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Abstract: High energetic efficiency is a major requirement in industrial processes. The poor thermal
conductivity of conventional working fluids stands as a limitation for high thermal efficiency in
thermal applications. Nanofluids tackle this limitation by their tunable and enhanced thermal
conductivities compared to their base fluid counterparts. In particular, carbon-based nanoparticles
(e.g., carbon nanotubes, graphene nanoplatelets, etc.) have attracted attention since they exhibit
thermal conductivities much greater than those of metal-oxide and metallic nanoparticles. In this
work, thermal conductivity data from the literature are processed by employing rigorous statistical
methodology. A high-accuracy regression equation is developed for the prediction of thermal
conductivity of graphene nanoplatelet-water nanofluids, based on the temperature (15–60 ◦C),
nanoparticle weight fraction (0.025–0.1 wt.%), and graphene nanoparticle specific surface area
(300–750 m2/g). The strength of the impact of these variables on the graphene nanoplatelet thermal
conductivity data can be sorted from the highest to lowest as temperature, nanoparticle loading, and
graphene nanoplatelet specific surface area. The model developed by multiple linear regression with
three independent variables has a determination coefficient of 97.1% and exhibits convenience for its
ease of use from the existing prediction equations with two independent variables.

Keywords: nanofluids; multiple regression; correlation; thermal conductivity; graphene

1. Introduction

After the pioneering work of Choi and Eastman [1], nanofluids as homogeneous
mixtures of nanoparticles and liquids have attracted significant interest mainly due to
the potential of high thermal conductivity compared to the conventional heat transfer
fluids. In addition to thermal conductivity, nanofluids’ thermophysical properties and heat
transfer characteristics being highly tunable made them promising materials in a variety of
systems, including heat pipes [2], heat exchangers [3], and solar energy systems [4] as well
as in applications including microchip cooling [5], nuclear cooling [6], machining [7], and
enhanced oil recovery [8]. On the other hand, it has long been one of the important points
to understand and maintain the main features of a nanofluid, which include steady state
suspension, colloidal stability, and unchanging chemical nature of the base fluid [9]. The
enhancements reported in the thermal conductivity of nanofluids have directed the research
in this area primarily in thermal properties and heat transfer. One of the remarkable
enhancements in thermal conductivity of nanofluids has been reported by Xuan and Li [10]:
more than 70% at nearly 8% nanoparticle volume fraction for CuO-water nanofluids.

Although spherical and nearly-spherical nanoparticles’ dispersions have been investi-
gated in detail, non-spherical nanoparticles with shape-induced characteristics exhibit new
and interesting properties. In particular, carbon-based nanomaterials not only exhibit high
thermal conductivity but also lightness and high surface area, and outstanding chemical,
mechanical, and electrical properties [11]. Pavía et al. [11] reviewed different versions
of graphene (i.e., graphene oxide, graphene nanoplatelets (GNPs), graphene nanosheet,
etc.) and reported on the graphene nanoparticle nanofluids’ preparation conditions and
thermal conductivities. Le Ba et al. [9] reviewed the preparation and stability of graphene
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nanoparticle nanofluids. They also mentioned some potential applications of graphene
based nanofluids, such as sensors, micro and mini channels, composite materials, automo-
biles, and so on. Hilo et al. [12] reviewed graphene nanofluids preparation, stability, and
thermophysical properties, along with convective heat transfer performance results from
the literature.

Bahaya et al. [13] studied GNP-water nanofluids and reported 1.43 times increase in
thermal conductivity over water at a nanoparticle volume fraction of 0.0014, noting more
than 30 times increased viscosity at this concentration. Iranmanesh et al. [14] reported on
the effects of the specific surface area, temperature, and nanoparticle concentration on the
thermal conductivity and viscosity of GNP-water nanofluids. Based on their experimental
work, they performed statistical analysis for quantifying these parameters impacts. Their
results revealed that the sole effects of temperature, specific surface area, and concentra-
tion were significant, as well as their two-factor and more complex interactions on the
thermal conductivity. They also presented two predicting equations for the thermal con-
ductivity of GNP-water nanofluids for 500 m2/g and 750 m2/g GNP specific surface areas.
Naghash et al. [15] studied nano-porous graphene-water nanofluids of 0.025–0.1 wt.% with
a graphene specific surface area of 814 m2/g. They reported that the enhancement in ther-
mal conductivity of the 0.1 wt.% nanofluid was poor (3.8%), while the enhancement in the
convective heat transfer coefficient was high (34%). Mehrali et al. [16] studied GNP-water
nanofluids of 0.025–0.1 wt.% concentrations with GNP specific surface areas of 300, 500,
and 750 m2/g. Their measurements showed that the highest enhancement in thermal
conductivity was more than 27% at the highest concentration (0.1 wt.%) and GNP specific
surface area (750 m2/g). Sarsam et al. [17] examined water-based triethanolamine-treated
GNP nanofluids’ stability and thermophysical properties based on GNP specific surface
areas (300, 500, and 750 m2/g). Their results showed that thermal conductivity of GNP-
water nanofluids increased at 0.1 wt.% as the GNP specific surface area increased. Yarmand
et al. [18] studied functionalized GNP-water nanofluids’ thermophysical properties and
heat transfer performance in a square pipe. Thermal conductivity of the 0.1 wt.% sam-
ples increased by 13.56% with respect to water at 293 K. In some studies, experimental
works on graphene nanofluids were accompanied by soft-computing methods as well.
Khosrojerdi [19] measured the thermal conductivity of GNP-water nanofluids with a GNP
diameter < 2 µm and 750 m2/g specific surface area, and performed multilayer perceptron
(MLP) artificial neural network (ANN) analysis for the prediction of the experimental data.
They considered the following temperature and nanoparticle weight percentages: 25–50 ◦C
and 0.00025–0.005. Their model had a determination coefficient of R2 = 96.8%, successfully
representing the experimental dataset. Tahani et al. [20] measured and then modeled
water-based graphene oxide nanoplatelet nanofluids’ (of 0.001–0.045 weight fractions)
thermal conductivity within a temperature range of 25–50 ◦C. They reported that their
MLP-ANN based model had a determination coefficient of R2 = 99%.

Such tunable and outstanding properties of GNP nanoparticle nanofluids gave rise to
application-based investigations, including microchannels [21], counterflow heat exchang-
ers [22], automobile radiators [23], and cooling systems of wind turbine generators [24] to
name a few. Apart from those applications, GNP nanofluid performances in solar thermal
and convective heat transfer systems have been investigated. Sani et al. [25] studied 50:50%
vol. of Havoline XLC and water mixture-based polycarboxylate modified GNP nanofluids
(with SDBS as surfactant) for solar thermal applications, highlighting the possibility of a
highly tunable solar absorption. Vallejo et al. [26] studied water-based polycarboxylate
chemically modified graphene nanoplatelets (P-GnP) and sulfonic acid-functionalized
graphene nanoplatelets (S-GnP) nanofluids of 0.005–0.05 wt.% for their stability and optical
properties. They reported that at 0.025 wt.% concentration, the spectral extinction coeffi-
cient for P-GnP was around two times higher than that of S-GnPs from 300 nm to higher
wavelengths, rendering P-GnPs a better absorber. Agromayor et al. [27] investigated the
thermophysical properties and heat transfer performance of aqueous GNP nanofluids of
0.25–1 wt.%. The GNPs were functionalized with sulfonic acid to assist their dispersion in
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water. Enhancements in heat transfer coefficient were observed for 0.25–0.75 wt.% nanoflu-
ids, and the optimum heat transfer coefficient was exhibited by 0.5 wt.% nanofluid as 32%
compared to water. Akhavan-Zanjani et al. [28] studied the heat transfer performance
of graphene nanosheet-water nanofluids and reported increases in thermal conductivity
and heat transfer coefficient under laminar flow of around 10% and 14%, respectively. Ali
and Arshad [29] studied a pin fin heat sink channel with GNP-water nanofluid as the
working fluid. In the formulation of nanofluid, they used PVP at a weight that was equal
to that of the GNPs and reported that the nanofluid was stable for two months. Mehrali
et al. [30] evaluated the performance of GNP-water nanofluids for turbulent flow based on
the GNP specific surface area (i.e., 300, 500, and 750 m2/g). Their results showed that the
heat transfer coefficient increased with the nanoparticle loading and GNP specific surface
area. Sadeghinezhad et al. [31] used GNP-water nanofluids in sintered heat pipes and
investigated the effects of GNP concentration (0.025–0.1 wt.%), heat pipe inclination, and
power input. Their results showed that the best performance was exhibited by the highest
concentration sample (0.1 wt.%), which reduced the thermal resistance by 48.4% at a tilt
angle of 60◦ and 80 W input power. Iranmanesh et al. [32] assessed GNP-water nanofluids
(with GNP specific surface area of 750 m2/g) with 0.025–0.1 wt.% in an evacuated tube
solar collector system. They reported around a 90% increase in thermal efficiency at a flow
rate of 0.000025 m3/s. Keklikcioglu et al. [33] reported on GNP-water nanofluids thermal
and hydrodynamic behavior as well as their thermophysical properties. They reported
on a predicting equation for the thermal conductivity of GNP-water nanofluids of 3 nm
particle size and 0.5–1 wt.%. Arzani et al. [34] investigated thermal performance of covalent
(GNP-COOH) and non-covalent (GNP-SDBS) functionalized GNP-water nanofluids in an
annular heat exchanger. They considered the following ranges for temperature, Reynolds
number, and nanoparticle weight concentration: 293–353 K, 5000–17,000, and 0.025–0.1%,
respectively. The GNP-SDBS samples with 0.1 wt.% and 0.05 wt.% exhibited the highest
two Nusselt numbers and heat transfer coefficients, followed by 0.1 wt.% GNP-COOH.

The literature review shows that there is considerable interest in graphene-based
nanofluids, especially due to the promising thermal characteristics of graphene and the
promising stability enhancements obtained (for example, see the work by [18]). In this
regard, the motivation of this work is to develop a high-accuracy regression equation that
can be used for the prediction of GNP-water nanofluids’ thermal conductivity. The model
includes temperature, nanoparticle loading, and GNP specific surface area as independent
variables.

2. Materials and Methods
2.1. Materials Considered in This Work

The objective of this work is to develop a predicting equation for the thermal conduc-
tivity of GNP-water nanofluids based on the GNP specific surface area, GNP concentration,
and temperature. Figure 1 comparatively shows some of the metal-oxide and carbon-
based nanoparticles’ thermal conductivity enhancements over water. It can be observed
that the thermal conductivity enhancement with graphene is more than two orders of
magnitude greater than those of TiO2 and Al2O3 and also greater than that with carbon
nanotubes (CNTs).

One other reason of the importance of the thermal conductivity of GNP nanofluids
is their potential in energetic applications. Such predictions should be based on material
and process parameters (with significant effects) so that the dependent variable can be
quantified. Table 1 summarizes the important morphological variables of the GNP-water
nanofluid works from the literature. It is observed that the concentration and specific
surface area are important variables, which were observed to be controllably and carefully
varied in the previous works (see for example [16,17,30] for the effect of GNP specific sur-
face area) in order to observe their impacts on thermophysical properties and performance.
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Figure 1. Thermal conductivity ratios (in log-scale) of the nanoparticle materials to thermal conduc-
tivity of water at 293 K. Nanoparticle and water thermal conductivity values are taken from [11].
Abbreviations: L: lower limit, H: upper limit of the thermal conductivity value.

Table 1. Parameter summary of the previous works on the GNP-water nanofluids.

Reference Concentration � (%) Details

Agromayor et al. [27] 0.025, 0.05, 0.075, 0.1 GNPs were sulfonic acid- functionalized.

Ali and Arshad [29] 10 GNP and PVPs added in equal
concentration. d * = 5–10 µm

Iranmanesh et al. [32] 0.025, 0.05, 0.075, 0.1 SSA ** = 750 m2/g

Iranmanesh et al. [14] 0.05, 0.075, 0.1 SSA = 500 m2/g, 750 m2/g
d = 2 µm, t *** = 2 nm

Keklikcioglu et al. [33] 0.5, 0.75, 1 Particle size = 3 nm

Mehrali et al. [16] 0.025, 0.05, 0.075, 0.1 SSA = 300 m2/g, 500 m2/g, 750 m2/g
d = 2 µm, t = 2 nm

Sami Sarsam et al. [17] 0.025, 0.05, 0.075, 0.1
GNPs were triethanolamine-treated.

SSA = 300 m2/g, 500 m2/g, 750 m2/g
d = 2 µm, t = 2 nm

Zhou et al. [35] 1.2–16.7 (vol.) SSA ≥ 600 m2/g
Sheet size: 0.1–3 µm, t = 1 nm

Yarmand et al. [18] 0.02, 0.04, 0.06, 0.1 HNO3 and H2SO4 functionalized GNPs.
SSA = 500 m2/g, d = 2 µm, t = 2 nm

� In weight, unless otherwise stated. Abbreviations: * d: diameter, ** SSA: specific surface area, *** t: thickness.

2.2. Methodology of This Work

In this work, thermal conductivity data reported by Iranmanesh et al. [14] and Mehrali
et al. [16] are processed in order to quantify the impacts of the GNPs specific surface
area, concentration in water, and nanofluid temperature on the aqueous GNP nanofluids
thermal conductivity and to propose a new prediction equation. Overall, 96 datapoints
are digitized from references ([14–16]), and multiple linear regression (MLR) analysis has
been performed. Multiple regression provides information on the relationship between
the dependent (response) variable (y) and the independent (predictor) variables (xi), and
can be used for forecasting of y based on xi’s by means of a useful representation of the
reality as the output of the regression analysis [36]. The MLR model can be written as in
Equation (1):

y = β0 + β1x1 + . . . + βixi + ei (1)



Energies 2021, 14, 5178 5 of 11

where β0 is the constant, β1 to βi is the regression coefficient of each independent variable,
and ei is the error term. In order for the MLR analysis to be performed, the following
assumptions should be validated [37]:

• The response variable is continuous. The predictor variables are continuous or binary;
• The response variable and predictor variables are linearly related;
• The residuals are normally distributed and homoscedastic;
• The independent variables exhibit no more than the limited multi-collinearity;
• There should not be any variable exhibiting a strong relationship with the response

variable excluded from the model;
• Errors and observations are independent.

In order for the second assumption to be valid, the correlation coefficients (r) between
each independent variable and dependent variable should be >0.30. In addition, it is
preferred not to have strong correlations between the independent variables. Table 2
shows the correlation coefficients between dependent and independent variables as blue
marked, and the correlations being significant (Sig. (1-tailed) < 0.05). The insignificant
correlations between the independent variables are also marked as green (with significance
values > 0.05).

Table 2. Associations between the dependent and independent variables.

knf ϕ (%) SSA T

Pearson Correlation

knf 1.000 0.531 0.514 0.736
ϕ (%) 0.531 1.000 0.004 0.084
SSA 0.514 0.004 1.000 0.082

T 0.736 0.084 0.082 1.000

Sig. (1-tailed)

knf 0.000 0.000 0.000
ϕ (%) 0.000 0.486 0.208
SSA 0.000 0.486 0.212

T 0.000 0.208 0.212

N

knf 96 96 96 96
ϕ (%) 96 96 96 96
SSA 96 96 96 96

T 96 96 96 96

Another underlying assumption states that both the dependent and independent
variables should exhibit multivariate normal distribution, and they should not contain
outliers. This can be verified by computing the Cook’s distance and Mahalanobis distance.
These values are calculated and stored for each of the 96 datasets. The Cook’s distance
indicates the change in the regression coefficients upon removal of a value from the
model [38]. If the Cook’s distance value is greater than 1, then that dataset should not
be included in the analysis [38]. The Mahalanobis distance is a standardized measure of
an independent variable’s differentiation from the dependent variable [38]. When there
are three independent variables, the critical Mahalanobis distance is 16.27. The cases
with Mahalanobis distance value greater than the critical Mahalanobis distance should
be removed from the analyzed dataset. Table 3 shows the range of the Cook’s distance
and Mahalanobis distance values of the dataset considered in this work. As shown, the
maximum Cook’s distance value is 0.132 (<1) and the maximum Mahalanobis distance
value is 8.835 (<16.27), both in line with the criteria.
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Table 3. Regression diagnostics: the residual values, Mahalanobis distance, and Cook’s distance.

Min. Max. Mean Std. Deviation N

Predicted Value 0.5919 0.8529 0.7047 0.05120 96
Std. Predicted Value −2.204 2.894 0.000 1.000 96

Std. Error of Predicted Value 0.001 0.003 0.002 0.000 96
Adjusted Predicted Value 0.5913 0.8530 0.7048 0.05122 96

Residual −0.01776 0.02467 0.00000 0.00880 96
Std. Residual −1.985 2.758 0.000 0.984 96

Stud. Residual −2.032 2.811 −0.002 1.006 96
Deleted Residual −0.01861 0.02562 −0.00003 0.00921 96

Stud. Deleted Residual −2.068 2.924 0.000 1.017 96
Mahalanobis Distance 0.250 8.835 2.969 1.772 96

Cook’s Distance 0.000 0.132 0.012 0.019 96
Centered Leverage Value 0.003 0.093 0.031 0.019 96

In order to check for the fourth assumption on multi-collinearity, the correlation
coefficients between the independent variables should be <0.70. As shown, the correlation
coefficients between the variables are all lower than 0.7. Multi-collinearity can also be
checked by considering tolerance, variance inflation factor (VIF), and condition indices (CI).
As a rule of thumb, tolerance > 0.1, VIF < 10 [37] (to avoid multi-collinearity problems),
and CI < 30 are required. As shown in Table 4, these conditions are satisfied; hence, there is
no multi-collinearity problem.

Table 4. Collinearity statistics and condition index values.

Model
Collinearity Statistics

Tolerance VIF

1

Constant
ϕ (%) 0.993 1.007
SSA 0.993 1.007

T 0.986 1.014

Dimension Eigenvalue Condition Index
Variance Proportions

Constant ϕ (%) SSA T

1 3.728 1.000 0.00 0.01 0.01 0.01
2 0.131 5.333 0.00 0.77 0.08 0.19
3 0.106 5.941 0.01 0.01 0.43 0.62
4 0.035 10.294 0.99 0.21 0.49 0.18

Finally, the distribution of the residuals being normal or not can be controlled by
checking the scatter plot obtained for the residuals. Figure 2a shows that the residuals are
normally distributed since the data markers are located very near the diagonal. Figure 2b
also reveals that the residuals distribution is normal and homoscedastic, as the data markers
are randomly distributed without showing any pattern [32].
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3. Results

In this work, the question of whether the thermal conductivity of GNP nanofluids is
being influenced by the GNP’s specific surface area, temperature, and GNP’s concentration
is evaluated using MLR analysis. The developed MLR model is found to be valid, as shown
in Table 5 below (Sig. < 0.05).

Table 5. Test of the validity of the MLR model.

ANOVA

Model Sum of Squares df Mean Square F Sig.

1
Regression 0.249 3 0.083

1037.122 0.000Residual 0.007 92
0.000Total 0.256 95

The predictive power of specific surface area, concentration, and temperature is shown
in Table 6. According to the results shown, it is observed that the GNPs’ specific surface
area, GNP’s concentration, and temperature taken together explains 97.1% of the GNPs’
thermal conductivity. The R2 value being very close to 1 indicates good predictive power
of the used independent variables (ϕ (%), SSA, and T) of the dependent variable [36].

Table 6. Results showing independent variables explanation of the dependent variable.

Model Summary

Model R R2 Adjusted R2

1 0.986 0.971 0.97

Having confirmed the validity of the MLR model, the prediction equation is developed.
Table 7 shows the coefficients of the predictor variables.

Table 7. Model parameter values.

Unstandardized Coefficients Standardized Coefficients
t Sig.

B Std. Error Beta

Constant 0.485 0.004 116.767 0.000
ϕ (%) 0.925 0.035 0.474 26.734 0.000
SSA 0.000 0.000 0.458 25.819 0.000

T 0.003 0.000 0.658 37.002 0.000
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Table 7 shows that all the predictor variables are statistically significant (for all,
Sig. < 0.05). Although the unstandardized coefficient of SSA appears to be 0, its pres-
ence is statistically significant as its significance value is <0.05, and it should be included in
the model. The main reason for this is the range of the SSA variable values (300–750) being
considerably greater than the range of the other two variables. In this case, it is convenient
to include SSA as a parameter in the prediction model with a coefficient of 0.0001. From
the outputs of Table 7, the prediction equation can be written as in Equation (2).

knf = 0.485 + 0.925ϕ + 0.0001 SSA + 0.003T (2)

In Equation (2), ϕ is in wt. (%), T is in ◦C, and SSA is in m2/g. The ranges of the
independent variables are (0.025–0.1 wt.%), 15–60 ◦C, and 300–750 m2/g, respectively, for
ϕ, T, and SSA. One other conclusion from Table 7 is about comparison of the strengths of ϕ,
SSA, and T on Knf, based on the beta values. The parameter with the highest absolute beta
value is the parameter with the strongest effect. In this regard, the effects of the parameters
can be sorted from highest to lowest as T, ϕ, and SSA.

4. Discussion

Figure 3a–c shows the comparison of the predictions of the developed regression
equation (i.e., Equation (2)) against the experimental data reported by [14,16]. The legends
of Figure 3a–c are abbreviated for convenience so that Dataset-1 is the data by Mehrali
et al. [16], and Dataset-2 is the data by Iranmanesh et al. [14]. Good coverage and inclusion
of the model on both the datasets can be observed. The comparisons are limited to these
datasets, since other GNP thermal conductivity works were concerned with functionalized
GNP nanofluids (e.g., [17,18]) and/or GNPs of different morphologies (e.g., [15,33]).

The developed model and its mathematical form can also be compared against the
existing models. Iranmanesh et al. [14], after an elaborated statistical methodology, pro-
posed correlating equations for GNP-water nanofluid thermal conductivity individually for
SSA’s of 500 m2/g and 750 m2/g in the form of knf (SSA) = f(T, ϕ). Keklikcioglu et al. [33]
also proposed correlating equations for the GNP-water nanofluid thermal conductivity
individually for the nanoparticle concentrations of 0.5, 0.75, and 1 wt.% in the form of
knf(ϕ) = f(T). To the best of the author’s knowledge, the mentioned models were the only
ones so far proposed in the prediction of the thermal conductivity of GNP-water nanofluids.
The regression model developed in this current work, i.e., Equation (2) with the following
form knf = f(T, ϕ, SSA), enables prediction of the thermal conductivity based on T, ϕ, and
SSA via the usage of a single equation, which is expected to exhibit a higher ease of utility.
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5. Conclusions

In this work, a new and high-predictive power equation for the estimation of thermal
conductivity of GNP-water nanofluids has been developed by using rigorous statistical
analysis based on the multiple linear regression method. The model has been developed
based on the data reported by [14,16] for GNPs of 2 µm diameter and 2 nm thickness. The in-
dependent variable intervals for which the model is developed are 15–60 ◦C, 300–750 m2/g,
and 0.025–0.1 wt.%. The developed model has a very high R2 value of 97.1% and includes
the nanoparticle loading, temperature, and the GNPs’ specific surface area as independent
variables. The inclusion of these three variables is important for the convenience and ease
of the usage of the regression model (as a single prediction tool).
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