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3 Czamara Urządzenia Chłodnicze Company, ul. Ceglarska 27, 34-600 Limanowa, Poland;
biuro@czamara.net.pl

* Correspondence: M.Lawrynczuk@ia.pw.edu.pl

Abstract: The objectives of this work are: (a) to present a new system for building heating which is
based on underground energy storage, (b) to develop a mathematical model of the system, and (c) to
optimise the energy performance of the system. The system includes Photovoltaic Thermal Hybrid
Solar Panels (PVT) panels with cooling, an evacuated solar collector and a water-to-water heat pump.
Additionally, storage tanks, placed underground, are used to store the waste heat from PVT panels
cooling. The thermal energy produced by the solar collectors is used for both domestic hot water
preparation and thermal energy storage. Both PVT panels and solar collectors are assembled with a
sun-tracking system to achieve the highest possible solar energy gain. Optimisation of the proposed
system is considered to achieve the highest Renewable Energy Sources (RES) share during the
heating period. Because the resulting optimisation problem is nonlinear, the classical gradient-based
optimisation algorithm gives solutions that are not satisfying. As alternatives, three heuristic global
optimisation methods are considered: the Genetic Algorithm (GA), the Particle Swarm Optimisation
(PSO) algorithm, and the Jaya algorithm. It is shown that the Jaya algorithm outperforms the GA
and PSO methods. The most significant result is that 93% of thermal energy is covered by using the
underground energy storage unit consisting of two tanks.

Keywords: renewable energy; photovoltaic panel; heat pumps; optimisation; heuristic optimisation

1. Introduction

Building heating takes a significant part of our primary energy consumption and
thereby is a crucial player in our transition to a more renewable-based energy future.
Most of the renewable energy sources, however, face significant challenges for being
intermittent and location-dependent (weather, wind speed, irradiation). Despite these
inherent shortcomings, the low operational and maintenance costs as well as their lower
greenhouse gas emissions, have made renewable energy sources more popular in the past
decades. Recently, EU countries are planning to increase their renewable energy share to
30% as well as to increase energy efficiency by 30% compared to 1990. Since the residential
sector represents over 27% of global energy consumption and 17% of CO2 emissions [1],
the use of renewable energy systems in building heating is of high importance.

The use of solar-assisted ground source heat pumps is presented by Sun et al. in [2].
To maintain energy efficiency and allow the annual average Coefficient Of Performance
(COP) of the heat pump, it is equal to 4.66.

Naranjo-Mendoza et al. [3] have studied an experimental Solar-Assisted Ground
Source Heat Pump (SAGSHP) system intended for residential heating. After 19 months of
operation, the results show that the system can demonstrate good performance in satisfying
the building’s heating needs during the winter period.
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A study on the energy efficiency and cost-effectiveness of a SAGSHP system based
on PVT panels is shown by Sakellariou et al. in [4] for the city of Thessaloniki (Greece). It
was found that the SAGSHP system achieved the highest efficiency with 16 PVT panels,
which can cover 73% of the heating load and generate 1.22 times more electricity than
it consumes.

Fine et al. [5] have combined a ground source heat pump system with a solar instal-
lation to eliminate the effect of the ground thermal imbalance and minimise the system
operating costs. A cost-effectiveness analysis of the investment has been then performed to
determine the system operating cost.

Nouri et al. [6] presented simulations of different configurations of solar collectors
with a ground source heat pump system to meet the heating, cooling, and hot water
demand of a house in Tabriz, Iran. The payback period of the studied system is about
13 years.

Verma and Murugesan [7] have studied the performance of a SAGSHP system in-
tended for thermal energy storage during the day and room heating at night. It has been
found that an increase in the mass flow rate of the heat transfer medium in the solar collec-
tor and in the ground heat exchanger allows a 21% rise in the amount of heat injected into
the ground. Ground recharge results in a 23% increase in the system COP for night-time
room heating.

Dai et al. [8] have shown that solar heat can be used to accelerate ground regeneration
with the heat pump module switched off, but the time of using solar energy to recharge
the boreholes should be optimised depending on the water temperature in the solar
storage tank.

Verma and Murugesan [9] have proposed a methodology for optimization of the heat
transfer area of the solar collector and the length of the ground heat exchanger to achieve a
higher COP of a SAGSHP by the Taguchi method. The yearly average COP is equal to 4.23.

In this article, we present a novel heating system for buildings. The system combines
the PVT panels with cooling, evacuated solar collector, and water-to-water heat pump.
Additionally, storage tanks, placed underground, are used to store the waste heat from
PVT panels cooling. The thermal energy produced by the solar collectors is used for both
domestic hot water preparation and thermal energy storage. Both PVT panels and solar
collectors are assembled with a sun-tracking system to achieve the highest possible solar
energy gain. The tank is intentionally not insulated so that it exchanges heat with the
ground, heating it in summer so the increased soil temperature heats the tank and, in
the worst-case scenario, acts as a natural insulator, with a slow time response, during
winter when the tank is discharged. Furthermore, optimisation of the proposed system
is considered to achieve the highest renewable energy sources share during the heating
period. Because the resulting optimisation problem is nonlinear, the classical gradient-based
optimisation algorithm [10,11] gives solutions that are not satisfying. As alternatives three
heuristic global optimisation methods are considered: the Genetic Algorithm (GA) [12], the
Particle Swarm Optimisation (PSO) algorithm [13] and the Jaya algorithm [14]. Effectiveness
of all algorithms is discussed for different sampling periods of the optimisation algorithms
(or, in other words, for different frequency of activation of the optimisation routine).

From the performed literature survey, we can observe the lack of studies in the field of
optimisation of solar-assisted ground heat pumps with underground energy storage. This work
proposes an optimisation procedure for achieving the highest building heating efficiency.

2. A Heating System Based on a Photovoltaic Panel and a Solar Collector
2.1. Process Description

The proposed system (Figure 1) provides a low-temperature heating system (approxi-
mately 35 ◦C) for buildings based on a heat pump, waste heat from PVT panels cooling,
and underground thermal energy storage.
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The underground heat storage unit comprises high-capacity water tanks being buried
in the ground. The use of two water tanks is proposed. The first one is thermally insulated
and the second one is not insulated.

Figure 1. Scheme of the heating system.

The proposed system consists of sun-tracked PVT panels, sun-tracked solar collectors,
ground source heat pump, and heat accumulation unit. Two tanks are used to accumulate
the heat. The non-insulated tank is used to collect the waste heat from PVT panels. The
temperature up to 40 ◦C of water which is a storage medium can be achieved. The excess
heat from solar collectors can be stored in the insulated tank. The maximum temperature
achieved is 80 ◦C. The non-insulated tank transfers the heat to the ground in the summer-
time, which allows seasonal storage. It is assumed that the ground is insulated from the
sides. Furthermore, the borehole heat exchangers can be charged with the waste heat from
PVT panels and heat from solar collectors to allow an efficient ground regeneration. The
principal idea of the applied underground energy storage system is to increase the seasonal
COP of the heat pump by ground regeneration. Furthermore, the use of underground
energy storage units may lead to a reduced number of boreholes, which is economically
beneficial. Electrical energy from PVT panels is used to power a heat pump compressor.
The excess of electrical energy produced in the March-September period is assumed to be
stored in the electrical grid.

Because the heat pump is powered by electrical energy from the PVT panels and also
those panels deliver electrical energy for building demands, the electrical and heating
demands can be fully covered by the proposed solution.

The PVT panels specification is described in the first author’s previous work [15]
while Solar collectors data and drawing are provided in [16]. Heat pump thermal power
output is 50 kW.

2.2. Comparison with Other Systems

The proposed solution can be competitive with gas and biomass boiler-based heating
systems since the solution is entirely based on renewable energy sources (solar energy),
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and the maintenance costs of the system are low. Compared to a typical ground-source
heat pump system, the proposed heating system reduces the length of boreholes and
efficient ground regeneration. Therefore, higher values of seasonal COP can be achieved.
The proposed system can be an alternative to District Heating Systems since it can be
applied in the places where District Heating Networks cannot be installed (for example, in
the suburb area).

2.3. Process Modelling

We present a numerical model to test the merits of our proposed design. Hence, the
results are limited to a case study only. In what follows the governing equations and the
appropriate boundary conditions are presented and discussed. The major component of
the heating system are storage tanks that contain water. The tanks temperatures T1 and T2
are determined from the following differential equations

ρwcw
πD2

4
L

dT1

dτ
= Qsol,PVT − ϕQHP + Qground,1 (1)

ρwcw
πD2

4
L

dT2

dτ
= Qsol,SC − (1 − ϕ)QHP + Qground,2 (2)

where:

• D is the tank diameter (3 m);
• L is length of the tank (10 m);
• Qground,1 and Qground,2 are ground heat transfer to the first and the second tank,

respectively;
• QHP is heat transferred through the heat pump to the building;
• Qsol,PVT is solar heat flow from PVT panels cooling;
• Qsol,SC is solar heat flow from solar collectors;
• T1, T2 are water temperatures in the storages tanks 1 and 2, respectively;
• cw = 4180 J/(kg K) is specific heat of water;
• ϕ is the ratio of heat taken from the tank 1 to the entire heat taken by the heat pump;
• ρw = 1000 kg/m3 is density of water.

Solar heat flows Qsol,PVT and Qsol,SC are calculated as

Qsol,PVT = qAPVTηPVTt (3)

Qsol,SC = qASCηSC (4)

where APVT = 259.2 m2 (the electrical power output is 47 kW) and ASC = 54.4 m2 (the
thermal power output 35 kW) are the surface area of PVT panels and solar collectors,
respectively, ηPVTt and ηSC are the PVT panels and solar collector solar-thermal energy
conversion efficiency, q is monthly averaged solar daily irradiation (Table 1). The data is
collected for Limanowa in the south of Poland.
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Table 1. Monthly averaged daily solar irradiation flux and irradiation hours, assumed in the calcula-
tion (for Limanowa, south of Poland).

Month Monthly Averaged Daily Solar Irradiation Flux (q, W/m2) Irradiation Hours

January 400 2.8
February 400 3.6
March 500 4.8
April 600 7
May 800 7.7
June 800 7.9
July 900 8.8
August 900 7.5
September 700 6.1
October 500 4.8
November 400 3.4
December 400 2.5

Heat transferred through the heat pump to the building is calculated as

QHP = Qb

(
1 − 1

COP

)
(5)

where COP is the coefficient of performance and Qb is a building heating demand calcu-
lated as

Qb = UAb(Tset − Text) (6)

Thermal transmittance of the building is denoted as UAb (W/K). Text is the external
temperature varied daily, and Tset is a set temperature given as 20 ◦C. That temperature is
set only for heating season.

COP of the heat pump is calculated as

COP = ηcycle
TL

TL − TS
(7)

where the temperature at the hot side of heat pump TL = 40 ◦C, and the temperature at
the cold side of heat pump TS is either 20 ◦C when the T1 or T2 is higher than 20 ◦C or is
equal to T1 or T2 otherwise. Heat pump cycle efficiency ηcycle is assumed to be equal 0.4.
The thermal efficiency of the PVT panel is ηPVt = 0.65, the thermal efficiency of the solar
collector is ηSC = 0.8. The return temperature to the buffer tank is 35 ◦C. We assume that
the heat taken from the underground storage unit is equal to current energy demand of the
building. We do not model the heat exchanges. The considered case study is an idealised
one, but its goal is to optimise the operation of the underground energy storage unit in
order to limit the use of borehole heat exchanger. It is considered that the Domestic Hot
Water (DHW) demand is equal to 30% of the total heating demand.

Ground heat transfer to the first and second tank is calculated as

Qground,1 = h1πDL(Tg,1 − T1) (8)

Qground,2 = h2πDL(Tg,2 − T2) (9)

where Tg,1 and Tg,2 are the area averaged ground temperatures along tank circumference
calculated from ground heat transfer model of the ground surrounding tank 1 and tank 2,
respectively. We have

ρc
∂Tg

∂τ
= k

∂2Tg

∂x2 + k
∂2Tg

∂y2 (10)
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with boundary conditions

∂Tg

∂x
(W, y) = 0 (11)

∂Tg

∂y
(x, 0) = 0 (12)

−k
∂Tg

∂x
(x, Ht) = Ug,top(Text − Tg,av) (13)

For the tank 1, we have

− k
∂Tg

∂r

(
D
2

, ϕ

)
= h1(Tg − T1) (14)

For the tank 2, we have

− k
∂Tg

∂r

(
D
2

, ϕ

)
= h2(Tg − T2) (15)

where

• Ht is the total height of the domain assumed as 13 m;
• Tg,av is the yearly average ground temperature, assumed to be equal to 7.5 ◦C;
• Tg is the ground temperature, the initial ground temperature is assumed to be equal

to 20 ◦C;
• Ug,top is the overall heat transfer coefficient from the ground top layer to the external

environment, equal to 0.7 W/(m2K);
• W is the width of the domain, assumed as 10 m;
• c is specific heat capacity of the ground;
• h1 = 250 W/(m2K) and h2 = 0.05 W/(m2K) are the heat transfer coefficients from

the tank 1 and tank 2, respectively;
• k is thermal conductivity of the ground;
• x and y are Cartesian coordinates;
• ρ is density of the ground.

It is very difficult to predict the thermal and electrical efficiency of PVT. The electrical
efficiency is assumed to be equal to 18% and thermal efficiency to 60%. In the case of PVT,
some parts of solar energy is converted to: electricity 18%, heat 65%, and losses 17%.

The heat conduction within the ground domain is considered to be two-dimensional
and transient. The transient heat conduction equation is discretised using an implicit control
volume method. An in-house MATLAB code is developed to calculate the temperature
distribution in the ground leading to ground heat transfer rate Qground, which is then
substituted into Equations (1) and (2) for calculating the tank water temperature. The solar
collectors and PVT panel heat gains are subsequently determined as well as the building
heat demand.

2.4. Optimisation Objective

Optimisation is performed to achieve the highest contribution of the underground
energy storage unit to cover as much as possible the heating demands of the building. The
system is fully based on renewable energy because the electricity from PVT is delivered to
the heat pump. We optimise the system to achieve the following goals:

• To use less electrical energy due to the increase in the overall COP of the heat pump;
• To use mostly the underground energy storage unit instead of a borehole heat ex-

changer to allow efficient ground regeneration.

The decision variable ϕ is the ratio of heat taken from the tank 1 to the entire heat
taken by the heat pump. Its changes in time should be optimised during the heating period,
to achieve the highest renewable energy gain from the system. The actual number of
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optimised variables depends on the sampling time Ts. For example, for the sampling times
24 h, 12 h, 6 h, 3 h, 2 h, and 1 h, the total numbers of calculated variables are 365, 730, 1460,
2920, 4380, and 8760, respectively. The objective function is defined as follows

Max rat =
∑n

i=1 Qb(τ)
(

1 − 1
COP(τ,ϕ)

)
∑n

i=1 Qb(τ)
(16)

We maximise the heat transferred from the heat pump to the building over the entire
heating season, where n is the number of time steps during the heating season. The rat
defined as a ratio of heat delivered by heat pump utilizing energy storage to heating
demand of the building. The COP is time-dependent and is calculated based on the source
fluid temperature which is equal to either T1 or T2 (calculated from Equations (1) and (2).
The temperatures T1 and T2 depend on the decision variable ϕ. Optimisation is carried out
subject to the following constraint imposed on the decision variable

0 ≤ ϕ ≤ 1 (17)

3. Optimisation Methods Used
3.1. Gradient-Based Optimisation Algorithm

In this work, the Sequential Quadratic Programming (SQP) algorithm originally pre-
sented in [11] is used. The SQP algorithm finds the solution of a nonlinear constrained
optimisation problem by solving a series of quadratic programming tasks that approx-
imate the rudimentary nonlinear one. The SQP algorithm is very efficient in nonlinear
optimisation with numerous decision variables and constraints [10]. Due to its efficiency,
it is frequently used in different engineering tasks, e.g., in constrained identification of
dynamical models [17], to find optimal control policy in Model Predictive Control (MPC)
algorithms [18] or to optimise the operation of technological processes [19]. Unfortunately,
as the SQP algorithm relies on the gradient vector of the minimised cost-function, it may
give local minima only.

3.2. Genetic Algorithm

The Genetic Algorithm (GA) is an optimisation method inspired by the process of
natural selection observed in living creatures [12]. Initially, a number of random vectors
(“individuals”) are generated. In the consecutive generations (epochs) new individuals
are formed as a result of the following biologically inspired operators: mutation, crossover
and selection. After many repetitions, the individuals adapt to the environment defined by
the solved optimisation problem. The genetic algorithm is a derivative-free optimisation
method. Thanks to simplicity of implementation, it is very frequently used to solve numer-
ous scientific and engineering tasks, such as: optimisation of gains of state observers [20],
optimisation of controllers’ parameters [21], optimisation of control policy in MPC [22],
optimisation of settings for a fuel engine [23], optimisation of hybrid energy systems [24],
integrated process planning, and scheduling [25].

3.3. Particle Swarm Optimisation Algorithm

The Particle Swarm Optimisation (PSO) algorithm is a gradient-free evolutionary al-
gorithm which is used to solve numerous complex optimisation problems [13]. The change
of position (originally named “velocity”) for each particle in the consecutive generations is
obtained as a weighted sum of “velocity” from the previous generation taking into account
some differences between the current position relative to the best-known position of the
particle and the best-known position achieved by the whole swarm. Currently, the PSO
algorithm is very popular; it is applied more frequently than the classical GA method. It
is reported to solve multiple problems, e.g., parameter identification [26], optimal siting
and sizing methodology to design an energy storage system [27], gas turbine modelling
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for fault detection [28], optimisation of control policy in MPC [22], optimisation of hybrid
energy systems [24], optimisation of power dispatch problems [29].

3.4. Jaya Algorithm

Jaya is a relatively new heuristic optimisation algorithm [14]. In this approach, single
particles in each generation should be moved toward the best solution and evade from
the worst. A characteristic feature of Jaya, unlike previously considered GA and PSO
algorithms (as well as many other heuristic optimisation algorithms), is the fact that it
does not require any parameters, which is a huge advantage. The Jaya algorithm has
been reported to be very successful in many difficult engineering problems. Example
applications are: a proton exchange membrane fuel cell stack design optimisation [30],
parameter identification [26], optimisation of a micro-channel heat sink [31], optimisation
of thermoelectric coolers, heat pumps and heat exchangers [32].

4. Results of Simulations

In this section, the results obtained by means of the classical gradient-based SQP
optimisation algorithm as well as three heuristic ones (the PSO, GA, and Jaya approaches)
are discussed. All optimisation algorithms have been implemented in MATLAB.

At first, the maximal number of iterations of the compared optimisation algorithms
must be determined experimentally. The following values of the sampling time Ts of the
optimisation algorithm are taken into account: 24 h, 12 h, 6 h, 3 h, 2 h, and 1 h. The maximal
number of iterations is determined by trial and error; the results are given in Table 2.
In general, the number of necessary iterations grows as the sampling time is decreased.
The gradient-based SQP algorithm needs much fewer iterations than the heuristic ones.
Furthermore, it turns out that for all heuristic optimisation methods considered, the number
of necessary iterations is the same for the consecutive sampling time values 24 h, 12 h,
6 h, 3 h, and 2 h. The only exception is observed for the sampling time 1 h. In such a
case, both PSO and genetic algorithms need as many as 3000 iterations whereas for the
Jaya method, 2500 are sufficient. It must be noted that in many cases, the optimisation
algorithms need a much lower number of iterations; the values given in Table 2 are maximal
ones. Typically, when the optimised cost-function does not change noticeably in many
consecutive iterations, the optimisation procedure is stopped.

Table 2. The maximal number of iterations of the compared optimisation algorithms.

Ts SQP Algorithm PSO Algorithm Genetic Algorithm Jaya Algorithm

24 h 200 500 500 500
12 h 200 1000 1000 1000

6 h 300 1500 1500 1500
3 h 500 2000 2000 2000
2 h 500 2500 2500 2500
1 h 700 3000 3000 2500

Next, the number of individuals must be determined in all three heuristic optimisation
approaches. Although there are some differences in the way the number of individuals
influences the convergence rate of the considered PSO, GA, and Jaya algorithms, they are
not very significant. Having carried out a series of experiments, it has been found out
that 30 individuals is sufficient. For a lower number of individuals, convergence is slow
whereas for a higher number, there is no improvement of the convergence rate. When there
are too many individuals, e.g., more than 50 or even 100, convergence is even slower than
for the chosen value 30 and the algorithm needs a great number of iterations to obtain
comparable results as those for 30 individuals. Even in the case of short sampling time Ts,
increasing the number of individuals does not work.

Now let us analyse the best results obtained by the compared optimisation algorithms
that are detailed in Table 3 (the worst and the best results for the consecutive sampling
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time Ts values are denoted by colours). Because the final solution obtained depends on the
random initial point, each tested configuration has been calculated 10 times, starting from
different random initial points and the best results are only presented. Let us summarise
the obtained results:

1. In spite of the fact that in the gradient-based SQP algorithm relatively high number of
iterations is used, it gives the worst results. Probably, the obtained results are shallow
local minima.

2. All three tested heuristic optimisation methods give better results than the SQP one.
3. The PSO algorithm is the worst one in the group of the heuristic optimisation meth-

ods. Numerous attempts have been made to improve the results by using a larger
population of individuals or by increasing the number of possible iterations, but such
approaches do not lead to any better results. Typically, after some 50–80% of the
allowed iterations, the optimised cost-function is practically constant and calculations
are terminated.

4. In comparison with the PSO algorithm, better results, in particular for the sampling
time Ts equal to 24 h, 12 h, or 6 h, are obtained by the genetic algorithm, although
we may observe that as the sampling time is reduced, the genetic algorithm gives
worse results. For the sampling time equal to 3 h, 2 h, or 1 h, the obtained results
are only slightly better than those obtained by the PSO algorithm. Similarly to the
PSO algorithm, also in the case of the genetic algorithm, increasing the number of
individuals or the number of possible iterations does not yield better results.

5. Generally, the Jaya algorithm gives the best results, the only exception is for Ts = 24 h
in which the genetic algorithm is better, but the difference is really insignificant.

6. It is important that the Jaya algorithm finds good solutions for all tested values of the
sampling time Ts, which is not true in the case of the second-best approach, i.e., the
genetic algorithm.

7. As far as heuristic optimisation algorithms are concerned, the presented results have
been achieved for exactly the same number of maximal iterations (as specified in
Table 2 for the consecutive values of the sampling time Ts, the only exception is for
the sampling time 1 h, the Jaya algorithm needs a lower number of iterations) and
population size (30 individuals).

8. Decreasing the sampling instant Ts leads to increasing the number of decision variables
in the optimization problem. The more the decision variables, the more difficult the
optimization task. Hence, more iterations of the optimization algorithms are necessary
as shown in Table 2. It greatly increases the resulting calculation time.

9. Since decreasing the sampling time Ts does not improve the final value of the cost-
function but only makes calculations more time-consuming, it is recommended to use
quite long sampling periods, e.g., 24 h or 12 h.

Table 3. The best results (in terms of the rat index) obtained by the compared optimisation algorithms,
the worst results are denoted by red color, the best results are denoted by blue color.

Ts SQP Algorithm PSO Algorithm Genetic Algorithm Jaya Algorithm
24 h 0.8984 0.9045 0.9328 0.9318
12 h 0.8986 0.9033 0.9289 0.9330
6 h 0.8984 0.9018 0.9192 0.9317
3 h 0.8984 0.9006 0.9054 0.9298
2 h 0.8982 0.8997 0.9046 0.9306
1 h 0.8984 0.9000 0.9035 0.9280

Figure 2 shows the numerical mesh (a ground domain which dimensions) used in
the calculations. Temperatures of both tanks in the following figures are shown using that
mesh. Figure 3 depicts the results obtained by the genetic algorithm when the sampling
time is Ts = 24 h. The following subplots show: the trends of the variable ϕ (the left-top
subplot), the trends of temperatures T1, T2 and Text (the right-top subplot), the hot tank
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ground temperature (the left-bottom subplot) as well as the cold tank ground temperature
(the right-bottom subplot). The trends show changes during the entire year. Figure 4 shows
the results obtained by the Jaya algorithm, also for Ts = 24 h. As Table 3 suggests, both
algorithms give very similar values of the cost-function. Hence, the obtained temperatures
in hot and cold tanks are very similar. Figure 5 shows the results obtained by the Jaya
algorithm when the sampling time Ts is decreased to 6 h. We may notice many frequent
changes of the variable ϕ, which is a result of decreasing the sampling time. On the other
hand, the temperature profiles are quite similar to those shown in Figure 4, obtained for
Ts = 24 h. Hence, as observed from the results presented in Table 3, it is recommended to
use quite long sampling periods, e.g., 24 h or 12 h. The thermal demand for the best result
(the Jaya algorithm) is 3.43 × 1011 J.

Figure 2. Numerical mesh adopted for the temperature distribution calculations, H1 = 3.5 m is the
burial depth, ri = 0.5D = 1.5 m is the tank radius, φ = 30◦ is the angular space.

0 50 100 150 200 250 300 350

0

0.2

0.4

0.6

0.8

1

(a) Trends of the variable ϕ

0 50 100 150 200 250 300 350
-20

0

20

40

60

80

100

(b) Trends of temperature
Figure 3. Cont.
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Figure 3. The results obtained by means of the genetic algorithm, Ts = 24 h.
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(d) The cold tank ground temperature
Figure 4. The results obtained by means of the Jaya algorithm, Ts = 24 h.
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Figure 5. The results obtained by means of the Jaya algorithm, Ts = 6 h.

5. Conclusions

This works describes a novel heating system for buildings that includes the pho-
tovoltaic panels with cooling, evacuated solar collector, water-to-water heat pump and
underground storage tanks. Optimisation of the described system is considered to achieve
the highest renewable energy sources share during the heating period. Because the re-
sulting optimisation problem is nonlinear, the classical gradient-based optimisation SQP
algorithm gives solutions that are not satisfying. Hence, as alternatives, three heuristic
global optimisation methods are considered: GA, PSO, and Jaya algorithms. It is demon-
strated that the Jaya algorithm is the best one for the most of considered scenarios. The
GA approach gives quite good results, but only in some cases. The PSO algorithm is the
worst one among the heuristic optimisation methods, only slightly better than the classical
SQP method. A total of 93% of thermal energy is covered by using the underground energy
storage unit consisting of two tanks.

The described system has been installed in Limanowa, Poland, in the headquarters of
the Czamara Urządzenia Chłodnicze company (https://www.czamara.net.pl/ (accessed on
19 August 2021)). The proposed system can be a very good alternative for a district heating
network in places where it is impossible or not economically viable to install the classi-
cal solution. In practice, it delivers about 85% of heating energy from the underground
energy storage.
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Acronyms

COP Coefficient Of Performance
DHW Domestic Hot Water
GA Genetic Algorithm
MPC Model Predictive Control
PSO Particle Swarm Optimisation
PVT Photovoltaic Thermal Hybrid Solar Panels
RES Renewable Energy Sources
SAGSHP Solar-Assisted Ground Source Heat Pump
SQP Sequential Quadratic Programming

References
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