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Abstract: This paper develops a novel hybrid feature learner and classifier for vibration-based
fault detection and isolation (FDI) of industrial apartments. The trained model extracts high-level
discriminative features from vibration signals and predicts equipment state. Against the limitations
of traditional machine learning (ML)-based classifiers, the convolutional neural network (CNN)
and deep neural network (DNN) are not only superior for real-time applications, but they also
come with other benefits including ease-of-use, automated feature learning, and higher predictive
accuracies. This study proposes a hybrid DNN and one-dimensional CNN diagnostics model (D-
dCNN) which automatically extracts high-level discriminative features from vibration signals for
FDI. Via Softmax averaging at the output layer, the model mitigates the limitations of the standalone
classifiers. A diagnostic case study demonstrates the efficiency of the model with a significant
accuracy of 92% (F1 score) and extensive comparative empirical validations.

Keywords: parallel learning; vibration monitoring; fault detection and isolation; convolutional
neural network; deep neural network

1. Introduction

Unexpected equipment failure has a significant contribution to production/operation
costs and sometimes results in life-threatening situations. This has motivated the develop-
ment (and improvement) of condition-based maintenance technologies with DL algorithms
at their core for accurate modeling and real-time applicability [1]. Vibration monitoring for
FDI of industrial components—pumps, bearings, gears, actuators, valves, etc.—has proven
effective over the past decades, and with the right diagnostic models, accurate real-time
condition monitoring can be achieved for improved safety, remaining useful life extension,
cost minimization, and downtime avoidance [2].

Vibration monitoring is one of the most popular (and reliable) FDI techniques for
industrial purposes. Its success is highly attributed to the availability of time domain,
frequency domain, and time-frequency domain (TFD) signal processing techniques for
discriminative feature engineering—hand-crafted feature extraction, selection, and ma-
nipulation [3,4]. For instance, the invention of TFD signals processing techniques like
the short-time Fourier transform (STFT), empirical mode decomposition (EMD), wavelet
transform (WT), Mel frequency cepstral coefficients (MFCCs), etc. provided strong compar-
ative efficiencies over the more traditional statistical time domain and frequency domain
techniques for vibration monitoring [4,5]. Against their efficiencies, the reliability of all
these hand-crafted features is limited by expensive statistical assumptions and trade-offs.
Furthermore, the use of hand-crafted features demands a reasonable level of domain knowl-
edge and the use of conventional machine learning algorithms which are not as efficient as
state-of-the-art methods. Further, feature engineering remains one of the major problems
faced with the optimum efficiency of these traditional techniques due to the uniqueness
in strength (and weakness) of every feature/descriptor for modeling/reflecting condition
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from non-stationary/noisy vibration (or other sensor) measurements [3]. Consequently, on-
going research suggests the use of bioinspired mathematical models with deep architecture
(deep learning methods) for automatic feature extraction [6,7].

State-of-the-art reliability studies (and applications) on industrial cyber-physical sys-
tems (ICPSs) is indelibly skewing towards DL models—the more efficient artificial in-
telligence (AI)-based solutions due to the increasing process/system complexities and
the inherent need to model them accurately. Thanks to super computers and the fast-
emerging industry 4.0 revolution, a significant improvement in dynamic modeling, design,
maintenance, and high-level decision-making processes is being witnessed across diverse
applications with emphasis on optimum utility of available real-time information [1].
Against the traditional methods which rely on hand-crafted feature engineering, these
DL methods are fully automated in their architecture to perform both feature engineering
and classification (and regression) tasks efficiently. This transition to DL-based models
has greatly improved process efficiencies [7], equipment condition monitoring [4], spa-
tiotemporal forecasting [8], and a host of many other solutions [5,9–11]; however, they are
faced with challenges ranging from over-fitting, interpretability, optimal hyperparameter
selection (and optimization), standardized weight initialization paradigm, and finding the
optimal decision criteria between power consumption and performance [1,12]. Nonethe-
less, considering the need for accurate real-time solutions for ICPS components especially
with the growing need for uncertainty modeling, sensor data discrepancies, dynamic envi-
ronmental and operating conditions, etc., DL methods remain preferable even at the cost of
computational power.

Today, there is a plethora of work showcasing diverse algorithms and learning rules
for implementing DL-based diagnostics/classification tasks; however, a closer look into
our proposed case study suggests the need for exploring these algorithms and subse-
quently, proposing a befitting FDI model while considering costs, ease-of-use, real-time
applicability, and other necessary factors. Most of these algorithms are standalone models
which obviously come with their shortcomings and may be component-specific and/or
application-specific. On the other hand, hybrid models come with broader efficiencies
by integrating the strengths of its constituent standalone models. In our quest for assess-
ing (and validating) the proposed hybrid D-dCNN FDI tool, this study chiefly makes the
following contributions:

• The proposed algorithm comes with advantages including ease-of-use, automation
capabilities, and accuracies/trustworthiness for vibration monitoring of ICPS compo-
nents. This makes it an almost universal FDI tool for equipment monitoring.

• The proposed algorithm mitigates the exhaustive feature engineering/signal process-
ing steps which are associated with most traditional methods. This minimizes the
need for domain knowledge and physics-of-failure (PoF) analysis.

• By integrating the strengths of its constituent standalone models, the proposed model
invariably compensates for the constituent models’ weaknesses for a more reliable
predictive accuracy. Furthermore, with fewer parameterization process, the model
complexity/computational remains within an acceptable range when compared to
the predictive efficiencies it provides.

The remainder of the paper is organized as follows. Section 2 discusses related works
to state-of-the-art vibration-based FDI of ICPS equipment while Section 3 describes the
proposed hybrid D-dCNN FDI diagnostic. An experimental case study is presented in
Section 4 while Section 5 discusses its implications alongside open issues inherent from the
study. Last, Section 6 concludes the paper.

2. Related Works

Research studies on vibration-based FDI of ICPS equipment have been on the rise,
including, but not limited to, pumps, bearings, gears, etc. These have motivated sev-
eral manufacturers to integrating on-board accelerometers into their products but the
challenge of utilizing the complex nonstationary signals from these sensors remains a
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problem facing optimum real-time condition monitoring and predictive maintenance of
ICPS equipment/components [13]. The past few decades recorded several innovations on
advanced signal processing for time domain, frequency domain, and the more robust TFD
diagnostic feature extraction with reliable successes; however, because each technique has
its unique pros and cons for dynamic modeling alongside significant assumptions/trade-
offs during dynamic modeling, their reliability for safety-critical systems are still being
questioned [14,15]. Some studies have proposed the use of multi-domain feature extraction
for a more comprehensive representation but such methods require high domain exper-
tise, experience, and computational power for optimum performance [4,5,15,16]. On the
contrary, state-of-the-art methods suggest the use of the more user-friendly, time-efficient,
accurate, and real-time-capable date-driven methods [15]. These methods are primarily
formed with artificial neural networks (ANNs) at their core including but not limited to
CNNs, DNNs, recurrent neural networks (RNNs), echo state networks (ESNs), etc.

Apparently, the inevitable shift towards data-driven plant-wide monitoring and safety
control is currently being challenged by issues such as online fault localization without
prior knowledge of target component PoF, adaptive control of highly dynamic systems,
sensor data discrepancy, interpretability, standardized weight initialization paradigm,
overfitting, model faithfulness/trustworthiness, optimal hyperparameter optimization,
and uncertainty modeling [17,18]. Notwithstanding, efforts are currently being put in place
for solving these problems with remarkable successes. These include the use of explainable
AI (XAI) for understanding the complex connections among multiple neural layers with
the goal of revealing why a deep model made a decision with the given inputs(s) [19],
transfer learning—using the weights of a successfully pretrained ANN on a set of new
inputs to solve a similar task [20,21], adaptive spatiotemporal feature learning [22], etc.

Although highly reliable, standalone DL algorithms have limited efficiencies which
may be compensated for by integrating other DL algorithms to form a hybrid model for
improved learning and predictive efficiencies [23,24]. For instance, beyond the general
retraining issues inherent in closed set classification systems, CNNs are strongly affected
by inputs with dynamic transient behaviour while DNNs are easily fooled by inputs
due to their high dependence on a priori knowledge [25]. In contrast, RNNs and ESNs
have very limited diagnostic capabilities as they are primarily designed for time-series
forecasting and learning transient information from inputs [25]. Consequently, the quest
for complementing the inefficiencies of diagnostic models (CNNs and DNNs) can be
achieved by designing a hybrid network. Hybrid ANN architectures range across series,
parallel, and/or series/parallel learning architectures whereby the series learning approach
usually provide solutions to prognostic/forecasting problems as seen in most CNN-RNN
or DNN-RNN structures [20,26,27]. On the other hand, parallel learning primarily entails
a simultaneous training of input(s) by two or more DL models to compute an output(s)
in a unified network architecture and are more befitting for classification/diagnostic
problems [28–30].

Hybrid models often offer a comparatively better solution than standalone models
and with appropriate dynamic modeling processes, their robustness can be explored across
diverse disciplines and applications. Their inherent global efficiencies can be well appre-
ciated beyond theoretical validations to changing real-world environments. Particularly,
CNNs and DNNs are known for their individual superior discriminative feature extrac-
tion and diagnostic capabilities for supervised cases, and have been explored in many
works of literature including but not limited to automatic modulation recognition [26],
intelligent fault diagnosis for rotating machinery [31], DDoS attack detection [27], and a
host of other applications. In this work, we propose a hybrid DNN and one-dimensional
CNN diagnostics model which automatically extracts diagnostic features from vibration
signals through parallel training and predicts the target labels via SoftMax Averaging at
the output layer. Experimental results provide comparative advantages over stand–alone
diagnostic models.
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3. The Proposed D-dCNN FDI Model

The DNN typically consists of stacked multilayer perceptrons (MLPs) whereby inputs
are exported (note-to-node) successively between the layers via an activated forward
propagation process. The automatic (supervised) learning process of DNNs by gradient
descent enables for minimizing the squared error in the predicted outputs via a back-
propagation of weights [27]. Contrary to this architecture, CNNs are basically configured
with convolution, pooling, and fully connected layers, whereby the convolution layers act
as filters for extracting discriminative features from inputs while the pooling layer reduces
the feature dimension for computational efficiency. With the help of the fully connected
layer(s)—classical artificial neural network (ANN), multi-label output predictions can be
made via nonlinear activation functions.

Arguably, the efficiencies and reliability advantages associated with parallel hybrid
networks cannot be overemphasized, especially for classification problems [20,28]; however,
certain factors come into play and may increase computational costs, reduce transferability
potentials of the model, and heighten model stochasticity and overfitting [30,32,33] and
they include the following.

• The number of layers and nodes. In excess, multiple layers adversely affect computa-
tional efficiency and may lead to overfitting.

• Batch normalization—a technique used to standardize the inputs to a network accelerates
training, and provides some regularization, thereby minimizing generalization error.

• The choice of activation functions. Against the use of a linear activation function,
nonlinear activation functions provide improved learning efficiencies; however, for
designing hybrid models (parallel), multiple trials reveal that the SoftMax activation
function is more reliable; unlike the rectified linear activation units (ReLU), Tanh, and
Leaky ReLU activation functions that increase model stochasticity, overfitting, and
computational power, and flourish in time-series forecasting problems.

The overall pipeline of the proposed model is illustrated in Figure 1 while the full net-
work architecture and parameter values employed in this study are summarized in Table 1.

Consequently, the proposed novel DL-based FDI tool—hybrid D-dCNN—is a tree
structure with two branches: each branch extracts high-level discriminative features sepa-
rately in different representations of data; thereby providing more reliable paradigm for
making empirical judgments. Each model predicts the probability of the class labels using
the SoftMax activation function and the final prediction is obtained by averaging the proba-
bility of same class label. In this way, high-level features are transmitted simultaneously
from the constituent models to the SoftMax-averaging layer.

Given a set of multi-class inputs Xm
n = {(x1, y1), (x2, y2), . . . , (xn, yn)}, where xn ∈ Rm

and yn ∈ {1, 2, . . . , n}, as inputs, the SoftMax-activated prediction by the CNN and DNN
models are summarized in Equations (1) and (2), respectively.

RCNN
n = CNN[So f tMax⊗ Xm

n ] (1)

RDNN
n = DNN[So f tMax⊗ Xm

n ] (2)

Outputs obtained from both branches of the hybrid model are averaged using
Equation (3).

RHybrid
n =

2

∑
i=1

RCNN
n ⊕ RDNN

n
2

(3)

Like other ANNs, the stochastic learning process (due to random weight initialization)
of the proposed model demands a reasonable number of learning iterations to ensure cost
function minimization. As a norm, the categorical cross entropy is a befitting loss function
for multi-class problems and is defined using Equation (4) [34].

LCE = −
N

∑
i=1

Ti log
(

RHybrid
n

)
(4)
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where Tn is the truth label and RHybrid
n is the Softmax probability for the nth class.

Figure 1. Proposed D-dCNN network architecture for FDI. C1, MP1, C2, and MP2 represent Convolution layer 1, Max-
pooling layer 1, Convolution layer 2, and Max-pooling layer 2, respectively.

Table 1. Architecture of the proposed D-dCNN model.

Layer Output Volume Description

Input m, 1, 80
Conv1D-1 100, 1, 71 Number of filters: 100, Kernel size: 1× 10, Activation: ReLu
Dropout 100, 1, 71 Gaussian Dropout: 0.3

Pool 100, 1, 35 Max-pooling1D: 2× 2
Conv1D-2 50, 1, 26 Number of filters: 50, Kernel size: 1× 10, Activation: ReLu
Dropout 50, 1, 26 Gaussian Dropout: 0.3

Pool 50, 1, 13 Max-pooling1D: 2× 2
Dense_CNN n Fully connected n units, Activation: SoftMax

MLP-1 100, 1, 80 Number of nodes: 100, Activation: ReLu
Dropout 100, 1, 80 Gaussian Dropout: 0.3
MLP-1 50, 1, 80 Number of nodes: 50, Activation: ReLu

Dropout 50, 1, 80 Gaussian Dropout: 0.3
Dense_DNN n Fully connected n units, Activation: SoftMax

SoftMax Average n Average: [Dense_CNN, Dense_DNN] Fully connected n units Activation: SoftMax

Designed to quantify the difference between true and SoftMax-predicted probability
distributions of a multi-class problem, the objective is to iteratively minimize LCE which
invariably ensures accurate input–label modeling process (successful training). This can be
monitored visually by observing the training convergence of the model over the iteration
process. In addition, cross validation ensures a well–trained model is achieved while
also evaluating the model’s reliability over multiple trials. This helps eliminate possibili-
ties of accidental success, overfitting/underfitting issues, and provide a range of accuracy
values/horizon of the model on the test data.



Energies 2021, 14, 5286 6 of 13

4. Experimental Study

Vibration monitoring has become a highly reliable (and cost-efficient) condition mon-
itoring technique hydraulic pumps; consequently, an experimental case study was con-
ducted on VSC63A5 solenoid pumps at the Defense Reliability Laboratory, Kumoh National
Institute of Technology (KIT), Republic of Korea. Figure 2 illustrates the experimental
setup and data acquisition process.

Figure 2. Experimental setup and data acquisition process.

Five pumps were operated under the conditions summarized in Table 2, while vibra-
tions signals were collected from the respective casings from high-sensitivity accelerometers
with the aid of a NI CompactDAQ 9178 and LabVIEW interface.

Table 2. Pump Running Conditions.

Label Input Power Operating Condition Failure Mode

V-1-CNT 220 V, 60 Hz 4 L Diesel, 5g Paper Ash, 1 L SAE40 Engine Oil Contaminated Fluid
V-2-VSC 220 V, 60 Hz 3 L Diesel, 1 g Paper Ash, 3L SAE40 Engine Oil High Viscosity Fluid
V-3-CLG 220 V, 60 Hz 4 L Diesel, 0.2 L Paraffin Solution, 100 g Pectin Powder Suction Filter Clogging
V-4-NOM 220 V, 60 Hz 5 L Diesel Healthy Condition
V-5-AMP 300 V, 40Hz 5 L Diesel, (300 V, 40 Hz) Unspecified power supply

At room temperature and standard humidity level (as suggested by the KS A 0006
environmental standards for tests [35]), the experiments were conducted for approximately
10 days. A full description of the experimental procedure and results can be found in [4].

4.1. Signal Preprocessing and FDI

The vibration signals produced by the solenoid pumps are characterized by different
wave-forms and amplitudes; however, using them in their raw unprocessed form will not
contribute to the intended work purpose. Analyses from previous studies suggest the need
for normalization. This simple but significant signal preprocessing step scales the signal
values to a range of {0, 1}, thereby reducing redundancy while also presenting the signals
in a format compatible with the hybrid model. Consequently, the raw vibration signals are
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normalized, labeled appropriately, and decomposed into small frames. These frames are
then fed simultaneously to the CNN and DNN models for parallel training.

As DNNs are less affected by inputs with dynamic transient behaviour than the CNN
while CNNs are not easily fooled by inputs with high dependence on a priori knowledge
(unlike the DNN) [25], the hybrid model mitigates both models’ limitations with better
FDI accuracy.

4.2. Test Results

Multiple empirical analyses were performed to confirm the effectiveness of the pro-
posed model. These included a comparison between the proposed hybrid model and its
constituent standalone models, past models [4,16] employed for the same purpose, and
discussions on the overall investigation/study. Following a successful training and testing
(over a 10-fold cross-validation), Figure 3 shows the validation accuracy and losses of the
hybrid model and the standalone CNN and DNN models over 200 iterations.

(a) (b)

Figure 3. Test/validation progress of proposed model and standalone models over 200 iterations. (a) accuracy and (b) loss.

As observed in Figure 3a, the accuracy of the hybrid model during over the iterations
are comparatively higher than the standalone models. This comparative efficiency is also
observed in Figure 3b where the hybrid model’s losses over the iterations are relatively
lower. Overall, the average test accuracy of the hybrid model, CNN, and DNN models over
a 10-fold cross-validation was 92%, 90.1%, and 88.9%, respectively. These provide reliable
insights on the superiority of the hybrid model; however, we conducted more in-depth
comparative analysis on the models using other standard classification evaluation metrics.

Although accuracy provides an insight on the model’s comparative efficiencies, more
metrics were employed to better understand the local and global performance of the model
from different perspectives. Metrics like precision, recall, and F1-score provide reliable
global classifier evaluation tools. While precision refers to the percentage of the predicted
outputs that are relevant and recall refers to the percentage of total model predictions that
are correctly classified, F1-score is another measure of the model’s accuracy particularly
for unbalanced data-sets. Invariably, F1-score is a more reliable metric for assessing global
prediction accuracy of a model. Figure 4 provides a comparative summary of of the models
over 200 iterations using the metrics recall, F1-score, and precision.



Energies 2021, 14, 5286 8 of 13

(a) (b)

(c)

Figure 4. Test/validation progress of proposed model and standalone models over 200 iterations. (a) Recall (b) F1-score,
and (c) Precision.

A visual observation of the green, blue, and red lines representing the training history
for the CNN, DNN, and D-dCNN models, respectively, the superiority of the D-dCNN
model is quite obvious as it returns the highest validation scores throughout the iteration
process for recall, F1-score, and precision (see Figure 4a–c, respectively). In addition, it is
also observed there are less stochasticity (low variance in the training history plots) from
the proposed model unlike the other standalone models. This also hints at the model’s
stability—a yet another important criteria for trusting a model for real-life use.

Beyond the importance of global assessments for diagnostic models, it is also nec-
essary to (as much as possible), assess their local diagnostic efficiencies. The confusion
matrix provides a summary of the individual class predictions for class-specific judg-
ments/evaluations. It provides a visual platform for assessing the true positives, true
negatives, false positives, and false negatives for each class prediction. To better assess
the models’ class-specific predictive performance by the proposed model, Figure 5 present
respective confusion matrices for the proposed model and standalone models.



Energies 2021, 14, 5286 9 of 13

(a) (b)

(c)

Figure 5. Confusion matrices on test samples from (a) DNN model (b) CNN model, and (c) D-dCNN model.

As observed in Figure 4, although the hybrid model (in red lines) retains its supe-
rior performance above the other models throughout the the iterations, a closer look at
Figure 5c shows there are more false alarms for the pump VSC-3-CLOG with only ≈11%
correctly classified samples; nonetheless, this is more acceptable than the 9.56% and 10%
correctly predicted samples produced by the DNN and CNN models, respectively (see
Figure 5a,b). A more detailed (averaged) performance evaluation of the models on each
operating condition (class) is provided in Table 3.

As shown, the performance of the models across the various pump operating
conditions reveal the better diagnostic efficiencies of the hybrid model over the stan-
dalone models and more interestingly, the model SVM–RBF employed in [4] for the
same purpose.



Energies 2021, 14, 5286 10 of 13

Table 3. Classification performance summary of diagnostic models on each operating conditions.

Model Pump Class Precision Recall F1-Score Accuracy

DNN

VSC–1–CNT 73% 99% 84% 88%
VSC–2–VISC 87% 99% 92% 88%

VSC–3–CLOG 90% 48% 62% 88%
VSC–4–NORM 100% 97% 99% 88%
VSC–5–AMP 99% 99% 99% 88%

CNN

VSC–1–CNT 100% 100% 100% 90%
VSC–2–VISC 67% 100% 80% 90%

VSC–3–CLOG 97% 51% 67% 90%
VSC–4–NORM 100% 99% 99% 90%
VSC–5–AMP 100% 100% 100% 90%

SVM–RBF [4]

VSC–1–CNT 73% 84% 84% 85%
VSC–2–VISC 83% 88% 79% 85%

VSC–3–CLOG 82% 42% 59% 85%
VSC–4–NORM 91% 90% 94% 85%
VSC–5–AMP 95% 93% 96% 85%

D-dCNN

VSC–1–CNT 100% 100% 100% 92%
VSC–2–VISC 82% 100% 85% 92%

VSC–3–CLOG 97% 64% 78% 92%
VSC–4–NORM 100% 99% 99% 92%
VSC–5–AMP 100% 100% 100% 92%

Contrary to the shallow opinion that standalone models offer cost efficiency, the
authors believe that the marginal extra computational costs associated with the proposed
model is quite negligible in comparison with the high predictive accuracies which the model
offers. The analyses conducted in this study were made in the Python-based deep learning
library Keras with Tensorflow back-end to provide compatibility with GPU environments
on a PC whose specification is summarized in Table 4. Table 4 also contains the recorded
computation times for the models, respectively.

Table 4. Specification of computational hardware used.

Manufacturer Processor Speed RAM Size Computation Time
(DNN)

Computation Time
(CNN)

Computation Time
(D-dCNN)

Advanced Micro
Devices (AMD)

Ryzen 7,
2700 Eight-core 3.20 GHz 16 GB 27.6 Secs 33.8 Secs 35.2 Secs

As shown in Table 4, under the same environment and computational capacity on
the same data set, the DNN and CNN complete their respective tasks in 29.6 s and 33.8 s,
respectively. In comparison, they are about 16% and 4% faster then the proposed D-dCNN
model which completes the same task in 35.2 s. One may argue in favor of using either
of the standalone models as they are both more time-efficient; however, considering the
increasing need for optimum model trustworthiness especially in industrial safety-critical
conditions, the authors believe a more accurate model would be more preferable even at the
expense of a marginal increase in computational costs which can be readily compensated
for by upgrading computational resources.

5. Discussions and Open Issues

The comprehensive goal of our work is to model a high performing hybrid classifier
that can effectively and readily predict fault conditions of ICPS equipment/components
from vibration measurements with minimal cognitive experience. The case study pre-
sented in this study validates the model’s robustness (with minimal losses) for solenoid
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pump diagnostics with extensive empirical assessments; however, the authors believe the
following shortcomings should be put into consideration:

• Stochasticity: Just as it is experienced in virtually all ANNs, stochastic learning process
(due to random weight initialization) is a significant factor worthy of consideration
when using the proposed model [30,32,33]. It often causes ANN models to produce
new (but closely related) prediction outputs for every run. Although cross-validation
provides a reliable control paradigm for ensuring model reliability, the overall compu-
tational time—time for a complete trial + time for the multiple cross-validation trials—poses
significant concerns for real-time applicability. For instance, the effect of stochasticity
can be observed in Figures 3a and 4 for all the models’ iteration results. Observing
the iteration progress for the proposed model in all the figures (in red), it can be seen
that at around the 70th and 150th iterations, respectively, there are some spikes which
the authors believe were attempts made by the model to further minimize the cost
function in Equation (4) but was fairly (on average) maintained uniform (approximate)
validation scores of 92%, respectively. Overall, when compared with the standalone
models, it is also observed there are less stochasticity (low variance in the training
history plots) from the proposed model. This also hints at the model’s stability—a yet
another important criteria for trusting a model for real-life use [19].

• Parameterization: To date, no globally acceptable paradigm for optimal hyperparame-
ter selection (and optimization) for ANNs exist and this has resulted in overfitting
(in attempts to achieve high model accuracy) and underfitting (in attempts to minimize
computational times). These conflicting challenges, although they may be controlled
by Dropout and batch normalization, should be considered when using the proposed
model [14]. Ideally, this study does not claim that the proposed model (in the recorded
configuration herein) outperforms all DNN and CNN standalone models (and their
various configurations) as the authors believe there are diverse model configurations
out there for comparison. In reality, it would be futile to even attempt to assess and
compare all standalone variants; however, under similar configurations of constituent
DNN and CNN models, the proposed D-dCNN model provides more stable, reliable,
and accurate FDI prediction results as verified in the cases study.

• Non-generality: From the results recorded herein, five (5) failure modes were con-
sidered for analysis with remarkable diagnostic results from the model. Considering
that passive parameter/condition control improves a diagnostics/prognostics scheme
(as the faults were pre-designed), the possibility for online performance of the pro-
posed model is still limited since other failure modes are yet to be accounted for.
This presents an opportunity for continued research towards assessing the proposed
model’s efficiencies.

With the findings in this study and strong theoretical support, we believe the proposed
hybrid model provides a more reliable alternative to standalone DNN and CNN models
for FDI. Although the results verify its effectiveness on vibration signals, it is uncertain
at how much reliable the model would perform on different sensor measurements like
temperature, pressure, etc.; however, the model’s ability to mitigate each constituent
ANN’s weaknesses by pooling their strengths respectively provides a superior motivation
for exploring its effectiveness for FDI cases whereby vibration sensors measurements are
not available. With signal processing and data manipulation techniques available for
diverse applications, the authors believe the model would flourish just as much (if not
better) for other sensor measurements.

6. Conclusions and Future Works

Accurate vibration monitoring and fault detection/isolation demand reliable feature
extraction and diagnostic technologies. Against the traditional approach of integrating
handcrafted features with machine learning/Bayesian classifiers, deep learning-based
algorithms provide better feature learning and diagnostic efficiencies.
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This study presents a novel hybrid diagnostic tool—D-dCNN—for ICPS equipment
diagnostics which consists of parallel DNN and CNN models with SoftMax Averaging at the
concatenation layer for better feature learning and diagnostic efficiencies. With extensive
empirical validations, the proposed hybrid model’s strengths were validated on vibration
signals from a practical case study with reliable results. Theoretical implications as well as
possible extended practical applications of the model were discussed.

The proposed model receives one-dimensional vibration signals as inputs and com-
putes complex neuron–neuron feature extraction simultaneously by the DNN and DNN
modules, respectively. These features are received at the fully connected layers for Soft-
max-activated multi-class predictions which are then averaged for optimal target class
prediction. The model’s performance are compared with its constituent stand–alone mod-
els (and other reliable model(s)) using diverse evaluation metrics. Results on a case study
reveal the model’s superior predictive advantages; however, this advantage comes with
increased marginal computational costs.

While future research shall be aimed at obtaining more experimental data to cover
other failure modes not recorded herein, ongoing studies are aimed at exploring the model’s
efficiencies beyond vibration signals while also exploring improvement options for the
model to account for its limitations. From a deeper perspective, considering that passive
parameter/condition control improves a diagnostics/prognostics scheme (as the faults
were pre-designed), the possibility for online performance is still limited. Therefore, future
research directions would be geared towards investigating a more real-time functionality
for the proposed model.
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