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Abstract: Pores of shale exhibit multiscale characteristics, and pore characterization is challenging
due to the complexity of pore systems. Currently, research is focused on nano-submicron pores, but
the structure of micrometer-scaled pores is not well understood. In this research, an investigation of
the three-dimensional pore network of the Chang 7 shale in the Ordos Basin of China was conducted,
in order to provide an insight into the full characteristics of pore systems. Nano-CT and micro-CT
scanning technology was used to comprehensively delineate the pore structure at different scales,
for further understanding the gas storage mechanism in shale rocks. Results show that the radius
of micro-scale pores ranges from 1 to 15 µm, with an average of 2.8 µm, and pores with radii of
1–5 µm occupy approximately 90% of all the pores. For the nano-scale pores, the size ranges from
86 to 2679 nm, with an average of 152 nm, yet it has a rather concentrated distribution within 300 nm.
The nano-scale pores constitute most of the pore amount in the shale, whereas the micro-scale pores
constitute most of the pore volumes. Moreover, the results show that more than 70% of nano-scale
pores in the Chang 7 shale are isolated pores, indicating that pore bodies formed in the shale reservoir
have poor connectivity. Positive linear relationships between pore sizes and the number of pore
throats at the micro-scale and nano-scale were both obtained, suggesting that larger pores tend to
have better connectivity than smaller pores.

Keywords: shale gas; pore structure; micro-CT; nano-CT

1. Introduction

Shale gas in the Ordos Basin of China is mainly stored in the lacustrine deposits of the
Upper Triassic Yanchang Formation [1,2]. Unlike sandstone or carbonate rock conventional
reservoirs, the pores of shale have a complex structure. It is deemed that pores play a vital
role in the gas storage and enrichment in shale [3–7]. Investigation on the geometry and
connectivity of shale pores plays a vital role in gas exploitation in shale reservoirs [8,9].

Methods to characterize the structure of pores could be classified into three broad
categories: direct methods, indirect methods, and methods combined direct methods with
indirect methods [10]. The indirect method, for example, the gas adsorption method, is
widely used to determine the pore size distribution, yet it could not obtain the shape and
the connectivity information of pores [10,11] The direct method, such as scanning electron
microscopy (SEM), field emission SEM (FE-SEM), focused ion beam SEM (FIB-SEM), and
X-ray computed tomography (X-ray CT, including Micro-CT and Nano-CT), is utilized
to obtain the geometry of pores [12,13]. SEM and FE-SEM are only utilized to observe
the pore structure in two dimensions [14]. The resolution of FIB-SEM could be several
nanometers and thus it provides a useful tool to study the three-dimensional pore structure
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at a nanoscale. However, a shale sample should be destroyed to perform an FIB-SEM test,
and unfortunately, the sample could not be used for further study [15]. Currently, combined
methods are also applied to characterize 2D and 3D pore geometry [16,17]. However, the
experimental conditions of different methods often vary, and thus an unacceptable error
may occur. Among these methods, X-ray CT is a non-destructive method and could be
successfully applied to determine the 3D structure of pores. Besides, it could efficiently
characterize macro-pores larger than 79 nm and micro-fractures, without generating new
fractures during high-pressure fluid injection or destroying shale samples [14].

Currently, several gas reservoirs have been found in the Ordos Basin, China [18]. The
source of the gas in these reservoirs is the Chang 7 shale from the Yanchang Formation [19].
To evaluate the gas resource potential, studies on the pore structure of the Chang 7 shale
were conducted [20,21]. However, these studies mainly focused on nano-submicron pores,
whereas the contribution of microscale pores to the pore system of shale reservoirs is
neglected, and thus fails to cover the wide range of pore sizes [22]. The distribution
of microscale pores in unconventional reservoirs strongly affects the flow behavior and
recoverability of reservoir fluid. Compared with nanopores, the fluid in microscale pores
is easier to be removed, which plays an important role in the gas production process [23].
To reveal the 3D pore network of the Chang 7 shale at different scales, a multi-scale
investigation of pore structure is carried out in this research. Based on the Nano-CT and
Micro-CT imaging, the geometry of pores and their connectivity are analyzed. Besides, the
relationship between pore size and pore throat distribution is discussed.

2. Geological Setting

The study area is located in the Yaoqu town of Tongchuan city, south of the Ordos
basin (Figure 1a), China. Tectonically, the Ordos basin is surrounded by six orogenic
belts [24,25], and the study area is located at the Weibei uplift zone. The main source of rock
for a gas resource is shale from the Upper Triassic period [26]. The shale rock in this area is
strongly fractured due to complicated sedimentation processes and tectonic movements.

The Upper Triassic strata, named the Yanchang Formation, with a thickness of about
1300 m, provide about 75% of the oil resources of the Ordos basin [25]. It is divided into
10 members from Chang 10 (bottom) to Chang 1 (top). The Chang 7 shale was developed in
a lacustrine environment. It is the main hydrocarbon source rock in the basin. The Chang
7 member is mainly composed of black shale and sand-mudstone, with a depth varying
from 1000 m to 1650 m [28]. The average thickness of the Chang 7 layer is about 60 m.
A previous study in this area shows that the total organic carbon (TOC) content of the
Chang 7 layer varies from 0.5% to 6.1%, and the average gas capacity is approximately
3.71 m3/t [28]. According to the sedimentary cycle, the Chang 7 layer could be classified
into three sub-members: Chang 7-1, Chang 7-2, and Chang 7-3. Scientific research on
well YK01, with a depth of 502 m, was performed to explore the physical and mechanical
properties of the Yanchang Formation. The strata exposed by the YK01 well are the Chang
4-10 Members, as shown in Figure 1b. The Chang 7-2 shale is deemed to be the main source
rock for gas development attributed to the high content of organic carbon [29]. It is mostly
made up of black shale and dark mudstone, and the average thickness is approximately
20 m. In this work, the Chang 7-2 shale is studied to investigate the characteristics of pores
and the sample was obtained from cores of the YK01 well.
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Figure 1. (a) Tectonic map of the Ordos Basin [26,27]; (b) lithological and electronic characteristics of the Yanchang Formation
in the YK01 well [26].

The XRD results in Table 1 show that the Chang 7 shale is mainly composed of
clay minerals, feldspar, and quartz, with average contents of 42.5%, 15.8%, and 29.1%,
respectively [20]. The clay minerals mainly consist of illite, chlorite, and kaolinite. The total
organic carbon (TOC) values vary from 0.5% to 11.4%, with an average of 4.7%. The BSE
image (Figure 2a) of the sample from the YK01 well shows that the predominant minerals
in the shale are feldspar, pyrite, quartz, and organic matter. Note that the contents of
oligoclase and anorthite in the shale are much higher than other members of the plagioclase
group, and, therefore, the two minerals were distinguished from the plagioclase group in
Figure 2a. The plagioclase in Figure 2a refers to other members of the plagioclase group
excepted for oligoclase and anorthite. Figure 2a shows that the distribution of minerals is
characterized by layers and the mineral composition in different layers differs. The content
of quartz, pyrite, and feldspar occupies 12%, 17%, and 20% of the sandy layer, respectively.
However, in the tuffaceous layer, feldspar is dominant (55%), other minerals including
quartz, calcite, and pyrite occupy 9%, 8%, and 5%, respectively. The organic matter in
the sandy layer has a relatively low content and is distributed uniformly in the shale rock
(Figure 2b). In the tuffaceous layer, the organic matter has a relatively high content and
is distributed concentratedly (Figure 2c). In this work, the samples for micro-CT and
nano-CT were taken from the organic matter-enriched laminas since quantifying the pore
size distribution in these laminas is important for gas adsorption and desorption process
modeling, which can provide significant guidance for actual production [30,31].
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Table 1. Mineralogical composition analysis of the Chang 7 shale [20].

Sample
ID

Depth
(m) Toc (wt. %)

Mineral Composition (wt. %)
Ill. Kln. Chl. Qtz. Fel. Cal. Dol. Py. Sd.

1 1270.6 1.0 22 0 30 37 24 0 0 0 0
2 1271.0 0.5 21 0 13 33 13 2 11 2
3 1378.5 2.1 24 0 7 34 12 2 0 4
4 1450.2 5.5 29 0 17 35 15 0 0 2
5 1450.6 3.9 33 5 10 31 19 0 16 0 0
6 1451.1 4.8 25 10 16 27 11 5
7 1453.4 4.3 25 9 13 32 12 5
8 1443.8 2.1 26 17 26 7 16
9 1445.5 4.1 32 9 11 27 20
10 1446.7 7.2 25 24 26 15 5
11 1449.5 4.8 26 12 31 16 16
12 1451.0 5.2 29 10 9 22 12 5 5 11 1
13 1518.6 4.6 25 25 29 16
14 1625.2 11.4 32 16 26 16 5 7
15 1212.5 4.8 29 13 28 27 2 3
16 1621.5 3.7 21 2 4 28 20 3 2 8
17 1392.5 9.7 24 6 27 13 3 2 7
18 1399.4 4.7 22 7 25 17 2 13

TOC: Total Organic Carbon; Ill.: Illite; Kln.: Kaolinite; Chl.: Chlorite; Qtz.: Quartz; Fel.: Feldspar; Cal.: Calcite;
Dol.: Dolomite; Py.: Pyrite; Sd.: Siderite.
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Figure 2. Mineral distribution of the Chang 7-2 shale sample. (a) BSE image [26]; (b) SEM image showing pyrite and organic
matter uniformly distributed in the sandy layer; (c) SEM image showing a small quantity of pyrite and a good deal of
organic matter distributed in the tuffaceous layer.
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3. Materials and Methods

The shale sample used in this research was collected from the YK01 well. Proper
core handling procedures during sampling and storage were performed to reduce phys-
ical or chemical alterations [32]. A micro-drilling machine was used for preparing a
cylindrical shale sample for micro-CT scanning (Figure 3a). The size of the sample is
2 mm (diameter) × 2 mm (height). The sample was prepared perpendicular to the bed-
ding direction. After the micro-CT analysis was finished, a sample of 65 µm in diameter
and 65 µm in height (Figure 3b) was sampled from the 2 mm diameter sample and then
was used for nano-CT scanning.
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Figure 3. Samples for (a) micro-CT and (b) nano-CT scanning.

An Xradia VERSA-500 micro-CT scanner was used to characterize the micro-scale
structure of shale pores. The maximum spatial resolution of this equipment is 1 µm. The
scanning area was set as 2 mm × 2 mm. The sample was scanned under a temperature
of 22 ◦C, and the exposure time for each slice was 30 s. It took about 24 h to finish the
scanning. We obtained 1984 two-dimensional (2D) slices with a size of 2048 × 2048 pixels
through micro-CT scanning. The nano-scale pore structure of shale was obtained using
an Xradia UltraXRM-L200 nano-CT. The maximum resolution of the nano-CT is 65 nm,
and the scanning area was 65 µm × 65 µm. 1021 slices of 2D images with a size of
1024 × 1024 pixels were obtained through nano-CT scanning. The nano-CT scanning was
conducted at the same temperature as the micro-CT, but the exposure time for one slice was
120 s. A total of 40 h was needed to complete the scanning. Due to the influences of shale
sample thickness, exposure time of the experiment, and other factors, the minimum pore
size characterized by nano-CT scanning and micro-CT scanning was 86 nm and 1.3 µm,
respectively [10,33].

4. Results and Discussions
4.1. Micro-Scale Pores

To build a 3D pore network model using the micro-CT scanner, a series of steps includ-
ing micro-CT scanning, image denoising, binarization, and 3D image reconstruction [11]
were conducted. The grey level of the center area being scanned is different from other
regions; this may influence the segmentation result if not removed. Therefore, a cube
with a side of 600 µm from the central area was selected as the research object to reduce
errors, as shown in Figure 4a,b. The micro-scale pore network model (cube-shaped, with
an edge length of 600 µm) was established using the Avizo 7 software (Figure 4c). The
pores and their connectivity were determined through attribute extraction. In Figure 4d, a
uniform color represents inter-connected pore bodies. Figure 4d indicates that the pores
are connected through small and narrow pore throats. From the micro-scale view, the
distributions of pores seem to be homogeneous.
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As shown in Figure 5, the number of pores for a given pore size dramatically decreases
as the pore size increases. The pore radius ranges from 1 to 15 µm, with an average of
2.8 µm. Pores with sizes of 1–5 µm occupy approximately 90% of all the pores. When
the radius is greater than 6 µm, the number decreases to less than 3% for every radius
interval. The Kolmogorov–Smirnov (KS) goodness-of-fit test was conducted and the results
show that the pore size follows a negative exponential distribution, which indicates a
heterogeneous distribution. The histogram of the total pore volumes of the sample shares
a peak at the average radius values of 6–7 µm (Figure 6a). Pores less than 9 µm occupy
more than 88% of the total pore volume. Although the number of pores with radii less than
3 µm accounts for approximately 70% of the total pores in the sample, their contribution
to the pore volume is only about 8%. The pore volumes vs. pore radii mainly display a
power–law relationship (Figure 6b), showing that larger pores can provide larger volumes
for gas storage.
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Figure 5. Pore quantity distribution at the micro–scale.
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Figure 6. Characteristics of micro–scale pores. (a) total pore volume distributions; (b) single pore volume distributions
and cumulative pore volume distributions; (c) pore throat distribution; (d) relationship between the size of pores and the
number of pore throats.

Pore throats play a more critical role than pore sizes for permeability [34]. Therefore, it
is necessary to study the pore throat features. Figure 6c shows that more than 55% of pores
only have no more than one throat (i.e., isolated pores). The distribution of pore throats is
inhomogeneous, following a log-normal distribution. A linear relationship between the
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size of pores and the number of pore throats was obtained (Figure 6d), suggesting that
larger pores tend to have better connectivity than smaller pores.

4.2. Nano-Scale Pores

The process of establishing a pore network model using the nano-CT is the same as
that using the micro-CT (Figure 7). The edge length of the nano-scale 3D cube pore network
model is 30 µm. The nano-CT images (Figure 7c) show that nanopores dominate in the
Chang 7 shale, although a small number of micro-scale pores was observed. However,
the micro-scale pores constitute most of the pore volumes in the shale (Figure 7c). The
pores have great differences in size and the distribution of pores has strong heterogeneity.
Figure 7c also shows that the common shapes of the nanopores are irregular ellipsoids,
whereas the shapes of the micropores are complex, such as cloud-shaped or grape-shaped
forms. Most of the nanopores are isolated (closed pores) and larger pores are better
connected than smaller pores, as shown in Figure 7d.
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The pore size follows a Gauss distribution (Figure 8). The pore radius ranges from
86 to 2679 nm, with an average of 152 nm, yet it has a rather concentrated distribution
within 300 nm (95%). Pores with radii smaller than 300 nm have an absolute predominance
in amount, but their contribution to the total pore volume is scarce (12.90% of the total
volume). Although the pores with an equivalent radius larger than 1000 nm only account
for 0.36% of the total pores, they contribute 68.38% of the total pore volume, as shown
in Figure 9a. Therefore, the nano-scale pores constitute most of the pore amount in the
shale, whereas the micro-scale pores constitute most of the pore volume. Compared with
pore distributions at the micro-scale in Figure 6b, Figure 9b shows that as magnification
increases, the proportion of the smaller pore radius is increasing accordingly. This is
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because much more pores with a small pore radius can be observed. This phenomenon
indicates that micron-pores are widely distributed in the shale reservoir.
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Figure 8. Pore quantity distribution at the nano–scale.
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Figure 9. Characteristics of nano-scale pores. (a) total pore volume distributions; (b) single pore volume distributions
and cumulative pore volume distributions; (c) pore throat distribution; (d) relationship between the size of pores and the
number of pore throats.
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A connectivity analysis for the pores was conducted. More than 70% of pores are
isolated pores (Figure 9c), indicating that pore bodies formed in the shale reservoir have
poor connectivity. This may account for the poor permeability and the strong heterogeneity
in the shale. In general, the pore structure is complex, and the distribution of throats is
inhomogeneous, following a log-normal distribution. Again, a linear relationship between
pore sizes and the count of pore throats was obtained (Figure 9d), suggesting that larger
pores tend to have better connectivity than smaller pores. Most of the isolated sphere nano-
pores act as storage space for shale gas due to their poor connectivity, whereas micro-pores
form the main pathways through connecting with other large pores.

5. Conclusions

Pores in shale are important properties for gas storage and migration. This paper
presents an application of Micro-CT and Nano-CT to characterize the 3D pore network
of the Chang 7 shale. Based on multi-scale CT imaging, pores and their connectivity of
the Chang 7 shale were obtained. A statistical test was conducted to find the distribution
forms of pore sizes and pore throats. Besides this, the relationship between pore size and
pore throat distribution was analyzed.

The results show that the nano-scale pores constitute most of the pore amount in the
shale, whereas the micro-scale pores constitute most of the pore volume. The pores have
great differences in size and the distribution of the pores has strong heterogeneity. The
common shapes of nanopores are irregular ellipsoids, whereas the shapes of the micro-scale
pores are complex, such as cloud-shaped or grape-shaped forms. The results also show that
most of the micro-scale pores and nano-scale pores are isolated, indicating that pore bodies
formed in the shale reservoir have poor connectivity. Linear relationships between pore
sizes and the count of pore throats at two different scales were both obtained, suggesting
that larger pores tend to have better connectivity than smaller pores. The characterization
of pore structure in the Chang 7 shale could be beneficial for pore network modeling and
shale gas development in the Yanchang Formation, Ordos Basin, China.

This research provides opportunities to improve the understanding of the full char-
acteristics of pore systems in the continental shale of the Yanchang Formation, Ordos
Basin, China. The findings could be used for pore network modeling and multiphase
transport property determination in shale gas reservoirs, which play a vital role in shale gas
exploration. Future work will be conducted to study the porosity type and their associated
mineral phases based on plenty of shale samples. Besides, other methods, such as FIB-SEM
and mercury intrusion porosimetry (MIP), will be used for comparative studies.
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