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Abstract: Electric vehicle (EV) charging infrastructure is present all over the United States, but
charging prices vary greatly, both in amount and in the methods by which they are assessed. For this
paper, we interpret and analyze charging price information from PlugShare, a crowd-sourced EV
charging data platform. Because prices in these data exist in a semi-structured textual format, an ad
hoc text mining approach is used to extract quantitative price information. Descriptive analytics of
the processed dataset demonstrate how the prices of EV charging vary with charging level (Direct
Current Fast Charging versus Level 2), geographic location, network provider, and location type.
Our research indicates that a great deal of diversity and flexibility exists in structuring the prices of
EV charging to enable incentives for shaping charging behaviors, but that it has yet to be widely
standardized or utilized. Comparisons with estimates of the levelized cost of EV charging illustrate
some of the challenges associated with operating and using these stations.

Keywords: ad hoc text mining; descriptive analytics; data wrangling; EV charging cost; level 2
charging; DC fast charging; spatial variation

1. Introduction

Electricity plays an increasingly important role in powering the U.S. transportation
sector with projections of 147–440 TWh of annual consumption by vehicles by 2050 [1,2].
This consumption corresponds to about 4–10% of the current total electricity consumption
in the United States [3]. Based on the dataset used in this study, accessed February 2021,
there are more than 90,000 charging connectors available at more than 75,000 public
charging locations for electric vehicles (EVs). Fueling infrastructure for EVs is unlikely
to resemble conventional vehicle fueling infrastructure for a variety of reasons, including
the time duration required for fueling, the physical and regulatory differences between
electricity and liquid fuels, and the fact that EVs can be charged at home, at the workplace,
or in public. Public EV charging infrastructure installed to date has been constructed and
operated by a variety of entities under numerous business models. A comprehensive
review of public charging prices and price models has not yet been conducted, although
this type of summary might be valuable both to sellers and buyers of electricity, as well as
to policymakers and other stakeholders. Consumer-facing articles have been published to
explain public charging prices to EV drivers [4–6].

Privately operated EV charging infrastructure has been installed and managed by at
least 18 companies at public locations in all 50 states, including at grocery stores, hotels,
shopping centers, and gas stations. Within and across companies, states, and locations,
charging prices can vary greatly. This suggests that companies are pursuing disparate
business models. For example, Tesla has installed a centralized network emphasizing
long-distance travel that is compatible only with the vehicles Tesla produces, and has
intermittently offered free and/or low-cost charging as an incentive for vehicle purchases.
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In contrast, other networks, such as ChargePoint, EVgo, and Blink, offer charging at low
and high power at a variety of location types, at stations that are operated based on
centralized or decentralized models.

Charging prices are assessed at fixed or variable rates during a charging session, as a
function of time (seconds, minutes, or hours), energy (kilowatt-hours, kWh), or as a total
price per charging session. The majority of charging connectors in the U.S. are Level 2 (L2)
chargers, meaning power transfer occurs at an average rate between 6.6 and 19.2 kilowatts
(kW) [7]. The majority of the remaining stations have DC fast chargers (DCFC), which
provide rates anywhere from 50 to 350 kW. Recognizing that less than 2% of connectors
operate at the much slower Level 1, those charging locations are not included in the present
analysis. Whereas L2 connectors are largely standardized under the Society of Automotive
Engineers’ (SAE) J1772 standard, there are three major DCFC connnector types that are not
mutually compatible: the Tesla Supercharger, the SAE Combined Charging System (CCS),
and CHAdeMO (short for “CHArge de MOve”), a standard which is being phased out in
favor of CCS for new vehicles.

Although there is no official and comprehensive repository of charging price data
for public EV charging stations, PlugShare [8] has obtained price information and other
metadata for a substantial portion of the stations in the U.S. via crowd-sourcing through its
app and website, and through partnerships with charging station providers. These data
(“the dataset”), which largely exist in textual form, are publicly accessible for individual
stations via PlugShare’s app and website interfaces, but are not publicly accessible in the
aggregate form necessary for the application of broad analytics. The authors obtained
access to the dataset in aggregate form in order to conduct this study. Due to the many
ways that a price signal can be written in textual form, we needed to employ ad hoc text
mining and processing methods to reformat a majority of the dataset’s price information
into quantitative data for analysis.

In Section 2, we present an overview of text mining from the literature. We then
describe the dataset in more detail in Section 3 and discuss the text mining and data
processing methods employed in our study in Section 4. The results of our analysis are
reported in Section 5. The specific contributions of this work are as follows:

• Ad hoc text mining techniques enable quantitative analysis of an otherwise opaque
source of EV charging price data;

• Descriptive analytics provide a high-level image of EV charging price variability in
the United States; and

• Discussion of trends in observed EV charging prices highlights decision-making
implications for EV operators, charging station operators, policymakers, and busi-
ness innovators.

2. Overview of Text Mining

The concept of text mining (text data mining, text analytics) originated with the
ideas of natural language processing in the 1950s. However, it was not until the late
1990s that it began to assume a more prominent role across the analytics landscape. This
development occurred in conjunction with a maturing data mining toolkit plus advances in
computational power and speed capable of processing large unstructured data sets. More
recently, text mining has evolved into a discipline of its own, with numerous applications
throughout business, engineering, public health, the physical and social sciences, and other
endeavors [9].

The literature on text mining is now quite extensive in both the research and applica-
tions domains. Analytical advancements have progressed rapidly with the implementation
of newer and faster algorithms and processing capabilities. Materials describing foun-
dational ideas (e.g., [10–12]), as well as advanced methods ( [13]) are widely available,
and the various tools and techniques have been translated to accommodate a variety of
computer languages and platforms (e.g., [14–17]). Madigan [18], Weiss et al. [19], and
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Sumathy and Chidambaram [20] provide excellent overviews of the text mining landscape
from statistical and data science perspectives.

With its growing importance in the Big Data era, the definition of text mining has
become more fluid, expanding to accommodate numerous analytical contexts, ranging
from information and content extraction to lexical and sentiment analysis, pattern recogni-
tion/categorization, dimensionality reduction, and beyond. Perhaps the most common
understanding of text mining in contemporary data analytics revolves around the extraction
of word/phrase frequencies and relationships using various clustering and classification
techniques [21]. While text mining can logically be thought of as a means for parsing
written artifacts for knowledge discovery, it also plays a significant role in the preprocess-
ing and wrangling stages of Big Data analysis, such as reducing semantic, syntactic, and
contextual ambiguity [22,23].

Text mining is commonly used to extract, reduce, or regularize information con-
tained in parcels of written material, free-form responses to questions or inquiries, or
more conversational communications scraped from social media. It may also be used to
effectively analyze text-based transactional records for relevant and recurring content, such
as electronic medical reports (transcriptions of physicians’ notes pertaining to patient visits,
conditions, diagnoses, etc.) [24,25], industrial maintenance files pertaining to failure times
and modes [26,27], building maintenance work orders [28], court proceedings (including
case files and docket entries) [29], customer service archives [30], and historical exchanges
of real estate and mineral leases. The electric vehicle charging records in the dataset
represent a similar type of transactional, textual, and numerical data that is amenable to
text mining.

In these and other contexts, the approach is more closely aligned with the various
aspects of content mining, such as concept extraction, named entity recognition, key word
identification, differentiation of implicit or explicit actions and decisions, definition and
capture of interesting phrases, and alignment and standardization of abbreviations [31,32].
It is these aspects that are most relevant to our investigation of electric vehicle charging costs.
Accomplishing the tasks of text mining, however, often requires a more ad hoc, informal, or
even “brute force” approach that involves a combination of human intervention, original
scripting, and machine learning [33–35], particularly as the volume of data increases
and encompasses more diverse entities. Our analysis of the dataset requires this kind
of approach because of its compositional nature and the continuing flow of additional
information into the database over time.

3. Data

The data are semi-structured in the sense that they are organized in rows (representing
individual charging connectors) and columns (representing variables or attributes pertain-
ing to those charging connectors), although the data entries recorded for several of the
attributes exist as words, phrases, or sentences (natural language) that must be refined to
extract consistent and usable meanings. Although the database itself is semi-structured,
the information associated with some attributes is completely unstructured. The documen-
tation for the application programming interface (API) provides more information about
the data organization [8].

We received the data in two separate tranches: 74,237 observations in 2019 and an
additional 19,312 observations in 2021, for a total of 93,549 observations. Each observation
represents one connector, so a charging station with multiple connectors is represented by
multiple observations. A typical station hosts approximately 1.2 connectors on average.
Records contain location information (city, state, zip code), charger information (connector
type, network; whether charging is free), parking information (location type; whether
parking is free), and unstructured price description information. Of these records, 30,756
have interpretable price information. A small sample of data with price descriptions is
shown in Figure 1.
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Figure 1. Sample from the dataset. Some values are omitted at the request of the data provider. The second half of the
columns is shown below the first half of the columns to fit on the page.

Price descriptions, in the form of unstructured text, vary widely in format and in-
formation content. This has several implications. Due to the nature of crowd-sourced
data and the potential for user error, some of the price information may not be accurate
or up-to-date. There is no standard way to specify whether price information applies to
parking, charging, or both. Price descriptions thus may contain descriptions of prices
for both parking and charging, for one or the other, for neither, or for one or multiple
different charging levels, without means of resolving the ambiguity. Finally, prices, and
their descriptions, do not follow a standard model. Manual interpretation is not feasible
for a growing database of more than 30,000 stations with cost descriptions, so an ad hoc
algorithmic text interpretation approach is used. Still, for some price descriptions which
are inherently ambiguous (examples shown in Table 1), neither algorithmic nor manual
text interpretation succeed in extracting meaningful price information.

Table 1. Examples of ambiguous pricing information in the dataset.

Example Entry Issue

“$10 for Tesla, $3 for other vehicles” No unit of assessment, multiple prices

“varies for non guests” No price information

“$3 for 0–4 h of parking, then the price goes up” Partial price information

Whereas textual price data do not follow a standard format, the dataset does include
standard specifications of whether fees exist for (a) parking (“Parking Type” in Figure 1)
or (b) charging (“Cost” in Figure 1), or both. Thus, prices for stations with no textual
price description but with both free charging and parking can, in theory, be inferred (i.e.,
the price is $0). However, since this inference is only possible for free stations, including
these data in the general analysis would disproportionately weight free-charging locations.
Instead, we assume that the sample of stations with price descriptions, including free
stations, constitutes a representative sample of public EV charging stations, and therefore
do not infer the price for stations marked as free. Furthermore, there exist records with
detailed descriptions of nonzero prices, but that are marked as having both free charging
and parking. In such cases, we assume that the price description is accurate.
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An overview of how charging connectors are distributed across categories is shown in
Figure 2. Among states, California hosts the greatest share by a substantial margin. Among
network providers, ChargePoint hosts the greatest share of charging connectors.
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Figure 2. Distribution of electric vehicle (EV) charging connectors across categories of power level,
network provider, location type, state, and parking cost. Data shown are for all public U.S. EV
charging connectors in the dataset as of February 2021.

4. Text Mining, Processing, and Interpretation

Two challenges must be addressed to enable quantitative analysis of charging prices
using this dataset: (1) Prices must be extracted from inconsistently worded price descrip-
tions via reformatting and processing, and (2) fundamental differences in pricing models
must be regularized to enable general comparisons. The methods for addressing these
challenges are described in Sections 4.1 and 4.2, and details of the overall process are
provided in Appendix A.
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4.1. Extraction of Charging Price Information

Descriptions of the price of charging were assigned to three basic categories, where
costs accrue as a function of (1) units of time charging, or (2) energy consumed, or (3) are
assessed as a total price per session, irrespective of session duration. In the first category,
costs are typically assessed per hour, minute, or other increment (for example, per 30 s),
but sometimes vary during a charging session. For example, the first hour might be free,
but each subsequent hour, the price increases by some amount before settling at a final
per-hour price. In addition, there might be limits imposed, typically in terms of a minimum
or maximum total cost or a charging time limit. Table 2 captures essential elements of the
majority of pricing structures in a standardized format.

Table 2. Table headings for populating the details of every interpreted price description from the
dataset. An example entry is given for the description “$0.49 per kilowatt hour (kWh) $0.50 minimum.
First 5 min are free”.

Quantity
Example Entry

Value Unit

Initial price 0 free
Initial price 2 - -

Initial time window 5 minute
Price next window 0.49 kWh

Next window - -
Price next window (2) - -

Next window (2) - -
Price next window (3) - -

Next window (3) - -
Minimum 0.5 dollar
Maximum - -
Time limit - -

To populate Table 2 for every station, price descriptions were first processed to elimi-
nate common language inconsistencies. This involved two steps: (1) vocabulary regulariza-
tion via string segment replacement, and (2) elimination of extraneous information. The
first step involved identifying price-relevant string segments in the data and assembling
groups of segments that have an equivalent meaning. For those meanings that can be
expressed by multiple different string segments, a consistent and explicit representation of
that meaning was chosen, and all equivalent segments were replaced with the consistent
representation. This was done via regular expressions in Python [36] (see Appendix A.1
for more details). For example, stations with free charging (for part or all of a session) used
terms such as “complimentary”, “no cost”, “$0.00 per hour”, “free charging”, or “free to
charge”; kilowatt-hours could be referred to as “kwhr”, “kilowatt hour”, “kWh”, “kwh”,
and sometimes, mistakenly, as a price “per kilowatt” or “per kW/h”. In the second step
(removing extraneous information), any non-digit characters that had not been identified
as relevant during step 1 were removed. As an example, the description “$1.25/Hr for first
four hours, $10.00/Hr afterwards” was converted to “$1.25 lPER HOUR , 4 HOUR, $10.00
PER HOUR”.

After regularizing vocabulary and removing extraneous characters, descriptions were
organized into a format consistent with the headings in Table 2 and separated into ex-
pressions that each contain a complete account of the price description. The example
description from above has two constituent expressions: “$1.25 PER HOUR, 4 HOUR”, and
“$10.00 PER HOUR”. An algorithm, detailed in Appendix A.2, was then used to interpret
the meaning of each expression and populate the table. The algorithm was developed in-
crementally. During each iteration of algorithm development, price descriptions that could
not be fully interpreted were identified and used to make adjustments to the algorithm to
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enable correct interpretation. This process was repeated until interpretation failures could
only be attributed to contradictory or otherwise ambiguous pricing structures. In such
cases, the algorithm is designed to select the lower of the interpreted prices and label the
price as partially interpreted.

4.2. Price Regularization

Pricing structures extracted from price descriptions were regularized by translating
from their original units (which include $/kWh, $/h, $/min, and $/session) into units of
$/kWh. This translation was done by evaluating the effective price, in $/kWh, that would
be assessed in each of a set of charging scenarios (shown in Table 3), assuming constant
nominal charging rates. For example, a DCFC station with a price of $10 per session would
be translated, for Scenario 1, to $10

session ÷ 0.25 h
session ÷ 50 kW·h

1 h = $0.80/kWh. In Scenario 3, the
same station’s effective price would be $0.20/kWh, because more energy is supplied for
the same total cost.

Dynamic prices were similarly regularized as the total cost assessed divided by the
total energy supplied. For example, if a DCFC station assesses a session fee (sometimes
called “connection fee”) of $1.00, plus $0.10/kWh for the first 20 min and $0.20/kWh
thereafter, with a maximum of $5, computing the effective price requires summing the
costs during each applicable time window. Scenario 1, 12.5 kWh in 15 min, falls within the
first (20 min) window:

$1.00/session + 12.5 kWh × $0.10
kWh

12.5 kWh
= $0.18/kWh

For Scenario 2, 25 kWh in 30 min, two time windows with distinct pricing apply,
0–20 min and 20–30 min:

$1.00/session + ( 20 min.
60 min. × 50 kWh × $0.10

kWh ) + ( 30−20 min.
60 min. × 50 kWh × $0.20

kWh )

25 kWh
= $0.1733/kWh

For Scenario 3, 50 kWh in 1 h, the maximum price is reached. Thus, the effective price
is $5.00/50kWh = $0.10/kWh.

This process was applied to every price description extracted from the dataset. Mean
prices per scenario are shown in Figure 3, differentiated by power level (L2 and DCFC) and
the original, pre-regularization unit of assessment. The prices presented later in the paper
(Figure 4 and on) are the mean of the prices for the three scenarios.

It is important to note that physically delivered charging rates can vary from the
nominal rate during a session, particularly with DCFC, which is not accounted for in this
analysis. Charging rates are typically less than or equal to the nominal rate and can drop
substantially when the battery capacity nears full, especially during DCFC [37]. Thus,
converting time-assessed prices to energy-assessed prices using this method results in an
underestimate. However, because power delivery curves can vary with the EV model,
battery age, ambient temperature, and other factors, the magnitude of underestimation
is uncertain. Some regions, with California as an example, have begun to require all new
public EV charging stations to assign prices in units of energy, in an effort to ensure price
consistency during and between charging sessions and EV models [38].

Table 3. Charging scenarios for Level 2 and DCFC. The regularized price to charge is determined as
the mean of the prices for the three scenarios.

Category DCFC Level 2

Assumed Charging Power 50 kW 6.6 kW

Scenario 1 12.5 kWh in 15 min 6.6 kWh in 1 h
Scenario 2 25 kWh in 30 min 13.2 kWh in 2 h
Scenario 3 50 kWh in 1 h 19.8 kWh in 3 h
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Figure 3. Effective prices, in $/kWh, for Level 2 and DCFC for each charging scenario, distinguished
by the original pricing unit.

Additional complexity representing such mechanisms as membership fees and dis-
counts is present in the business models of some public charging network entities, but
the extent to which these are reflected in the dataset is unknown. If a price is available
only to subscribers, this fact is not necessarily articulated in the description. By ignoring
additional subscription fees, the prices in such cases would appear to be less than they are
in reality. However, even if all membership and subscription fees were known, the effect on
the regularized charging price is a function of charging behavior, ranging from negligible
(costs paid directly for charging are much greater than membership fees) to enormous
(membership fee is paid but no charging occurs). Therefore, these pricing mechanisms are
considered out of scope for this work.

5. Results

Descriptive analytics, in the form of graphs of the interpreted data, are presented in
this section. These analytics are intended to summarize the quantitative data extracted from
the dataset, in part to demonstrate the utility and reliability of processing the data using
the presented methods. They also provide a high-level overview of public EV charging
prices and how they vary within the diverse U.S. public EV charging network. Price
variability is present with respect to geography (Figures 4–8), network (Figure 9), location
type (Figure 11), and power level (Figure 12).

5.1. Spatial Distribution

Figures 4 and 5 show the total number of L2 stations and the median charging
price for all associated connectors, by county, throughout the United States. Similarly,
Figures 6 and 7 show the number of DCFC stations and the median charging price for all
associated connectors, by county, throughout the United States. Counties without any L2
station records (in the case of Figure 4) or DCFC station records (in the case of Figure 6)
are indicated as blank areas. Median prices encompass only those connectors for which
unambiguous price information is available. Both L2 and DCFC stations are more highly
concentrated on both coasts and in major metropolitan areas in the country’s interior.
Median charging prices for L2 stations exhibit a somewhat different spatial distribution
than do median charging prices for DCFC stations. The median charging price for L2
stations is somewhat more levelized across the country except, perhaps, in the northwest
and mid-Atlantic areas, while the median charging price for DCFC stations is distinctly
higher in the northwest and northeast regions, and in the upper midwest and northern
Texas regions. Note that the disparate sizes of counties from east to west can visually
bias perceptions about the spatial distributions, and that adopting more or less granular
political jurisdictions can change those perceptions.
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Connector Count
1–10
11–25
26–50
51–100
101–150
151–200
201–300
301–500
501+

Figure 4. Map illustrating public L2 charging connector counts by county. This includes connectors for which price
information could not be extracted.

Regularized Price ($/kWh)
Free
$0.01–0.10
$0.10–0.15
$0.15–0.20
$0.20–0.25
$0.25–0.30
$0.30–0.35
>$0.35

Figure 5. Map illustrating the median L2 charging price for all connectors in each county of the United States, as extracted
from the dataset and regularized to $/kWh. Only connectors with unambiguous textual price information are included.
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Connector Count
1–10
11–25
26–50
51–100
101–150
151–200
201–300
301–500
501+

Figure 6. Map illustrating public DCFC charging connector counts by county. This includes connectors for which price
information could not be extracted.

Regularized Price ($/kWh)
Free
$0.01–0.10
$0.10–0.15
$0.15–0.20
$0.20–0.25
$0.25–0.30
$0.30–0.35
>$0.35

Figure 7. Map illustrating the median DCFC charging price for all connectors in each county of the United States, as
extracted from the dataset and regularized to $/kWh. Only connectors with unambiguous textual price information
are included.
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Among all L2 stations, the mean effective price to charge across the three cases is
0.277 $/kWh. Among all DCFC stations, the mean effective price to charge across the three
cases is 0.318 $/kWh. (For reference, the mean cost of residential electricity in the U.S. is
0.133 $/kWh as of March 2021 [39].) However, effective prices span a wide range. DCFC
is consistently more expensive on average than L2, but substantial price variability exists
within and between states (Figure 8).

In Figure 8, the states on the horizontal axis are listed in decreasing order of count
of records. Although one might expect that states hosting greater numbers of connectors
would have lower prices due to increased competition, there is no obvious trend to suggest
this is the case. However, it should be reemphasized here that California has many times
more records than any other state—more than the total in all 40 states represented by
“Other” (see Table A4)—and therefore, that every state’s data are sparse in comparison to
California’s.

Additionally, note that in Figure 8 and subsequent similar representations, data
distributions are depicted as traditional box-and-whisker plots showing the minimum,
maximum, and median values, plus the first and third quartiles. The median, shown as a
bold line, may be equal to one or both quartiles if the mode accounts for a sufficiently large
fraction of the data.
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Figure 8. Distributions of L2 and DCFC prices, organized by state. Prices are given for the 10 states
with the most charging connectors with price data, and shown in decreasing order of plug counts.
The remaining 40 states and Washington D.C. are encompassed by “Other”. The count of records
represented by each box is given in Table A4 in the Appendix.

5.2. Networks

Distributions of price by network are shown in Figure 9. Similar to Figure 8, the
networks on the horizontal axis are listed in decreasing order based on plug count. If price
data are sparse for a network, the price distributions shown may be misleading (see next
section). Again referencing Figure 2, connector records are heavily concentrated in the top
network, which has even more connector records listed than the state of California.

Still, unlike in the comparison of states in Figure 8, it is clear that some networks
have narrower price ranges than others. These differences in price variability may reflect a
combination of networks’ spatial span, where widely distributed networks may be subject
to a wide variety of utility rates resulting in high price variability, and the extent to which
networks impose centralized, network-set pricing, as opposed to station-host pricing.
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Figure 9. Distributions of L2 and DCFC prices, organized by network operator. Prices are given
for the 10 networks with the most charging connectors with price data and shown in decreasing
order of plug counts. The remaining 16 networks are encompassed by “Other”. The count of records
represented by each box is given in Table A5 in the Appendix.

Missing DCFC Data

When taking into account all levels of charging, Tesla, via its Supercharger and
Tesla Destination networks, hosts the second-most stations of any network. However,
if considering only DCFC, they account for the overwhelming majority of networked
chargers (Figure 10). Since the Tesla network is only available to Tesla drivers through a
proprietary app and vehicle interface, Tesla has little incentive to provide accurate pricing
information on public-facing third-party apps, such as PlugShare. Accordingly, only a
small fraction of their charging connectors have price information in the dataset, and even
these prices may be out of date. Our lack of access to most of Tesla’s prices, and those of
other DCFC networks, is a major limitation to the DCFC portion of this analysis.
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Figure 10. Counts of charging connectors hosted by each network operator, restricted to DCFC.

5.3. Location Type

In the data, 44 types of charger location, or “places of interest”, are distinguished
(Figure 11). While variability between categories appears to be limited relative to that
between states or networks, some categories stand out. For example, whereas median
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prices at hotels are high, median prices at schools are comparatively modest. This may
reflect the role that the necessity of charging plays in setting prices. Visitors to hotels, who
are less likely to be near home, presumably have a greater need to charge than do visitors to
other location types. Again, sparsity of data should be taken into account (Table A6 in the
Appendix B). There are more than five times as many records for parking garages/lots (the
most populous category shown) as for restaurants (the least populous category shown).
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Figure 11. Distributions of L2 and DCFC prices, organized by location type. Prices are given for the
10 location types with the most charging connectors and shown in decreasing order of plug counts.
The remaining 34 location types are encompassed by “Other”. The count of records represented by
each box is given in Table A6 in the Appendix B.

5.4. Power Level and Units

Variability exists between power levels (DCFC is generally more expensive per kWh
than L2) and as a function of the original unit of assessment. As shown in Figure 12,
session-based prices vary widely when expressed as regularized prices in $/kWh. This
may be an artifact of the method for regularizing price: since the regularized price is
the mean over the three scenarios (Table 3), charging sessions can only range between
1 and 3 h, for L2, and between 15 min and 1 h, for DCFC. It may be rare, for example, that
a driver pays an expensive session price to charge for only 15 min, but the price for such a
scenario (Scenario 1 for DCFC) is included in the regularized price calculation shown in
these results.

Once again, it should be noted that some of the boxes in Figure 12 represent sparse
data (see Table A7 in the Appendix B). For example, only 487 of 6834 DCFC stations use
a price in units of $ per hour. The low apparent price for hourly DCFC may thus be an
artifact of data sparsity. Alternatively, the sparsity and low apparent prices for hourly
DCFC might reflect a psychological aspect of pricing. Relative to L2 prices, DCFC prices
expressed as $/h may appear unusually high to EV operators due to the much higher rate
of energy delivery. For example, to deliver energy at an effective price of 0.30 $/kWh, an
L2 station’s hourly price would be 1.98 $/h, whereas a DCFC station’s hourly price would
be 15.00 $/h. The equivalent price advertised as a price per minute (0.25 $/min) may be
more attractive to EV operators.



Energies 2021, 14, 5240 14 of 26

Le
ve

l 2

D
C

FC

Power Level

0.0

0.2

0.4

0.6

0.8

1.0

R
eg

ul
ar

iz
ed

 P
ric

e 
($

/k
W

h)
Per kWh
Per Hour
Per Minute
Per Session
Multiple

Figure 12. Price distributions for L2 and DCFC, organized by unit of assessment. “Multiple” units of
assessment are sometimes applied in dynamic rate structures. The count of records represented by
each box is given in Table A7 in the Appendix B.

5.5. Dwell Incentive

Prices can be used as signals to encourage EV operators to extend or shorten the
duration of charging sessions. We refer to this as a positive or negative “dwell incentive”.
As previously illustrated in Figure 3, for some pricing structures, the effective overall price
can change as a function of charging session length. For example, when charging costs
are applied as a flat per-session fee, the effective price of energy decreases throughout
a charging session. This may serve as an incentive for EV operators to extend charging
sessions, potentially to the benefit of nearby retailers. Alternatively, some pricing structures
deliberately increase the price of charging during a session, providing an incentive for
shorter charging sessions, potentially to the benefit of electricity providers. These are
examples of strategies, as highlighted in a 2019 study, to leverage EV operators’ flexibility
to adjust the duration and energy consumption of charging sessions [40].

We use a measure of dwell incentive to demonstrate where and how dynamic price
structures are implemented. The dwell incentive is calculated by assessing the change
in effective price, in $/kWh delivered, as the session duration increases. If the effective
price remains constant irrespective of session duration, the dwell incentive at that station is
“neutral”; if the price increases with session duration, the dwell incentive is negative; and if
the price decreases with session duration, the dwell incentive is positive.

As shown in Figure 13, the dwell incentive appears to correlate with effective price.
On average, stations with a positive dwell incentive charge high effective prices relative
to other stations. This suggests a strategy of maximizing revenue per customer (i.e., the
drivers who plug in, despite the high price, are incentivized to stay longer), potentially at
the expense of fewer customers (some are turned away by the high prices, or because the
plug is in use). In contrast, the low average prices in negative dwell incentive structures
suggest a strategy of maximizing revenue by increasing plug utilization: the low price
encourages drivers to plug in, but the price increases with time to encourage vacating for
the next vehicle.

Figure 14 shows that very few stations employ price structures with non-neutral dwell
incentives, and in particular, only a few of those employ a negative dwell incentive. It
is plausible that pricing mechanisms for influencing dwell behavior, such as idle fees,
are assessed more commonly than they appear in price descriptions in the dataset. Still,
the typical configuration of EV charging stations, where payment and energy flow are
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both managed electronically, provides a unique opportunity to use price signals for load
management or utilization improvement purposes.
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Figure 13. Price distributions for L2 and DCFC, organized by dwell incentive. Dwell incentive
refers to whether a price structure encourages (positive) or discourages (negative) extending the
duration of charging sessions. The count of records represented by each box is given in Table A8 in
the Appendix B.
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Figure 14. Counts of charging connectors with price structures that provide a positive, negative, or
neutral dwell incentive. Dwell incentive refers to whether a price structure encourages (positive) or
discourages (negative) extending the duration of charging sessions.

5.6. Comparison with Levelized Cost of Charging

Levelized cost of charging (LCOC) is a metric representing the average cost paid by a
station operator to provide charging energy, including initial installation costs and ongoing,
time-varying costs throughout the lifetime of the charging equipment. Calculating the
difference between LCOC paid by station operators and the average price paid by EV
operators is one method for estimating the profit that a station earns.

Median prices obtained from the dataset are higher in every state than the LCOC
estimated for station operators. This is illustrated in Figure 15, which compares the prices
extracted from the dataset to estimated values of LCOC for different varieties of charging.
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Figure 15. Comparison between prices from the dataset and levelized cost of charging (LCOC), as
published in [41]. Prices from the dataset are shown as traditional box-and-whisker plots, where
box edges denote quartiles. Data from [41] are shown as a range across lower sensitivity (left edge),
baseline (midline), and upper sensitivity (right edge) scenarios.
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The LCOC values shown in Figure 15 are taken from a study of 2019 EV charging
economics [41]. In this study, researchers detailed the variability of EV charging economics
across different charging sites, regions, power levels, and other variables. They estimated
LCOC, for an individual charging site, as a function of (a) retail electricity prices, (b) capital
and operating costs for the charging equipment, and (c) energy supplied during the lifetime
of the equipment. Two sensitivity scenarios (upper and lower) aimed to capture variability
in these parameters, leading to higher and lower costs than the baseline scenario.

The comparison in Figure 15 thus serves to emphasize the substantial difference
between the estimated LCOC and the actual prices assessed, throughout the U.S., for both
L2 and DCFC. One implication of this difference is that the value of energy from a public
charging station is substantially higher to a typical EV driver than the cost paid by station
operators to provide it. This calls attention to attributes of public EV charging. First, most
EV drivers do not have to rely on public infrastructure for the majority of their driving
energy, resulting in a different value proposition for drivers at public charging locations
relative to home charging or gasoline/diesel refueling. Secondly, utilization may be limited
in an early EV market due to the complex means by which infrastructure availability both
spurs and reacts to adoption of EVs, representing a restriction to supply that may exert
upward pressure on prices. Third, station operators may pay a higher electricity price than
nominal retail electricity prices due to pricing mechanisms, such as peak demand tariffs or
time-of-use rate schedules, in which case the LCOC would be higher in reality than the
estimated values. Each of these attributes is discussed further in the following paragraphs.

5.6.1. Value Proposition for EV Drivers

EV drivers choose from a broader set of refueling locations than do drivers of con-
ventional vehicles, who are confined to refueling at commercial gasoline/diesel stations.
This highlights a fundamental difference between the business cases for public charging
stations and petroleum refueling stations. Most EV drivers are able to charge at home,
and some can charge at the workplace, both of which are likely to be cheaper and more
convenient than stopping at a public charging station for either L2 charging or DCFC.
Public stations thus serve (a) to enable trips exceeding the EV battery range and/or (b) to
provide faster charging than drivers have available at home or work. From the perspective
of EV drivers, the value of charging can therefore be considered to be the sum of the direct
value of energy and the indirect value of range extension and faster charging (convenience
and/or preference), resulting in drivers willing to pay a higher price than the LCOC. An
analogous product for which the willingness to pay can be dramatically influenced by
differences in convenience and/or preference is water, which usually comes at a significant
premium, in bottled form, relative to the price of tap water at home.

5.6.2. Station Utilization in an Early EV Market

Public charging infrastructure and EVs are complexly interrelated in that each in-
creases the value and viability of the other. This is an example of a commonly remarked
“chicken-or-egg” problem. If charging is not sufficiently ubiquitous to enable long-distance
travel, most people may be unlikely to adopt EVs, but some stations providing widespread
charging in an early market will experience low utilization, while EV populations are
low. In [41], public L2 connectors were assumed to be utilized 4.5 h per day, whereas
DCFC connectors were modeled at varying levels of utilization, from 1–2 charges per day
to over 20% utilization. At present, however, these utilization assumptions may yet be
overestimates for many stations.

5.6.3. Peak Demand and Time-of-Use Electricity Tariffs

Finally, electricity prices are often designed to discourage high local and aggregate
power demands via peak demand and time-of-use tariffs, which can result in high prices
for EV charging, especially DCFC. The authors of [41] accounted for the effect of tariff
variations on DCFC by testing a total of more than 4000 commercial rates and reporting the
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overall average price for each state. Still, they report that the effective price of electricity
for DCFC can exceed $2 per kWh [42]. As utility companies continue to adapt to the
emerging demands of EV charging, some charging stations may continue to pay electricity
prices according to structures that result in expensive refueling using DCFC infrastructure.
Alternative solutions, such as installing means of electricity generation (solar panels) or
storage (stationary batteries) to minimize or offset power demands, have been proposed to
reduce the cost of electricity and mitigate other challenges with the interactions between
the electric grid and EV charging stations [37,43,44].

6. Discussion and Future Directions

Access to a comprehensive source of EV charging price data can facilitate decision-
making for EV operators, charging station operators, policymakers, and business inno-
vators. However, such data do not yet exist in an aggregated and accessible format.
PlugShare’s crowdsourced U.S. dataset is an attractive source of nationwide charging price
data, but the unstructured textual format of its price data has hindered its usability. By
employing ad hoc text mining to convert the data into a format amenable to direct analysis,
this work lays the foundation for studies of a previously underutilized source of data.
Descriptive analytics of the converted dataset provide a high-level image of the state of
public EV charging across the United States, with emphasis on the wide variability of
charging prices in terms of geographic location, network operator, and location type.

EV charging stations operate under a variety of business models and pricing structures
that are vastly different from those associated with commercial petroleum fueling stations.
The flexibility in price design equips operators with tools to provide incentives for desired
charging behaviors, such as ramping prices to discourage long charging sessions. Our
analysis suggests that these tools are not yet being used by the majority of EV charging
station operators. Further research to understand the effects of potential price designs
on customer choices may provide valuable direction for station operators, especially as
charging demand increases.

Because it is often an alternative to at-home charging, the business case for public EV
charging is distinct from that for conventional fueling. Our research suggests that prices
at most stations exceed estimates for the LCOC paid by station operators, resulting in
prices well above what consumers would pay at home and highlighting the unique value
proposition of public EV charging. This premium in price represents value beyond that
of energy, such as convenience, speed, or necessity, but it remains to be seen what prices
consumers will accept in a mature EV charging market.

From the perspective of station owners, EV charging infrastructure comes at a high
capital cost that must be recouped, whether through a revenue margin on electricity above
the LCOC or by other methods, such as increased revenues at an associated business. The
wide variety in approaches to public charging suggests that the electric transportation
system remains in its developing stages.

Data wrangling and preprocessing can be tedious, time-consuming, and sometimes
unproductive pursuits; working with large volumes of unstructured textual information
further exacerbates these issues [45]. While text mining provides computational and
statistical tools to address the problem, there is still no fully automated way to reduce
natural language to numerical data that can be used for quantitative analysis. As illustrated
in our work, such circumstances require the use of creative ad hoc approaches to extract
useful analytical information. However, we hasten to underscore the imperfections in
such approaches and the implications they may ultimately have on modeling results and
conclusions. Given the growing interest in EVs and infrastructure to support them, we
note the necessity of securing reliable and consistent data on which to construct models for
operations and business planning.

In this study, we address one limitation to the usability of the dataset, but it suffers
other limitations that we are unable to correct. Because the data are not publicly and
freely available, the potential for research using the data is limited to those able to pay the
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access fees. Furthermore, the restrictions imposed by licensing agreements for non-public
datasets inhibit the ability of researchers to provide transparent and reproducible work to
the public.

An additional limitation to the usability of the dataset is its method of sourcing. By
distributing the labor and costs required to obtain data, “crowd sourcing” can generate
large volumes of data that may not be obtainable by other means. However, due to its
decentralized sourcing, the value and quality of crowd sourced data can be questioned.
Particularly when the data are not made public and open-sourced, the ability of researchers
to assess value and quality is limited [46,47]. This study provides an assessment of the
value and quality of the dataset in the form of descriptive summaries and analytics.

Even with its limitations, the dataset presently represents one of the best and most
current sources of information about charging costs that can be used to inform consumers
and operators alike. As described here, the challenge is to reduce the dataset (and similar
information sources) into a comprehensible and analytical format that can be effectively
employed for decision making. To date, our work has primarily focused on describing
the present status of public charging prices in the U.S.; however, we believe continued
expansion of the dataset and fine-tuning (training) of our information extraction algorithm
will support further investigations that are more predictive and prescriptive in nature.
Future modeling work will incorporate the regularized and cleaned data with various
operating parameters to help guide the establishment of best practices to promote EV
adoption and investment in infrastructure build-out relative to the cost of EV charging.
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Appendix A. Details of Text Mining Algorithm

The text mining algorithm for extracting information from the unstructured charging
station cost descriptions involves three steps: (1) regularize the vocabulary of the descrip-
tions via string segment replacement (Appendix A.1); (2) identify and interpret groups of
regularized terms (Appendix A.2); (3) convert general price structures into terms of $/kWh
(Section 4.2 in the main text).

https://company.plugshare.com/data.html
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Appendix A.1. Vocabulary Regularization

The vocabulary regularization step aims to standardize string segments that are
different but have equivalent meaning, and to eliminate portions of the text descriptions
that are not relevant to the station’s pricing structure. The standardized vocabulary is
shown in Table A1.

Table A1. Standardized vocabulary substituted into textual price descriptions.

Standard Term Meaning

DOLLAR A dollar sign or other indication that a price follows a position in
the string

PER
Any indication that the price expression preceding a position is to be
assessed in terms of the unit following the position (commonly a
forward slash “/”)

DECIMAL

A decimal point (as distinguished from a period) that indicates any
preceding digit characters should be interpreted as whole numbers,
and any following digit characters should be interpreted as digits
after the decimal

MAXIMUM
An indication that the preceding or following number (or
number/unit combination) expresses an upper bound on
charging cost

MINIMUM

An indication that the preceding or following number (or
number/unit combination) expresses a lower bound on charging
cost; care must be taken to distinguish whether “min” or its
variations is meant as “minute” or “minimum”

FIRST
An indication that the following number/unit combination should
be understood as the initial applicable price (e.g., “FIRST five
minutes are free”)

FREE Expresses that no charge is assessed during the window with which
“FREE” is associated

HOUR Any version of “hour” meant to be interpreted as a unit of time

MINUTE Any version of “minute” meant to be interpreted as a unit of time

SESSION An indication that a flat price is assessed irrespective of charging
session duration or quantity of energy supplied

KWH Any version of “kWh” meant to be interpreted as a unit of energy

(digits 0–9) Any number, whether spelled out in characters or as a digit

Regular expressions (regex) use a standardized syntax to represent textual search
patterns, which enables isolating segments of text matching criteria ranging from very
broad to very narrow. These, implemented using Python’s “re” module, were used to
identify instances of the many various equivalents to the Table A1 terms in the unstructured
text, and to substitute the standard versions shown in the table. Any characters remaining
that are not part of standard terms are removed, leaving only information pertaining
directly to price structures.

Context can usually be used to infer the intended meaning of terms that have multiple
possible interpretations. For example, “min” is variously used to mean “minute(s)” and
“minimum”, but in this dataset, when “min” appears immediately after a number, it is
interpreted as “minutes”, whereas when it appears immediately before or after a time or
energy unit (e.g., minutes, hours, kWh), or immediately before a number, it is interpreted
as “minimum”.
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Appendix A.2. Interpretation of Regularized Text

Although regularized price descriptions comprise standardized terms, interpreting
meaningful price structures still requires an ad hoc approach. The headings from Table 2,
replicated in Table A2, serve as a standard framework for the static and dynamic price
structures found in the dataset.

A table with headings from Table A2 is populated, one row per connector in the data,
following a process of searching for and replacing key phrases. After a phrase is identified
and interpreted, it is removed from the price description. This “search-and-replace” process
must therefore proceed in a specific order to avoid capturing fragments of more complete
phrases. The regular expressions used in this process are described below.

Table A2. Table headings for populating the details of every interpreted price description, replicated
from Table 2.

Initial price
Initial price 2
Initial time window
Price next window
Next window
Price next window (2)
Next window (2)
Price next window (3)
Next window (3)
Minimum
Maximum
Time limit

The sequence of regular expressions in Table A3 are used as inputs, along with the
text descriptions, to iterative applications of the “search” function in the Python re module.
To avoid interpreting the same phrases multiple times, segments of the text that are
successfully captured during a search are removed prior to applying the next expression
in the sequence. The expressions are sequenced with the intent of capturing the fullest
expressions of price first.

Table A3. Sequence of regular expressions used to interpret vocabulary-regularized price descriptions. Parentheses
surround sub-expressions that represent capture groups.

# Regular Expression

1 (\d*)(DAY|HOUR|MINUTE|KWH)(MAXIMUM|MINIMUM)
2 (MAXIMUM|MINIMUM)(\d*)(DAY|HOUR|MINUTE|KWH)
3 DOLLAR(\d*)(?:DECIMAL)?(\d*)(MAXIMUM|MINIMUM)
4 (MAXIMUM|MINIMUM)DOLLAR(\d*)(?:DECIMAL)?(\d*)
5 (\d+)(HOUR|MINUTE|KWH)FREE
6 (?:DOLLAR)(\d*)(?:DECIMAL)?(\d*)PER(HOUR|MINUTE|KWH)PER(\d+)(HOUR|MINUTE|KWH)

7
(?:DOLLAR)?(\d*)(?:DECIMAL)?(\d*)PER(\d*)(?:DECIMAL)?(\d*)(DAY|HOUR|
MINUTE|SESSION|KWH|MONTH|SECOND)

8 DOLLAR(\d+)(?:DECIMAL)?(\d*)
9 (\d*)(?:DECIMAL)?(\d*)CENTPER(\d*)(DAY|HOUR|MINUTE|SESSION|KWH|MONTH)

10 FIRST(\d*)(HOUR|MINUTE)
11 (\d*)TO(\d*)(HOUR|MINUTE)
12 (?:THEN|AFTER)(\d+)(HOUR|MINUTE)

For example, the price description “$0.05/h for 1 h, then $0.07/h” (after vocabulary
regularization: “DOLLAR 0 DECIMAL 05 PER HOUR PER 1 HOUR DOLLAR 0 DECIMAL
07 PER HOUR”, spaces added here between terms for clarity) must be interpreted in a
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particular sequence to avoid extracting an incorrect meaning. For example, if the interpreta-
tion code were to apply Expression 4 before applying Expression 2, the “$0.05/h” segment
would be removed and interpreted on its own, leaving “for 3 h, then $0.07/h”—a phrase
without a clear meaning—to be interpreted alone.

There are 3 broad categories of information extracted via this method: prices, price
windows, and minima/maxima. Prices, here, are single expressions in the form: some
quantity of money per some unit or quantity of units. Price windows describe the time
period during which a price applies, in the form: some quantity of time or energy. Minima
or maxima are either (1) in the form: maximum/minimum some quantity of time, energy,
or money; or (2) the form: some quantity of time, energy, or money maximum/minimum.
Prices are extracted using regular Expressions 4–9; price windows are extracted using
regular Expressions 6–7, 9, and 10–12; and minima/maxima are extracted using regular
Expressions 1–4.

Price windows are often interpreted simultaneously with prices, and in these cases it
is simple to assign each price to a price window, and furthermore to place price windows
in the proper sequence. However, sometimes prices and price windows (as interpreted
via regular Expressions 10–12) do not appear together. In such cases, prices and price
windows are assumed to appear in respective order, i.e., the first price extracted applies
during the first price window extracted; the second price extracted applies during the
second price window extracted; and so on. There is one key exception, where sometimes a
price description ends with the initial price, most often in a form resembling “First X hours
are free”. This case is specifically coded for, where the key word “FIRST” triggers a price
and the window to which it sequentially corresponds to be assigned as the first price.

These methods for interpreting prices work for the vast majority of price descriptions,
but for especially unusually formatted prices they may fail. This risk increases in the
case of applying the code to future tranches of data. The interpretation algorithm thus
incorporates a suite of methods to recognize when it is likely to have misinterpreted a price,
enabling that record to be set aside from analysis. The two most common failure modes are
(1) an inconsistency in the extracted information and (2) segments of the text remaining
uninterpreted after the full regex sequence. Identifying inconsistent prices involves check-
ing for mismatches in quantity of prices and price windows; multiple incompatible prices
without windows; multiple minima or maxima; or improbable numbers, such as prices or
time durations exceeding reasonable expectations.

Appendix B. Counts of Records Represented in Figures

The number of records per category shown in Figures 8–9 and 11–13 are given respec-
tively in Tables A4–A8.
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Table A4. Record counts represented by each box shown in Figure 8.

Box # Records

CA—DCFC 2142
CA—Level 2 10,315
WA—DCFC 304
WA—Level 2 1103
NY—DCFC 266
NY—Level 2 1071
FL—DCFC 312
FL—Level 2 944
GA—DCFC 313
GA—Level 2 737
TX—DCFC 179
TX—Level 2 852
MA—DCFC 88
MA—Level 2 911
MD—DCFC 265
MD—Level 2 720
OR—DCFC 185
OR—Level 2 678
CO—DCFC 181
CO—Level 2 667

Other—DCFC 2606
Other—Level 2 5917

Table A5. Record counts represented by each box shown in Figure 9.

Box # Records

ChargePoint—DCFC 1752
ChargePoint—Level 2 12,386

Non-networked—DCFC 1302
Non-networked—Level 2 2876

Blink—DCFC 197
Blink—Level 2 2916

SemaConnect—DCFC 0
SemaConnect—Level 2 2636

Greenlots—DCFC 537
Greenlots—Level 2 1553

EVgo—DCFC 1085
EVgo—Level 2 154

EV Connect—DCFC 179
EV Connect—Level 2 771

Tesla Destination—DCFC 778
Tesla Destination—Level 2 3

Supercharger—DCFC 590
Supercharger—Level 2 0

Webasto—DCFC 96
Webasto—Level 2 122

Other—DCFC 325
Other—Level 2 498
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Table A6. Record counts represented by each box shown in Figure 11.

Box # Records

Parking Garage/Lot—DCFC 901
Parking Garage/Lot—Level 2 4495

Shopping Center—DCFC 1692
Shopping Center—Level 2 1897
Workplace Public—DCFC 341
Workplace Public—Level 2 2825
School/University—DCFC 103
School/University—Level 2 2229

Hotel/Lodging—DCFC 718
Hotel/Lodging—Level 2 1338

Store—DCFC 629
Store—Level 2 1109

Hospital/Healthcare—DCFC 38
Hospital/Healthcare—Level 2 1315

Government—DCFC 234
Government—Level 2 1013

Residential—DCFC 28
Residential—Level 2 1027
Restaurant—DCFC 416
Restaurant—Level 2 517

Other—DCFC 1741
Other—Level 2 6150

Table A7. Record counts represented by each box shown in Figure 12.

Box # Records

DCFC—Multiple 1693
DCFC—Per Hour 487

DCFC—Per Minute 1883
DCFC—Per Session 973

DCFC—Per kWh 1798
Level 2—Multiple 2853
Level 2—Per Hour 9626

Level 2—Per Minute 794
Level 2—Per Session 1546

Level 2—Per kWh 9046

Table A8. Record counts represented by each box shown in Figure 13.

Box # Records

neutral—DCFC 4543
neutral—Level 2 19,487
positive—DCFC 2256
positive—Level 2 3595
negative—DCFC 42
negative—Level 2 833
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