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Abstract: This paper presents an implementation of a nonlinear optimal-based wind turbine tower
vibration control method. An NREL 5.0 MW tower-nacelle model equipped with a hybrid tuned
vibration absorber (HTVA) is analysed against the model equipped with a magnetorheological TVA
(MRTVA). For control purposes, a 3 kN active actuator in parallel with a passive TVA is used in
the HTVA system, while an MR damper is built in the MRTVA instead of a viscous damper, as in a
standard TVA. All actuator force constraints are embedded in the implemented nonlinear control
techniques. By employing the Pontryagin maximum principle, the nonlinear optimal HTVA control
proposition was derived along with its simplified revisions to avoid a high computational load during
real-time control. The advantage of HTVA over MRTVA in vibration attenuation is evident within the
first tower bending frequency neighbourhood, with HTVA also requiring less working space. Using
the appropriate optimisation fields enabled an 8-fold reduction of HTVA energy demand along with
a (further) 29% reduction of its working space while maintaining a significant advantage of HTVA
over the passive TVA. The obtained results are encouraging for the assumed mass ratio and actuator
force limitations, proving the effectiveness and validity of the proposed approaches.

Keywords: nonlinear optimal control; hybrid tuned vibration absorber; magnetorheological tuned
vibration absorber; wind turbine tower vibration; NREL 5.0 MW

1. Introduction

Slender structures such as masts, chimneys [1], bridges [2,3], plates [4], high-rise
buildings [5,6], beams [7], or wind turbines [8–10] are particularly vulnerable to vibrations
and their consequences. Thus, most of them are equipped with vibration reduction and
fatigue mitigation solutions.

Wind turbines experience time-varying external loads, including wind speed varia-
tions, wind shear (yielding differences in inflow conditions for the blades), Karman vortices,
a blade passing effect, along with the unbalance or load fluctuations of the rotating ma-
chinery (and waves/ice load for offshore structures), all of them contributing to tower
and blade structural vibration, fatigue, wear, or damage [11]. Previous research on wind
turbine vibration [12,13], and in particular, tower vibration [14,15], shows that first and
second tower bending modes (especially first lateral) are characterised with the lowest
modal damping ratio. Moreover, the first tower bending mode has dominant modal mass
participation (usually greater than 60%) [14]. Thus, the problem of the wind turbine towers’
first bending mode control [16–18] is addressed in the present paper as an illustrative
example for control method implementation, using a simplified tower-nacelle model of
the (onshore version) National Renewable Energy Laboratory’s (NREL) 5.0 MW wind
turbine structure [12,19]. The regarded model dynamics include disturbance load without
modelling nature of the disturbing forces—the model does not focus on blades or drivetrain
dynamics, tower-blade interactions, etc.; while their contribution to system oscillations is
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represented by a concentrated force applied to the nacelle-rotor assembly (that incorporates
blades, a hub, shaft, generator, and a gearbox) fixed to the top of the tower [20,21].

The concepts utilised to mitigate vibration cover (dynamic) vibration absorbers,
VAs, including tuned vibration absorbers, TVAs (otherwise called tuned mass dampers,
TMDs) [22], tuned liquid dampers, tuned pendulum dampers, viscoelastic/hydraulic/
friction/granular dampers, bracing systems, piezoelectric actuators, etc. Among them,
TVAs are the most frequently used vibration attenuation solutions. A passive TVA consists
of an additional moving mass, a spring and a viscous damper, the parameters of which
are tuned to the specific vibration mode of the structure [23]. Passive TVAs are effective
in a narrow frequency range but cannot cope with a wider excitation spectrum [10]. In
real-world conditions, the modal characteristics of many structures may vary in time due
to external (e.g., temperature change, icing) or operational (e.g., mechanical wear, structure
fatigue) factors [24], leading to the TVA detuning, which may be a severe problem if the
structure’s damping is low. Thus, more advanced (T)VA (i.e., VA or TVA) solutions are
implemented to enhance passive TVA efficiency and applicability. Among them, semiactive,
active, and hybrid (T)VAs are placed. Active (T)VA uses an active cylinder/actuator in
place of both a viscous damper and a spring (or in place of a viscous damper alone) [25,26].
Active (T)VAs are characterised by high efficiency; however, their energy demand and
robustness concerns are fundamental. The limitations of the passive and active TVAs
yielded the introduction of semiactive and hybrid solutions [27].

Semiactive TVA employs a semiactive control device to tune the TVA to the current vi-
bration profile; the control actuators do not add mechanical energy directly to the structure,
as in active TVAs [28]. Frequently used semiactive actuators include magnetorheological
(MR) [29–31] or electrorheological (ER) dampers, variable orifice dampers, or mini electric
drives that use a small amount of energy to amend system properties [6,32]. Semiactive
TVAs provide wider ranges of operational frequencies or/and increased efficiency for
the frequency of tuning (in comparison with passive TVAs) [16,17], higher reliability, and
significantly lower energy requirements than active systems [3,28]. Simulations and exper-
iments show that implementing a semiactive actuator (e.g., an MR damper) in the TVA
system may lead to significant vibration reduction with regard to passive TVA [33,34].

Hybrid TVA (HTVA) is a combination of a passive TVA with an active actuator
(sometimes with an active TVA) [27]. HTVAs are among the most common and reliable
devices employed in full-scale civil engineering structures [35,36]. The active force of
HTVA increases both the vibration reduction efficiency of the TVA and its robustness to
changes in the dynamic behaviour of the structure. Energy/power and force requirements
of a standard HTVA actuator are much lower than those of an active (T)VA of comparable
performance [28]. This promoted the widespread application of HTVA for structural control
and grounded our interest in it.

Specific control solutions must be used as wind turbine structural behaviour, and
actuator dynamics (including force output or stroke limitations, i.e. operating character-
istics saturation) are intrinsically nonlinear. Most real-time vibration control techniques
are based on a simple bang-bang approach [37], soft computing methods [1], or more
advanced two-stage concepts with a calculation of an optimal actuator force (being the
first stage) and precise actuator force tracking (being the second stage) [3,18]. Two-stage
concepts are compromised by the accuracy of mapping the required (by the first stage)
force pattern with the actuator used. The most frequent force tracking problems are ac-
tuator dynamics nonlinearities and time constants/delays. For semiactive elements (as
MR dampers), the impossibility to generate active forces is also a major force mapping
issue. Another problem with TVA implementation is the constrained actuator force output
(resulting in a far-from-optimal or even detrimental control pattern) and the limited TVA
working space. The latter often requires end-stop collision dampers or additional springs
of increased stiffness [38] that effectively increase (up-tune) the TVA frequency at large
strokes; this may further increase the primary structure deflection amplitude. Moreover,
some advanced first stage algorithms need real-time (dominant) frequency determination,
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which may be an issue for random (e.g., seismic) or polyperiodic (due to wind, waves, and
rotation) vibrations.

Recently the author proposed an entirely different vibration control concept for a struc-
ture/system equipped with MRTVA (i.e., magnetorheological TVA, consisting of a mass,
a spring, and an MR damper in parallel) [33,34], utilising nonlinear control techniques.
Nonlinear control methods include Pontryagin maximum principle-based methods [7,39],
control Lyapunov function-based methods [2,5,40], linearisation methods with linear opti-
mal control theory (LQR/LQG/H2/H∞) based on the Riccati equation/approximating
sequence of the Riccati equations [41,42], etc. Along with the advantages, each method
group has its disadvantages, throughout which the most common is the high computa-
tional load necessary for the real-time implementation and control authority degradation
in the presence of disturbances or unmodelled dynamics.

The above issues are addressed within the scope of the current paper, utilising maxi-
mum principle-based nonlinear optimal control as the derivation foundation. An NREL
5.0 MW tower-nacelle model (representing the first tower bending mode) with HTVA is
considered a research platform for this tower vibration reduction problem. The analysed
configuration may be regarded as an HTVA installed in the nacelle (in a side-side direction
of operation) to address the tower’s first lateral bending mode of the lowest modal damp-
ing ratio. The HTVA actuator force nonlinearities are embedded in the proposed control
method, eliminating possible efficiency and robustness issues associated with a calculated
optimal or optimal-based control function inaccurately mapped or beyond the permissible
actuator range. The produced control is a direct input signal (i.e., voltage) of the assumed
exemplary actuator.

This paper is organised as follows. In the following section, the regarded model
is introduced. Subsequently, the optimal control problem formulation and solution are
given. Then, implementation techniques, including optimal-based control and hybrid
ground-hook control, are derived. Test configurations are described afterwards. The paper
is summarised with control results, remarks, and conclusions.

2. NREL 5.0 MW Tower-Nacelle Model with HTVA

The tower-nacelle model of the NREL 5.0 MW wind turbine structure [12,19] is con-
sidered a primary vibrating system. The control analysis focuses on the 1st bending mode
of the tower—the associated modal parameters are mass m1, stiffness k1, and damping c1
(Figure 1). An HTVA of mass m2, stiffness k2, damping c2, and active force Fa of maximum
absolute value Fsat is built at the top of a tower/in the nacelle (where the maximum deflec-
tion of the regarded mode occurs) to address the tower’s 1st bending mode attenuation
effectively. The movements of both m1 and m2 are restricted to being linear displacement
x1 and x2 (respectively) along the horizontal axis, which is also the axis of an excitation
force Fe applied to the nacelle/rotor (assuming small tower deflection angles). Based on
the previous research, the mass m2 is assumed to be 10 tons (2.33% of m1) to optimise
performance vs. the added mass ratio [16,19,34,43,44]. The stiffness (k2) and damping
(c2) parameters were calculated according to Den Hartog [23]. The values of the regarded
system parameters are presented in Table 1, while the system diagram is depicted in
Figure 1.
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Figure 1. Two-body diagram of a regarded system with hybrid tuned vibration absorber (HTVA).

Table 1. NREL 5.0 MW with HTVA model parameters.

Parameter Value

m1 428.790 Mg

k1 1545.6 kN/m

c1 3.5420 kNs/m

m2 10 Mg

k2 34.421 kN/m

c2 3.3521 kNs/m

Fm 3.0 kN

a1, a2, a 1.50 V, 4.10 1/V, 6.15

Fsat Fmtgh(a) ∼= 3.0 kN

3. Optimal Control Problem Formulation and Solution

Consider the equation of a vibrating system with an HTVA:

.
z(t) = f (z(t), u(t), t), . . . t ∈ [t0, t1], (1)

where z(t) is a state vector:

z(t) =
[

z1(t) z2(t) z3(t) z4(t)
]T (2)

with the initial condition:
z(t0) = z0 (3)

u(t) is a piecewise-continuous, scalar control function (u(t) ∈ U), and the quality
index to be minimised is:

G(z, u) =
∫ t1

t0

g(z(t), u(t), t)dt (4)

Following Section 2, assume: z1 = x1, z2 =
.
x1, z3 = x2, z4 =

.
x2, thus:

f (z(t), u(t), t) =


z2(t)

1
m1

(−(k1 + k2)z1(t)− (c1 + c2)z2(t) + k2z3(t) + c2z4(t)− Fa(t) + Fe(t))
z4(t)

1
m2

(k2z1(t) + c2z2(t)− k2z3(t)− c2z4(t) + Fa(t))

 (5)

where Fe(t) is the excitation force applied to the primary structure. To account for the
actuator operating characteristics’ nonlinearity (Figure 2), as in [45] (with negative forces
incorporated to obtain the profile symmetrical with respect to the origin), including its
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output force Fa constraints, i.e., saturation to [−Fsat, Fsat] range (Fsat > 0, see Table 1), it
was further assumed:

• an actuator input voltage v(t) = a1 sin u(t) constrained to [−a1, a1] V range,
• an unconstrained control signal u(t) ∈ U, U = (−∞, ∞),
• an actuator force Fa(v(t)) = Fmtgh(a2v(t)); thus: Fa(u(t)) = Fmtgh(a sin u(t)) (see

Table 1, a = a1a2; note that tgh(a) ∼= 1 with roundoff error below 10—5).
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The actuator time constants were assumed negligible for the current analysis stage
(time constant associated with the regarded NREL 5.0 MW first tower bending mode is
above 3 s).

The considered quality index is:

g(z(t), u(t), t) = g11z12(t) + g12z22(t) + g13(z1(t)− z3(t))
2

+g14(z2(t)− z4(t))
2 + g22Fa2(u(t)) + g23Pa2(z(t), u(t), t)

(6)

to account for the minimisation of the primary structure displacement z1 and velocity z2,
the HTVA stroke z1 − z3 and relative velocity z2 − z4, and the actuator control force Fa and
power Pa, where: Pa(z(t), u(t), t) = Fa(u(t))(z2(t)− z4(t)).

Assume a Hamiltonian function in the form:

H(ξ(t), z(t), u(t), t) = −g(z(t), u(t), t) + ξT(t) f (z(t), u(t), t) (7)

If (z∗(t), u∗(t)) is an optimal controlled process, there exists an adjoint (co-state) vector
function ξ satisfying the equation:

.
ξ(t) = − f ∗Tz (z∗(t), u∗(t), t)ξ(t) + gT

z (z
∗(t), u∗(t), t), t ∈ [t0, t1] (8)

with a terminal (transversality) condition:

ξ(t1) = 0 (9)

so that u∗(t) maximises the Hamiltonian over the set U for almost all t ∈ [t0, t1] (Pon-
tryagin maximum principle) [46]. The functions f and g are assumed to be continuously
differentiable with respect to the state and continuous with respect to time and control,
while fz and gz are f and g derivatives with respect to z.

For the regarded system, the co-state vector is:

ξ(t) =
[

ξ1(t) ξ2(t) ξ3(t) ξ4(t)
]T (10)
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while:

f ∗Tz (z∗(t), u∗(t), t) =


0 − 1

m1
(k1 + k2) 0 1

m2
k2

1 − 1
m1

(c1 + c2) 0 1
m2

c2

0 1
m1

k2 0 − 1
m2

k2

0 1
m1

c2 1 − 1
m2

c2

 (11)

and:

gT
z (z
∗(t), u∗(t), t)=


2g11z∗1(t) + 2g13(z∗1(t)− z∗3(t))

2g12z∗2(t) + 2g23F2
a (u∗(t))(z∗2(t)− z∗4(t)) + 2g14(z∗2(t)− z∗4(t))
−2g13(z∗1(t)− z∗3(t))

−2g23F2
a (u∗(t))(z∗2(t)− z∗4(t))− 2g14(z∗2(t)− z∗4(t))

 (12)

The Hamiltonian maximisation condition is [46]:

∂H(ξ(t),z∗(t),u(t),t)
∂u(t) =

acos(u(t))
(
1− tgh2(asinu(t))

){ 1
m2

ξ4(t)− 1
m1

ξ2(t)− 2Fmtgh(asinu(t))
(

g22 + g23(z2(t)− z4(t))
2
)}

= 0,
(13)

or (assuming g22 6= 0; note that a
(
1− tgh2(asinu(t))

)
> 0 for all u(t) ∈ U):

cos(u(t))

 1

2Fm

[
g22 + g23(z2(t)− z4(t))

2
]( 1

m2
ξ4(t)−

1
m1

ξ2(t)
)
− tgh(asinu(t))

 = 0 (14)

with the appropriate sign change regime, as analysed hereinafter; for attention, con-
sider u(t) range of [−π/2, π/2] (see Figure 3, including zoom of point (−π/2, 1) neigh-
bourhood in its top left corner).
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Equation (14) yields proposition (15a)–(15c) covering three disjoint and complemen-
tary cases (see Figure 3):

1. if
{

1
2Fm[g22+g23(z2(t)−z4(t))

2]

(
1

m2
ξ4(t)− 1

m1
ξ2(t)

)}
≤ −tgh(a), then (14) is fulfilled and

∂H(ξ(t),z∗(t),u(t),t)
∂u(t) exhibits +/− sign change (Hamiltonian maximisation) for: u∗(t) =

−π
2 only, so:

v∗(t) = −a1,F∗a (u
∗(t)) = −Fmtgh(a) = −Fsat (15a)
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2. if
{

1
2Fm[g22+g23(z2(t)−z4(t))

2]

(
1

m2
ξ4(t)− 1

m1
ξ2(t)

)}
≥ tgh(a), then (14) is fulfilled and

∂H(ξ(t),z∗(t),u(t),t)
∂u(t) exhibits +/− sign change for: u∗(t) = π

2 only, so:

v∗(t) = a1,F∗a (u
∗(t)) = Fmtgh(a) = Fsat, (15b)

3. if
{

1
2Fm[g22+g23(z2(t)−z4(t))

2]

(
1

m2
ξ4(t)− 1

m1
ξ2(t)

)}
∈ (−tgh(a), tgh(a)), then (14) is

fulfilled and ∂H(ξ(t),z∗(t),u(t),t)
∂u(t) exhibits +/− sign change for:

tgh(a sin u∗(t)) = 1
2Fm[g22+g23(z2(t)−z4(t))

2]

(
1

m2
ξ4(t)− 1

m1
ξ2(t)

)
only, so:

v∗(t) = 1
a2

arctgh

{
1

2Fm

[
g22+g23(z∗2(t)−z∗4(t))

2]( 1
m2

ξ4(t)− 1
m1

ξ2(t)
)}

,

F∗a (u∗(t)) =
1

2
[

g22+g23(z∗2(t)−z∗4(t))
2]( 1

m2
ξ4(t)− 1

m1
ξ2(t)

) (15c)

The obtained solution is consistent with [33,47].

4. Implementation Techniques

The common implementation technique of the optimal control for nonlinear sys-
tems is an offline computation of the u∗(t) pattern using the two-point boundary value
problem (BVP) (1)(3)(8)(9) solution. Nonetheless, (so determined) open-loop control does
not provide robustness to uncertainties such as unmodeled dynamics and perturbations
of external forces or initial conditions. Thus, perturbation control techniques are often
employed [39,48]. However, proper linearisation may be a problem for many nonlin-
ear systems with implicit relations, actuator saturation, etc. Here, the author proposes
another approach.

4.1. Optimal-Based Control

To address the above issues regarding uncertain systems with nonlinearities, the
BVP (1)(3)(8)(9) may be solved at each sampling step (ts) of the real-time implementa-
tion. Recently, numerical and experimental implementation of such a nonlinear optimal
control technique for a system with an MRTVA (see Section 5.2) was realised with the
MATLAB/Simulink s-function and the bvp4c two-point BVP solving algorithm employed
at every sampling step [33,49]. It was also shown that the BVP iteration procedure impli-
cating large computational load might be omitted while maintaining robustness to external
disturbances and unmodelled dynamics [33,34] by utilising a short time horizon of, one
after the other, optimal problem task with appropriate resetting time (i.e., terminal time
t1) of co-state integrators. As was previously proven [33], it may be demonstrated for the
current study (see the following Remark 1) that the influence of the transversality condition
(9) error is negligible. Thus, the optimal-based vibration control of the structure/system
with HTVA, with all of its advantages (as method-embedded nonlinearities and various
optimisation fields covered by the quality index), may be implemented in real-time using
a simple data acquisition and control environment. In the present analysis, the baseline
optimisation horizon of ten sampling steps is assumed. This approach is further designated
simply by HTVA.

Remark 1. Some crucial steps of the transversality condition error analysis are given below (the
detailed analysis–for the MRTVA application–is presented in [33]).
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Let τ be an arbitrary continuity point of the optimal control u∗(t), and a needle-like
variation of u∗(t) is defined as:

uλ(t) =
{

u∗(t), if t /∈ [τ − λ, τ)
µ, if t ∈ [τ − λ, τ)

(16)

for µ being an arbitrary, fixed element of the set U, and sufficiently small λ. From [46]:

y(τ) = f (z∗(τ), µ, τ)− f (z∗(τ), u∗(τ), τ). (17)

For any t ∈ [τ, t1]:

y(t) = y(τ) +
∫ t

τ
fz(z∗(θ), u∗(θ), θ)y(θ)dθ. (18)

Thus, the function y(t) is the solution of:

.
y(t) = fz(z∗(t), u∗(t), t)y(t), (19)

on [τ, t1] with the initial condition (17). Hence:

ξT(t)y(t) = −
∫ t1

t
gz(z∗(θ), u∗(θ), θ)y(θ)dθ + ξT(t1)y(t1). (20)

Here, in the elementary proof of the maximum principle [46] it is assumed: ξ(t1) = 0
according to (9). If ξ(t1) 6= 0, thus for t = τ (17):

ξT(τ)[ f (z∗(τ), u∗(τ), τ)− f (z∗(τ), µ, τ)] =
∫ t1

τ
gz(z∗(θ), u∗(θ), θ)y(θ)dθ − ξT(t1)y(t1). (21)

For (z∗(t), u∗(t)) being an optimal control process:

g(z∗(τ), µ, τ)− g(z∗(τ), u∗(τ), τ) ≥ −
∫ t1

τ
gz(z∗(θ), u∗(θ), θ)y(θ)dθ. (22)

Using (21) we get:

−g(z∗(τ), u∗(τ), τ) + ξT(τ) f (z∗(τ), u∗(τ), τ) ≥ −g(z∗(τ), µ, τ) + ξT(τ) f (z∗(τ), µ, τ)−
−ξT(t1)y(t1),

(23)

This can be written in the equivalent form:

H(ξ(τ), z∗(τ), u∗(τ), τ) ≥ H(ξ(τ), z∗(τ), µ, τ)− ξT(t1)y(t1). (24)

For ξ(t1) = 0, the maximum principle is easily proved. For ξ(t1) 6= 0, however, the
product: ξT(t1)y(t1) in (24) is estimated by calculating y(t1) with the use of equations
(17) and (19). It was assumed: y(τ) = − f (z∗(τ), u∗(τ), τ), which is of the order of mag-
nitude equal or higher than: f (z∗(τ), µ, τ)− f (z∗(τ), u∗(τ), τ), being the right-hand-side
(RHS) of (17), concerning the values of the terms present in RHS of (5) for the regarded
system parameters (Table 1) and value ranges of Fe(t), Fa(u(t)) and excitation frequen-
cies. Note that f (z∗(τ), µ, τ) is of the order of f (z∗(τ), u∗(τ), τ) as µ ∈ U in (16). Based
on (24), the transversality condition (9) error ε(τ) is calculated as follows (considering
H(ξ(τ), z∗(τ), u∗(τ), τ) 6= 0):

H(ξ(τ), z∗(τ), µ, τ)

H(ξ(τ), z∗(τ), u∗(τ), τ)
≤ 1 + ε(τ), (25)
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ε(τ) =
ξT(t1)y(t1)

H(ξ(τ), z∗(τ), u∗(τ), τ)
. (26)

The values of the quotient ε(τ) (26) are negligible for most of the time instants, except
those corresponding to the protected structure deflection (nacelle-assembly displacement)
x1 sign change neighbourhood; thus, Hamiltonian is close to zero. Therefore, the control
results are considered credible in all but a minor amount of time samples. The exemplary
ε(τ) patterns for excitation frequencies of 0.27 Hz and 0.30 Hz, and t1 = 10ts, are presented
in Figure 4. The value of τ = ts = 10−4 s was assumed; ε(τ) time patterns for different
τ values are equivalent.
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4.2. Hybrid Ground-Hook Control

On the basis of the proposition (15a)–(15c), the ground hook law for the HTVA is de-
rived. For nonzero (positive) g22 and Fm values, a sign of the term:{

1
2Fm[g22+g23(z2(t)−z4(t))

2]

(
1

m2
ξ4(t)− 1

m1
ξ2(t)

)}
(being the (15a)–(15c) antecedent left-hand-

side, LHS) is consistent with the sign of the term: −ξ2(t), as: 1
m1

ξ2(t) is many orders
of magnitude greater than: 1

m2
ξ4(t) for dominant g11 value in the quality index (4) (i.e.,

when the primary structure/system displacement amplitude minimisation is a dominant
objective). Moreover, the co-state dynamics’ (8) first and second equation RHS s yield:
sgn(−ξ2(t)) ≈ sgn(x1(t)), thus:

sgn

 1

2Fm

[
g22 + g23(z2(t)− z4(t))

2
]( 1

m2
ξ4(t)−

1
m1

ξ2(t)
) ≈ sgn(x1(t)). (27)
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The simulations prove that Formula (27) gives an adequately precise approximation
of the proposition (15a)–(15c) antecedent LHS sign.

For adequately high g11, it holds:∣∣∣∣∣∣ 1

2Fm

[
g22 + g23(z2(t)− z4(t))

2
]( 1

m2
ξ4(t)−

1
m1

ξ2(t)
)∣∣∣∣∣∣ ≥ tgh(a), (28)

for almost all time samples (see control Fa time patterns of values being equal to ∓Fsat
for g11 = 1018, Section 6), effectively eliminating case 3 (15c) from the control proposition
(15a)–(15c).

Thus, on the basis of (27) and (28), when the primary structure/system displace-
ment amplitude minimisation is a sole objective, the HTVA optimal control proposition
(15a)–(15c) simplifies to:

v(t) = a1 sgn(x1(t)),Fa(t) = Fsat sgn(x1(t)), (29)

which is a two-level optimal-based displacement ground-hook law [37] (designated further
by HTVA-GH), similar to the one derived by the author earlier for the MRTVA [33].

5. Test Configurations

The utilisation of the optimal-based HTVA is combined with the optimal-based
MRTVA and a passive TVA tuned according to [23], hereinafter designated by passive TVA.

5.1. Optimal-Based Control for the Wind Turbine Tower-Nacelle Model with HTVA

For the purpose of the real-time control of the wind turbine (NREL 5.0 MW) tower first
bending mode, the HTVA implementation techniques described in Sections 2–4 are adopted:
the optimal-based HTVA control is analysed along with the HTVA-GH law. The system
parameters as in Table 1 are used along with the control force proposition (15a)–(15c).

5.2. Optimal-Based Control for the Wind Turbine Tower-Nacelle Model with MRTVA

The optimal-based MRTVA is implemented based on [34] (Figure 5), where the MR
damper force Fmr is given by:

Fmr(z(t), imr(t), t) = (C1imr(t) + C2)tanh{ν[(z4(t)− z2(t)) + (z3(t)− z1(t))]}
+(C3imr(t) + C4)[(z4(t)− z2(t)) + (z3(t)− z1(t))],

(30)

according to the hyperbolic tangent model—an upscaled version of the MR damper as
in [33,34,50], while imr(t) is the MR damper coil current obtained based on nonlinear
optimal control problem formulation and solution (its construct is given by proposition (18)
in [34] and omitted here for clarity), respecting the MR damper dynamics, resistance force
constraints, and input current limitation to [0, imax] range [33,34]. The value of imax = 1.0
[A] was adopted. For the MRTVA implementation, the considered quality function is based
on [34]:

g(z(t), imr(t), t) = g11z12(t) + g12z22(t) + g13( z1(t)− z3(t))
2 + g14(z2(t)− z4(t))

2

+g21imr2(t) + g22Fmr2(z(t), imr(t), t),
(31)

to minimise the primary structure deflection z1 and velocity z2, the MR damper stroke
z1 − z3 and piston velocity z2 − z4, and the MR damper control current imr and force Fmr.
For the current study, the quality index (31) weights were set to minimise the primary
structure deflection as a sole objective, or along with the MR damper force minimisation.
For the purpose of the MR damper implementation instead of a viscous one (as for HTVA,
see Figure 1 and Table 1), TVA spring stiffness was re-tuned to the k2MR value (see Figure 5
and Table 2), as the MR damper resistance force also contains a stiffness component. The
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assumed MR damper model (30) parameters are given in Table 2. The above-described
solution is further designated by MRTVA.
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Table 2. NREL 5.0 MW with MRTVA model parameters.

Parameter Value

m1 428.790 Mg

k1 1545.6 kN/m

c1 3.5420 kNs/m

m2 10 Mg

k2MR
30.599 kN/m (g22 = 0)
29.297 kN/m (g22 > 0)

C1 3410

C2 82.5

C3 2640

C4 770

ν 130

5.3. Test Conditions

Test condition parameters are assumed as follows. The wind turbine tower-nacelle
model is excited by a harmonic force of a frequency range [0.20, 0.45] Hz (corresponding
to the regarded NREL 5.0 MW towers 1st bending mode frequency neighbourhood) and an
amplitude A(Fe(t)) = 21 kN, applied horizontally to the nacelle/rotor. A fixed sampling
step ts = 10−4 s is adopted, while the optimisation horizon t1 = 10ts is assumed, if not
stated otherwise.

The weighting factors for the HTVA quality index (6) are assumed concerning (control
conf. I–III):

I. minimisation of the primary structure deflection (nacelle-assembly displacement)
x1 amplitude as the sole objective: g11 = 1018, g12 = g13 = g14 = g23 = 0,
g22 = 4 · 10−12 (additionally, t1 = 102ts was regarded);

II. minimisation of the primary structure deflection x1 amplitude, considering lower
(than for conf. I) deflection amplitude weight with regard to actuator force weight:
g11 = 5 · 106, g12 = g13 = g14 = g23 = 0, g22 = 4 · 10−12;

III. minimisation of the primary structure deflection x1 amplitude, along with the
actuator mean power: g11 = 5 · 106 (structure deflection vs. actuator force con-
sideration as for conf. II), g12 = g13 = g14 = 0, g22 = 4 · 10−12, g23 = 1 · 10−10 or
g23 = 4 · 10−10.
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The nonzero g22 value was set for all above configurations to eliminate any division-
by-zero risk in Equation (14) and proposition (15a)–(15c) antecedent.

The weighting factors for the MRTVA quality index (17) are assumed concerning
(control conf. IV–V):

IV. minimisation of the primary structure deflection (nacelle-assembly displacement) x1

amplitude as the sole objective: g11 = 1018, g12 = g13 = g14 = g22 = 0, g21 = 4;
V. minimisation of the primary structure deflection x1 amplitude along with the MR

damper force: g11 = 1018, g12 = g13 = g14 = 0, g21 = 4, g22 = 1 or g22 = 2.

6. Control Results and Discussion

The efficiency of the HTVA (vs. MRTVA) is analysed employing frequency character-
istics of the dynamic amplification factor (DAF):

DAF =
A(x1(t))

A(Fe(t))/k1
, (32)

as well as the actuator (vs. MR damper) stroke amplitude A(x1 − x2), and the actuators
mean power AP and maximum force limit combined with the MR damper maximum
force MRF (A(•) states for amplitude). Moreover, time patterns of the primary structure
deflection (nacelle-assembly displacement) x1, actuator stroke x1 − x2, actuator force Fa,
spring force Fs, and viscous damper force Fd are analysed.

Figures 6–11 present the frequency characteristics of DAF, and A(x1 − x2), respectively,
obtained for the HTVA vs. MRTVA optimal-based control implementations, with regard
to the passive TVA. Figures 6–9 combine DAF and A(x1 − x2) frequency characteristics
(respectively) obtained for passive TVA vs. HTVA–GH vs. HTVA vs. MRTVA systems.
Figures 7–10 present frequency patterns of DAF and A(x1 − x2), respectively, for the HTVA
system with different values of g11 (the primary structure deflection weight) and g23
(the actuator mean power weight). Similarly, Figures 8–11 present DAF and A(x1 − x2)
frequency characteristics obtained for the MRTVA system with different g22 values (the MR
damper force weight). Additionally, Figure 12 presents the actuator mean power frequency
characteristics for HTVA with different g11 and g23 weights vs. HTVA-GH, while Figure 13
combines the MR damper maximum force for MRTVA with different g22 values and HTVA
actuator force limit of 3.0 kN.
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Figure 6. Dynamic Amplification Factor (DAF) frequency characteristics: passive TVA vs. HTVA–GH
vs. HTVA (g11 = 1018, g23 = 0, t1 = 102ts) vs. MRTVA (g22 = 0).
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Figure 9. The TVA stroke amplitude A(x1 − x2) frequency characteristics: passive TVA vs. HTVA–GH
vs. HTVA (g11 = 1018, g23 = 0, t1 = 102ts) vs. MRTVA (g22 = 0).
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values (g23 = 0, if not stated otherwise) vs. HTVA–GH.
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Figure 13. The MR damper maximum force MRF frequency characteristics: MRTVA with different
g22 values vs. HTVA actuator maximum force limit.

Figures 14–16 present the comparison of the x1, x1 − x2, Fa, Fs, and Fd time pat-
terns obtained for HTVA, HTVA-GH, and passive TVA systems at the frequency points of:
0.27 Hz, 0.28 Hz and 0.30 Hz (see DAF and A(x1 − x2) values at these frequency points in
Figures 6–10). Time patterns obtained for the MRTVA system are presented in [33,34].

Observing the comparison of DAF frequency characteristics in Figure 6, it is evident
that implementation of both HTVA (either HTVA-GH, or HTVA) with 3.0 kN actuator, and
MRTVA with MRF of 9.2 kN, leads to significant NREL 5.0 MW tower vibration reduction
in comparison to a system with a passive TVA of the same absorber mass ratio. However,
HTVA (HTVA-GH, and HTVA conf. I), due to its active force of the demanded value
and sign, is capable of lowering DAF almost to zero in the 1st tower bending frequency
(ca. 3.0 Hz) neighbourhood, where optimal damping ratio is zero. In contrast, MRTVA
(conf. IV) lowers the DAF value to ca. 1.8, as the MR damper residual force at zero current
is always nonzero, and the force sign is arbitrary. Maximum DAF values for both HTVA
and MRTVA are ca. 7.3. Yet, these values of DAF are quite satisfactory for the 2.33% TVA
mass ratio. In comparison, minimum and maximum DAF values within the 1st bending
frequency neighbourhood for passive TVA are 7.7 and 9.0, respectively. The influence of
g11 (the tower deflection weight) and g23 (the actuator mean power weight) values on
DAF is evident in Figure 7. The weighting factors of the conf. I yield the most favourable
DAF patterns; however, this comes at the cost of the longest TVA stroke required (as for
HTVA-GH, see Figures 9 and 10) and, especially, the highest mean power/energy demand
(although slightly lower than for HTVA-GH, Figure 12). The conf. II yields a somewhat
higher minimum DAF within the 1st bending frequency neighbourhood, but the TVA stroke
is slightly lower, while the power/energy demand is significantly reduced. Finally, the conf.
III yields raised minimum DAF values within the 1st bending frequency neighbourhood,
although maximum DAF values are, on the other hand, lowered below 7.0; moreover,
stroke amplitudes are considerably reduced—even below 0.6 m (g23 = 4·10−10; ca. 30%
reduction with regard to conf. I, t1 = 102ts)—similar to passive TVA, while the demanded
energy is reduced massively (8-fold for g23 = 4 · 10−10 with regard to conf. I, t1 = 102ts).
Concerning the MRTVA dependence on the MR damper force weight, setting nonzero g22,
conf. V (vs. g22 = 0, conf. IV) yields DAF patterns (Figure 8) with the local minimum value
raised, lowered two maxima for g22 = 1 (see comment above for conf. III), and leads to
an ca. 16% reduction in the maximum demanded MR damper force (see Figure 13) and,
at the same time, 40% reduction in the damper stroke amplitude (Figure 11). Maximum
A(x1 − x2) values for conf. V are similar to both passive TVA and HTVA conf. III with
g23 = 4 · 10−10 (Figure 10).
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Figure 14. Time responses at 0.27 Hz: (a) HTVA, g11 = 1018, g23 = 0, t1 = 102ts, (b) HTVA, g11 = 5 · 106, g23 = 0, (c) HTVA,
g11 = 5·106, g23 = 1 · 10−10, (d) HTVA, g11 = 5·106, g23 = 4 · 10−10, (e) HTVA–GH, (f) passive TVA.
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Figure 15. Time responses at 0.28 Hz: (a) HTVA, g11 = 1018, g23 = 0, t1 = 102ts, (b) HTVA, g11 = 5·106, g23 = 0, (c) HTVA,
g11 = 5·106, g23 = 1·10−10, (d) HTVA, g11 = 5·106, g23 = 4·10−10, (e) HTVA–GH, (f) passive TVA.
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Figure 16. Time responses at 0.30 Hz: (a) HTVA, g11 = 1018, g23 = 0, t1 = 102ts, (b) HTVA, g11 = 5 · 106, g23 = 0, (c) HTVA,
g11 = 5·106, g23 = 1 · 10−10, (d) HTVA, g11 = 5 · 106, g23 = 4 · 10−10, (e) HTVA–GH, (f) passive TVA.

It may be concluded that both HTVA and MRTVA yield tower vibration reduction
compared to the passive TVA. The highest DAF reduction efficiency is observed for HTVA
conf. I and HTVA-GH with a 0.83 m stroke amplitude and 3.0 kN actuator force/25.6 kW
mean actuator power. The best MRTVA based solution is conf. IV with the 1.0 m stroke
amplitude and 9.2 kN MR damper maximum force. Concerning DAF, the advantage of
HTVA solutions (HTVA-GH, and HTVA conf. I) over MRTVA (conf. IV) is evident within the
1st tower bending frequency –5/+10% neighbourhood (Figure 6), using 17% less working
space (Figure 9); however, MRTVA uses only minimal (signal level) energy, to amend MR
damper operating properties, as compared with HTVA. The interesting alternatives are
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HTVA conf. III, and MRTVA conf. V with g22 = 1. Compared with the passive TVA, they
require similar working space, while DAF reduction is quite significant. The actuator mean
power in conf. III is as low as 7.6 kW or even 3.2 kW (g23 = 1 · 10−10 or g23 = 4·10−10,
respectively), while the required MR damper force for conf. V is ca. 7.7 kN. In conclusion, by
increasing the g23 weight of HTVA (or g22 weight of MRTVA), effective vibration attenuation
is obtained with reduced mean actuator power (or reduced MR damper force); thanks
to this, reasonable performance is attainable using a significantly (8-fold) lower energy
amount (or MR damper characterised with 16% lower resistance force).

Time patterns presented in Figures 14–16 give the possibility to compare control force
Fa characteristics, as well as the effectiveness of HTVA with different g11 and g23 values
(a ÷ d) and HTVA-GH (e), combined with passive TVA (f). Both HTVA conf. I (a) and conf. II
(b) are distinguished by high-frequency bang-bang (0, ±Fsat) control patterns, although for
lower g11 value (conf. II), very short transition time ranges corresponding to the proposition
(15c) may be observed. HTVA conf. I (a) (corresponding to the highest g11 weight) along
with HTVA-GH (e) both exhibit the best A(x1) reduction efficiency overall, especially at
0.30 Hz excitation frequency (Figure 16, mind different ordinate labels for (a) and (e)).
The difference in HTVA conf. I (a) and HTVA-GH (e) control patterns (high-frequency
high-duty-cycle bang-bang switches vs. simple bang-bang switches) yield slightly lower
mean actuator power (energy demand) for HTVA conf. I. The influence of nonzero g23
is evident when observing HTVA conf. III control Fa patterns (c) and (d), characterised
with the actuator force trimming that is more evident for greater g23 value (d), yielding
significantly reduced mean actuator power (Figure 12) and hence energy demand.

The greater the (H)TVA stroke amplitude A(x1 − x2) (that is influenced by the control
force Fa pattern), the higher the spring force component Fs and (for the same frequency)
viscous damper force component Fd. Based on Figures 14–16, it may be seen that Fa is set
in phase with x1, which confirms (29). Considering the Fa sign in (5) indicates that control
force Fa opposes primary structure deflection x1.

7. Conclusions

The current research aimed to compare the optimal-based vibration control solutions
for the wind turbine towers 1st bending mode, utilising the tower-nacelle model of the
NREL 5.0 MW wind turbine equipped with a nonlinear HTVA vs. MRTVA. Employing
the Pontryagin maximum principle, the nonlinear optimal HTVA control proposition
was derived along with its simplified revisions to avoid high computational load BVP
solving during real-time control. The developed techniques were successfully implemented
and verified by simulation analyses against the previously developed MRTVA control
solution. The derived simple optimal-based hybrid ground-hook control (HTVA-GH) and
the proposed optimal-based nonlinear control (HTVA) tuned with the aim of the primary
structure deflection minimisation priority provided the best vibration attenuation efficiency.
The advantage of HTVA over MRTVA is evident within the 1st tower bending frequency
(3.0 Hz) neighbourhood (see Figure 6), with HTVA also requiring less working space.

Using the appropriate optimisation fields of a nonlinear optimal control quality index
enabled an 8-fold reduction of the HTVA mean actuator power along with a (further)
29% reduction of the working space while maintaining a significant advantage of HTVA
(concerning DAF) over the passive TVA. The attained DAF values are more than adequate
for the assumed 2.33% mass ratio and 3.0 kN actuator force, proving the effectiveness and
validity of the proposed approaches.

Although the above results are obtained using the simplified 2 DOF tower-nacelle
model with HTVA, the developed control solutions may be implemented in many en-
gineering structures and systems such as onshore and offshore wind turbines, high-rise
buildings, masts, bridges, etc. Both HTVA and HTVA-GH do not require determination of
the actual (dominant) vibration frequency or mode, excitation or disturbance assumptions,
nor the specification of the protected structure/system nature; the HTVA has to be tuned
accordingly using modal parameters (mass and stiffness) associated with the protected
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structure/system selected mode, whereas for the HTVA proposition (15a)–(15c), state and
co-state dynamics model (representing the selected mode and HTVA) is also required.
The produced control signal is directly the actuator input, i.e., the voltage in the regarded
example (in addition to the calculation of the required active force), as actuator nonlinearity
is an intrinsic part of the control proposition derived for the sample actuator characteris-
tics. No force tracking nor offline calculations are necessary. Thus, the control quality is
not compromised by excitation/disturbance variation or actuator force constraints, both
essential for real-time control.

The method limitation is the HTVA location—it should be optimised with regard
to the particular vibration mode deflection maximum, e.g., for the 1st tower bending
mode attenuation, TVA should be preferably localised in the nacelle or top tower section,
while for the 2nd tower bending mode attenuation—at 0.6÷0.7 height of the tower. It is
apparent [11,14] that the second tower bending mode node occurs very close to the nacelle
location; thus, vibration attenuation possibilities using the TVA located in the nacelle are
little to moderate. Also, when the vibration frequency deviates significantly from the
frequency of HTVA tuning, the stiffness (spring) force has to be amended by the active
actuator to re-tune the HTVA; thus, the HTVA efficiency is limited for such a case by an
actuator force constraints in relation to the magnitude of the frequency deviation.

The derived HTVA-GH algorithm is devoted to the case when only the primary
structure deflection amplitude has to be minimised, while the HTVA proposition (15a)–(15c)
copes well with various minimisation fields covered by the quality index (6) as, e.g., primary
structure deflection, velocity, or (indirectly—with the use of dynamics (5)) acceleration,
actuator stroke (working space), velocity, force, or energy demand; all may be encountered
during real-world wind turbine operation. Only some of these fields were optimised within
the current research. However, the proposed approach will serve as a general platform for
future widespread analyses covering, e.g., actuator velocity and acceleration restrictions,
root-mean-square vs. peak force limitation, protected structure acceleration minimisation,
etc. The nearest stage of the author’s research is the experimental validation of the proposed
solution using a scaled laboratory model of a wind turbine tower-nacelle system [51,52]
that exhibits dynamical similarity with a full-scale wind turbine structure [53].
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