimizing the component parameters so that
it0 and itd always satisfy Equation (10).

4.2. Design of Dead Time

Setting a reasonable dead time is the key to realizing the ZVS inverter. If the dead time
setting is too short, a short circuit of the upper and lower bridge arms of the inverter will
occur; if the parasitic capacitor impulse current is too large, it may burn out the MOSFET.
If the dead time too long, the inverter cannot realize ZVS and generate the impulse current.
With the increase in dead time, the output voltage waveform of the inverter is worsened,
affecting the transmission efficiency of the system. To ensure the optimal dead time of
the inverter MOSFET to realize ZVS, the parasitic capacitor should be fully charged and
discharged, and another branch MOSFET should be conducted before the end of the reverse
parallel diode continuation current. Thus, the dead time td should satisfy:
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tc + to f f < td < tD (11)

where tc is the charge and discharge time of the parasitic capacitor, toff is the MOSFET
turn-off time, and tD is the diode continuation time.

When the model of the MOSFET is determined, the toff time is determined. The
charging and discharging time of the parasitic capacitor, tc, is:

tc = Coss

√
2|Zin|
sin θ

(12)

The diode continuation time, tD, is:

tD =
θ

180◦
× T

2
=

θ

360◦
T (13)

where T is the one switching period of the inverter. In practical application, considering
that the time of the MOSFET turn-on and turn-off is prolonged due to heat, the optimal
dead zone time td should be relatively large.

4.3. Analysis of the Influence of Resonant Circuit Parameters on Input Impedance Angle

According to Equation (6), the input impedance expression of the compensation cir-
cuit is derived when the parameters of complete resonance and inductance, and capaci-
tance, change: 

Zin =
L f 2

ω2C f 1
2Zr

Zin_L f 1
=

ω2L f 1
2

Zr
− jω(L′f 1 − L f 1)

Zin_C f 1
=

Zr
ωC
′
f 1

2
+j[ Zr2

ω ( 1
C f 1
− 1

C
′
f 1
)+ 1

ω3C f 1
( 1

C f 1
2 +

2
C
′
f 1

2
− 3

C f 1C
′
f 1
)]

Zr2+( 1
ωC f 1

− 1
ωC
′
f 1
)

2

Zin_C1 =
C′1(ω

2LpC1−1)[Zrω2C1C f 1+jωC f 1(C1−C′1)]

ω2C f 1
2(C1−C′1)

2
+(Zrω2C1C f 1C′1)

2

Zin_L f 2
=

L f 2
2[Req+jω(L f 2−L′f 2)]

ω2 M2C f 1
2[Req2+ω2(L f 2−L′f 2)

2
]

Zin_C f 2
=

Req

ωC
′
f 2

2
+j[

Req2

ω ( 1
C f 2
− 1

C
′
f 2
)+ 1

ω3C f 2
( 1

C f 2
2 +

2
C
′
f 2

2
− 3

C f 2C
′
f 2
)]

ω4 M2C f 1
2[Req2+( 1

ωC f 2
− 1

ωC
′
f 2
)

2
]

Zin_C2 =
C′2C2+jω(C′2−C2)C f 2

2Req

ω6 M2C f 1
2C f 1

2C′2C2Req

(14)

where Zr = w2M2Cf2Req/Lf2, C1’, Cf1’, Lf1’, C2’, Cf2’, and Lf2’ are the changed circuit compo-
nent parameter values.

The variation range of the component parameters is set from 0.8 to 1.2. Combined
with Tables 2 and 3, and Equation (14), the curve of the circuit input impedance angle,
for component parameters under different loads, can be fitted, as shown in Figure 8. It
can be seen from Figure 8 that, with the change in component parameters, the circuit
input impedance angle changes in inductance, resistance, and capacitance. By contrast,
changing the values of C1 and C2 has a more obvious effect on the impedance angle. As
C1 and C2 change from small to large, they have the opposite effect on the impedance
angle. However, according to Equation (4), changing C2 affects the constant current output
characteristics of the secondary side. Therefore, ZVS is finally realized by changing the
value of parameter C1.
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We can take the equivalent resistance Req = 30 Ω to fit the curve of the change in the
circuit input impedance angle with the change in C1 under different coupling coefficients,
as shown in Figure 9. According to Figures 8d and 9, when the value of C1 is determined
(excluding the ratio of 1), with the increase in the coupling coefficient and the load value,
the change in the input impedance angle steadily becomes smaller. Therefore, as long as the
value of C1 satisfying ZVS is determined in the case of the maximum coupling coefficient
and the maximum load value, ZVS in the full range of coupling coefficients and loads can
be realized.
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According to Equation (10), the value of it0 + itd is determined by Coss, Uin, and
td. Therefore, the relationship between it0, itd, and C1 needs to be clarified to obtain the
optimized value of C1. The high-order harmonics of the current if1 are ignored. The phase
difference between the fundamental voltage of the compensation circuit and the input
fundamental voltage is defined as α, and the expressions of it0 and itd are obtained by
combining with Equation (1).

it0 =
√

2I f 1 sin(π + α) (15)

itd =
√

2I f 1 sin(ωtd + π + α) (16)

tan α =
(C1 − C′1)

ZrωC1
(17)

I f 1 =

√
(ω6M2C f 1

2C f 2
2ReqU1)

2 + [ωC f 1
2U1(

1
C′1
− 1

C1
)]

2
(18)

Therefore, according to Equations (10) and (15)–(18), the value of C1 satisfying ZVS
can be calculated.

4.4. Parameters Optimization Control Strategy

According to the analysis in the above section, after optimizing the basic parameters
of the WPT system, when the load and coupling coefficient change, the inverter can theo-
retically be guaranteed to work in the ZVS state at all times. However, due to the progress
in the wireless charging process of electric vehicles, the temperature of the magnetically
coupled mechanism and compensation circuit will inevitably rise, and the system param-
eters will change. This will result in interference in the inverter output voltage and the
current waveform. Although this change will not have a significant impact on the system,
it is likely to change the working state of the inverter ZVS. When the MCRWPT system
works normally, the circuit parameters cannot be changed. It can be seen from Equations
(10) and (15)–(18) that the working state of the inverter can only be adjusted by changing
the dead time td and frequency f of the inverter.

Because the output voltage and current of the inverter will not mutate, the dynamic
adjustment of the dead zone time does not require a high speed. Thus, the control is carried
out by adjusting the dead zone and frequency with a fixed-length step. The MCRWPT
system control block diagram and parameter optimization control flow chart are shown in
Figures 10 and 11, respectively.
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5. Simulation and Experimental Verification
5.1. Analysis of Simulation Results

According to the stress analysis of the compensating circuit elements and the effect
of harmonic suppression, the value of σ is 1.25. The basic parameters of the circuit are
obtained from Tables 2 and 3, and the output power level is 7.7 KW. The IMZ120R045M1
MOSFET of Infineon was selected. According to the device manual, the Coss is 1100 pF
and the dead zone time is set at 400 ns. From Equation (10), we can obtain it0 + itd > 4.4 A.
The high-frequency component of the current is not considered in Equations (15) and (16)
in this paper, but the existence of the high-frequency component will inevitably affect
the accuracy of the ZVS implementation. A margin can be set to ensure the sum of the
current is 6 A. According to the above analysis, as long as the system can realize ZVS at
the maximum coupling coefficient and the maximum output voltage, it can guarantee the
realization of ZVS at all times. Combined with the above equations, the curves of it0 and
itd with C1 were obtained under the conditions of the maximum coupling coefficient (0.2)
and the maximum output voltage (450 V), as shown in Figure 12.
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As can be seen from the figure, when C1’ < 0.99C1, itd is always greater than 0; when
C1’ < 0.92C1, it0 + itd is always greater than 6 A. Therefore, to realize ZVS, the optimal value
of C1’is 0.92C1 (141.65 nF).

A simulation circuit was built in Simulink. When k = 0.2 and Uo = 450 V, C1’ was
set to 0.92C1, C1, and 1.08C1. The output voltage and current curves of the inverter and
the opening of the MOSFET (taking S3 as an example) were obtained under the three
conditions of realizing ZVS (input impedance is inductive), PRS (input impedance is pure
resistance), and capacitive input impedance. The results are shown in Figures 13–15. When
the inverter implements ZVS, the voltage u1 phase leads if1. The turn-off current it0 is
4.84 A, the dead-zone ending current itd is 1.68 A, and the sum of the two is 6.52 A. The
MOSFET has good breaking characteristics. When the system is fully resonant, u1 and if1
are in phase and the voltage oscillates during the dead time. When the MOSFET cannot
achieve ZVS, switching loss occurs. When the input impedance of the system is capacitive,
the phase of u1 lags behind if1, and both it0 and itd are less than zero. When the S3 drive
signal arrives, the voltage at both ends of S3 is greater than zero, so there is also opening
loss in S3.
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5.2. Analysis of Experimental Results

Under the parameter adjustment control strategy proposed in this paper, the step size
of the dead zone time reduction is set as 20 ns, and the step size of the frequency reduction
is set as 0.2 kHz. According to the simulation parameters, an experimental platform was
constructed, as shown in Figure 16. According to the current flow direction, the system
comprised a DC power supply, an inverter controller, a resonant circuit, a magnetically
coupled mechanism, a rectifier filter circuit, and an electronic load.
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Figure 16. The MCRWPT system experiment platform.

Under two conditions of the system, i.e., PRS and ZVS, the wireless charging exper-
iment with maximum output power of 7.7 kW was completed. Figure 17 compares the
experimental waveforms of PRS and ZVS at different power levels. It was found that the
turn-off current and dead-zone ending current in the ZVS state are larger, and the switching
performance is better in the dead-zone time.
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Figure 17. Comparison of experimental waveforms between PRS and ZVS at different power levels: (a) 1.1 kW (PRS); (b) 1.1
kW (ZVS); (c) 3.3 kW (PRS); (d) 3.3 kW (ZVS); (e) 7.7 kW (PRS); (f) 7.7 kW (ZVS).

Figure 18 shows the variation curve of the output power and efficiency with the input
power of the system under PRS and ZVS conditions. According to the results in the figure,
the system efficiency shows an upward trend with the increase in power level. Under
the same input power condition, compared with PRS, the system implementing ZVS has
higher output power and higher efficiency. Under different power levels, the average
efficiency of PRS is 90.87%, and the average efficiency of ZVS is 91.86%, thus indicating an
improvement in ZVS efficiency of about 1%.
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6. Conclusions

The MCRWPT system studied in this paper has a high power grade, and the DLCC
topology has better anti-migration and power transmission stability. Based on the DLCC
topology, this study proposed a parameter optimization control strategy based on fre-
quency and dead time to improve power transmission efficiency. Without changing the
circuit structure, ZVS in a wide range of voltage classes was realized. This method compre-
hensively considers the influence of parameter changes on the implementation of ZVS, can
be simply controlled, and overcomes the shortcomings of the ZVS implementation method,
as noted in Section 1.

First, a DLCC equivalent circuit model was established, and the expressions of output
voltage, current, and input impedance were derived. Second, five sets of component
parameter values were obtained according to the changes in the primary and secondary
side compensation inductance values. The suppression effect of the circuit component
stress and high-frequency harmonics under different parameters was analyzed, and the
optimal compensation inductance value was determined. Third, the realization conditions
of ZVS were analyzed, the best dead time of the MOSFET was determined, and the change
in the system input impedance angle with different component parameter values was
obtained. The relationship between the inverter output current and the capacitor C1 was
established, and the optimal capacitor value was determined through simulation. Finally, a
parameter optimization control strategy to achieve ZVS was proposed. Under different
output power levels, the average efficiency of the PRS was 90.87%, the average efficiency
of ZVS was 91.86%, indicating an increase in efficiency of about 1%.

Therefore, the parameter optimization strategy of the DLCC MCRWPT system based
on ZVS can reduce the power loss of the MOSFET, effectively improve the charging
efficiency, and promote the development of WPT technology. This strategy can be ap-
plied to high-power WPT systems, such as robots and electric vehicles, and has certain
practical significance.
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