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Abstract: This comparative study inspects the heat transfer characteristics of magnetohydrodynamic
(MHD) nanofluid flow. The model employed is a two-phase fluid flow model. Water is utilized as the
base fluid, and zinc and titanium oxide (Zn and TiO2) are used as two different types of nanoparticles.
The rotation of nanofluid is considered along the z-axis, with velocity ω∗. A similarity transformation
is used to transform the leading structure of partial differential equations to ordinary differential
equations. By using a powerful mathematical BVP-4C technique, numerical results are obtained.
This study aims to describe the possessions of different constraints on temperature and velocity for
rotating nanofluid with a magnetic effect. The outcomes for the rotating nanofluid flow and heat
transference properties for both types of nanoparticles are highlighted with the help of graphs and
tables. The impact of physical concentrations such as heat transference rates and coefficients of skin
friction are examined. It is noted that rotation increases the heat flux and decreases skin friction. In
this comparative study, Zn-water nanofluid was demonstrated to be a worthy heat transporter as
compared to TiO2-water nanofluid.

Keywords: linear stretching surface; MHD; nanofluid; rotating flow; Zn and TiO2 as nanoparticles

1. Introduction

Problems of flow prompted by linear extending surfaces moving with definite velocity
often occur in a large range of manufacturing processes. These types of flows have many
applications in various assembling processes, such as extrusion of polymers from a dye,
processing of foods, chemical fluids, etc. Crane [1] was the first to inspect the basic phe-
nomenon of flow over the linear extending surface. After that, this area of research was
found to be very interesting, and researchers began studying it under different physical
constraints. Dandapat and Gupta [2] inspected the viscoelastic flow of fluid above the ex-
ponentially stretching surface. Zaimi et al. [3] and Hayat et al. [4] premeditated the rotating
flow of viscid fluid and proved that frontier layer viscosity is an accumulative function of
the viscid fluid parameter. Vajravelu and Kumar [5] conducted extraordinary research on
the arithmetical and consistent clarification of a nonlinear system that proceeded from a
three-dimensional rotating flow. Abbas and Magdy [6] studied to overcome the unsteady
nanofluid magnetohydrodynamic flow through the permeable channel past the moving
surface in the revolving device, taking into account heat and mass transfer. Conformational
entropy in bio-convection nanofluid movement amongst two stretchable revolving disks
was investigated by Khan et al. [7]. Nazar et al. [8] promoted unstable flow problems.
Their outcomes specify a seamless alteration from the initial unstable flow to the end
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smooth-state flow. Hussain et al. [9,10] studied time-dependent compressible flow through
the elliptical cylinder and engine oil base rotating nanofluid over a stretching sheet.

A nanoparticle is a small-sized particle that varies between 1 and 100 nm in size.
When these nanosized particles are mixed in some base fluids such as water, engine oil,
etc., the resulting mixture is known as a nanofluid. Nanofluids have many applications in
engineering, agriculture, food processing, medical, and many other fields. Choi [11] was the
leading researcher to introduce the concept of nanofluids. Nanofluids are used to enhance
the thermal transmission of materials. During the last few decades, a popular research
topic has been nanofluid convective heat transfer [12–16]. Nasirzadehroshenin et al. [17]
demonstrated the temperature transmission of carbon nanotubes. Wang [18] studied viscid
flow because of the linear stretching surface with surface suction and slipping conditions.
Li and Zheng [19] generalized the heat transmission and thermal conductivity of nanofluids.
Heat transference in viscous fluid above the extending sheet with heat generation and
viscous dissipation was studied by Vajravelu and Hadjinicolaou [20]. Ibrahim et al. [21]
deliberated on the thermal and hydraulic performance of helical heat exchangers filled with
nanofluid. Lee et al. [22] measured the thermal conductivity containing oxide nanoparticles.
Nima et al. [23] described an extraordinary study on the increasing role of nanofluids in
many technological and bio-medical industries.

These days, magnetic fields are vastly applicable in many important industries. In
refrigeration or warming applications, improving the heat, transmission is considered
by the magnetic field. For this purpose, investigators introduced magnetic nanofluid.
The MHD nanofluid plays an important role in biomedical imaging and many other
applications. The important features of MHD nanofluid are discussed in this study under
the magnetic effect. Thakhar and Nath [24] studied the unsteady rotating fluid flow
above an extending surface in the existence of a magnetic field. Hussain et al. [25,26]
enlightened on MHD hybrid nanofluid through the rotating cone and rotating flow on the
exponentially stretching surface. Kumari and Nath [27] provided the analytical results of
unsteady 3D magnetohydrodynamic (MHD) boundary layer flow and heat transmission.
Afrand et al. [28,29] used a magnetic field to reduce the natural convection. Pak and
Cho [30] presented heat transfer and hydrodynamic analysis of dispersed fluids with
particles of metallic oxide. Waini et al. [31] studied heat transference and unstable flow
above the extending surface for hybrid nanofluid. Hussain et al. [32] discussed MHD for
viscid nanofluid with a radiative effect. Ahmed et al. [33] described the carbon nanotube
magnetohydrodynamics nanofluid flow on a stretching surface. Currently, research is being
conducted by Shafiq et al. [34] to describe the thermal slip and convective boundary slip in
3D flow. Hussain et al. [35] examined the carreau–yasuda temperature convention near a
stagnation point. Rizwana et al. [36] studied the MHD oblique immobility point movement
of nanofluids. For hybrid nanofluids, entropy generation and temperature-dependent
viscidness are discussed by Ahmad et al. [37].

Shahid et al. [38] performed a numerical examination of stimulation energy on MHD
nanofluid flow. Bahireal et al. [39] examined the manganese–zinc ferrite–water nanofluid
under a non-uniform magnetic field. Waqas et al. [40] explored the MHD movement of
hybrid nanofluids over the rotating disc with nonlinear thermal radiation and found good
agreement in the results. Alsani et al. [41] deliberated on the joint effects of the inclined
functional magnetic field, the absorbent stretching surface, the mass transportation, and
the radiative warming on a micropolar flow. To the best of our knowledge, no one has
described the joint effects of rotation and magnetic effect on water-based nanofluid above
the stretching surface. Such types of flows may have possible applications, e.g., cooling of
electronic chips, power plants, geothermal engineering, refineries, etc.

The primary goal of this research is to examine the heat transference characteristics and
velocity of a rotating nanofluid above a 2D expanding surface numerically, in the presence
of the magnetic effect. In this comparative study, Zn-water and TiO2-water nanofluids are
used due to both having many applications in industries. For example, Zn-water nanofluid
is used for obtaining a better temperature transfer constant as compared to pure water
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base fluid. Similarly, TiO2-water nanofluid is used in the milk pasteurization industry
as a heating fluid. The physical model utilized in this work is a two-phase nanofluid
model to discuss the problem. The BVP-4C algorithm is used to obtain numerical results
and graphs. Temperature, velocity, and skin friction coefficients are calculated, confirmed
visually, and discussed concerning surface stretching ratio γ, magnetic parameter M, and
rotation parameter λ.

2. Statement of Problem

Consider that a three-dimensional, MHD, viscous, and electrically conducting, rotating
nanofluid, with constant density, lays atop a flat stretchy surface in the region z > 0. The
flow is persuaded by the stretching of the surface at z = 0 along the x-axis and the y-
axis, with rates Uw = ax and Vw = by (see Figure 1), respectively. A constant magnetic
field, Bo, is functionally perpendicular to the surface. For a reference related to the model,
see [42]. Zinc (Zn) and titanium dioxide (TiO2) nanoparticles with water (H2O) as the
base fluid were considered for this study. The thermophysical characteristics of the water
and nanoparticles are shown below in Table 1.

Figure 1. Geometry of the problem.

Table 1. Thermo physical characteristics of nanoparticles (Zn, TiO2) and base fluid, H2O.

Properties Density (ρ) Thermal Conductivity (K) Specific Heat
(
Cp
)

Zn 7140 120 389
TiO2 4250 8.96 686.2
H2O 997 0.613 4179

3. Equations and Mathematical Expressions

Nanofluid rotates around the vertical axis, with a fixed velocity, ω∗. With these
suppositions and standard boundary layer approximation, the governing equations are:

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0, (1)

u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

= 2ω∗v +
µn f

ρn f

∂2u
∂z2 −

σBo
2

ρn f
u, (2)
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u
∂v
∂x

+ v
∂v
∂y

+ w
∂v
∂z

= −2ω∗u +
µn f

ρn f

∂2v
∂z2 −

σBo
2

ρn f
v, (3)

u
∂T
∂x

+ v
∂T
∂y

+ w
∂T
∂z

= αn f
∂2T
∂z2 . (4)

where u is the x constituent, v is the y constituent, and w is the z constituent of velocity,
ω∗. µn f is the dynamic viscidness, ρn f is the density, αn f is the thermal diffusivity, T is
the temperature,

(
ρCp

)
n f is the volumetric heat capacity of the nanofluid,

(
ρCp

)
f is the

volumetric heat capacity of the base fluid, and
(
ρCp

)
s is the volumetric heat capacity of

nanoparticles. As seen below, all of these are connected to the nanoparticle volume fraction,
ϕ [43], of nanoparticles.

ρn f = ρ f (1− ϕ) + ϕρs, µn f =
µn

(1− ϕ)5/2 , ρn f = ρ f
kn f

αn f
,

(
ρC p

)
n f =

(
ρC p

)
f (1− ϕ) + ϕ

(
ρC p

)
s,

k f
kn f

=
ks + 2k f + 2ϕ(k f−ks)

ks + 2k f− 2ϕ (k f − ks)

(5)

where k f represents the thermal transmission of the base fluid, ks represents the thermal
transmission of nanoparticles, ρs is the density of nanoparticles, and ρ f is the density of
the base fluid.

The conforming boundary settings are provided below:

u = Uw = ax, v = Vw = by, w = 0, T = Tw as z = 0. (6)

u→ 0, v→ 0, T → T∞ as z→ ∞. (7)

3.1. Methodology of Transformation

By applying the similarity transformations [44] listed below, i.e.,

u = axp′(η), v = ayq′(η), w = −√av f
[
p′(η) + q′(η)

]
,

η = z

√
a

v f
, r(η) =

T − T∞

Tw − T∞
. (8)

where Tw and T∞ are the temperatures at the wall and free streams respectively, and η is
the dimensionless space parameter.

Subsequently, the overhead leading problem reduces to:

1
(1−ϕ) 5/2 p′′′ (η)

=
(

1− ϕ + ϕ
ρs

ρb f

)
[p′2(η)

−p′′ (η){p(η) + q(η)} − 2λδq′(η)] + p′(η)M2,

(9)

1
(1−ϕ) 5/2 q′′′ (η)

=
(

1− ϕ + ϕ
ρs

ρb f

)
[q′2(η)

−q′′ (η){p(η) + q(η)} − 2 λ
δ q′(η)] + q′(η)M2,

(10)

kn f

k f
r′′ (η) + Pr

[
1− ϕ + ϕ

(ρCp)s
(ρCp) f

][
r′(η){p(η) + q(η)}

]
= 0 (11)

with the following boundary conditions:

p = 0, p′ = 1, q = 0, q′ = γ, r = 1 as η = 0 (12)
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p′ → 0, q′ → 0, r → 0 as η → ∞

where
(
ρCp

)
f is the volumetric temperature capability of the base fluid and

(
ρCp

)
s is the

volumetric temperature capability of nanoparticles.
In Equations (9)–(11), λ is the rotation parameter, γ is the surface extension ratio, M is

the magnetic constraint, and Pr is the Prandtl number, and they are defined as:

λ =
ω∗

a
, M =

√
σβo2

aρ f
, γ =

b
a

, Pr =
(µCp) f

k f
. (13)

3.2. Solution Methodology

The joint structure of ordinary differential Equations (8)–(10) is highly nonlinear, and
it has been numerically addressed. The BVP-4C technique converts the leading differential
equations into a structure of first-order ordinary differential equations that are easy to
handle and solved repeatedly. MATLAB has been used to generate numerical tables and
graphical results.

The physical extents of the distinct comforts are skin frictions (C f x, C f y) along the x-
and y-axis, respectively, and Nusselt number, Nux, where

C f x =
τxz

ρ f (ax)2 , C f y =
τyz

ρ f (ax)2 , Nux =
xqw

k f (T − T∞)
(14)

where τxz and τyz are wall shear pressures and qw is heat fluctuation, given by:

τxz = µn f (
∂u
∂z

)
z=0

τyz = µn f (
∂v
∂z

)
z=0

, qw = −kn f (
∂T
∂z

)
z=0

(15)

By using Equations (8) and (15) in Equation (14), the above physical extents are written
in dimensionless form as:

Re
1
2 C f x = 1

(1−φ)
5
2

p′′ (0), Re
1
2 C f y = 1

(1−φ)
5
2

q′′ (0),

(Re)−1/2Nux =
−kn f

k f
r′(0)

(16)

where local Reynolds number is Rex =
(ax)x

v f
. Skin friction 1

( 1−φ ) 5/2 p′′ (0) and heat flux
−kn f

k f
r′(0) are calculated for both types of nanofluid with different values of parameters.

4. Results and Discussion

The impact of numerous somatic factors such as rotation, λ, magnetic, M, and surface
stretching ratio, γ, constraints on temperature and velocity profiles for Zn-water as well
as TiO2-water nanofluids are discussed in this section. The volume fraction concentration
of solid nanoparticles (Zn and TiO2) has been set to ϕ = 0.1 throughout the study for
analysis. To elaborate on the occurring influence of these distinguished study parameters on
different outcomes, graphical results have been plotted to physically demonstrate changes
happening in respective outcomes under a certain study parameter. The tabulated datasets
for both sets of nanofluids were generated under distinct study parameters, for the local
skin friction coefficient and the heat transfer coefficient. The Nusselt number coefficient of
the present study has been found in good agreement with previously published results.

Figure 2a,b schemed to identify the impact on velocity profile p′(η) and q′(η) (along
the x- and y-axis, respectively) of the Magnetic constraint, M, for both types of nanofluid,
respectively. By increasing the magnetic constraint, M, it can be perceived from Figure 2a,b
that there was a boost in deceleration for both types of nanofluid. The existence of a
transverse magnetic field produces the Lorentz force, which is an opposing force that
opposes the smooth motion of the fluid. Therefore, by raising the magnetic field parameter,
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the Lorentz force rises and results in a decrement of velocity and the related thermal
boundary layer of fluid in x and y directions.

Figure 2. (a) The influence of M on p′(η), and (b) the influence of M on q′(η).

Moreover, the stimulus of rotation, λ, on velocity constituents p′(η) and q′(η) is
presented in Figure 3a,b. From Figure 3a,b, it is clear that the velocity profiles (p′(η), q′(η))
and boundary layer thickness decay as the rotation parameter, λ, increases. These figures
also show that the velocity of the Zn-water nanofluid is always smaller than TiO2 because
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of the lower density of titanium oxide nanoparticles that can move easily as compared to
zinc nanoparticles, since they are comparatively heavier in density.

Figure 3. (a) The influence of rotation, λ, on p′(η), and (b) the influence of rotation, λ, on q′(η).

Figure 4a,b show the impact of stretching ratio parameter, γ, on p′(η) and q′(η).
Physically, along the y-axis, as the rate of stretching ratio parameter γ increases, there is
an increment in the rate of enlarging a, which infers an upsurge in velocity and thickness
of the momentum boundary layer. The influence of stretching ratio in Figure 4a,b shows
a very distinct pattern, as under high increasing stretching ratio, Figure 4a shows a very
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dense behavior. This shows that the thermal boundary layer has decreased significantly
along with primary velocity, and the reason for this particular phenomenon is the presence
of a strong resistive Lorentz force. Figure 4b shows the opposite behavior as compared to
Figure 4a. This depicts that thermal boundary increases even under the presence of a high
magnetic field.

Figure 4. (a) The influence of γ on p′(η), and (b) the influence of γ on q′(η).

A distinction in temperature profile, r(η), against the magnetic parameter, M, is shown
in Figure 5a. We can determine from Figure 5a that the rise in magnetic constraint, M,
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results in a decrease in temperature profile, r(η), and the linked thickness of the boundary
layer. Figure 5b indicates the effects of rotation constraint, λ, on the temperature field. It
can be noticed that rotation boosts the boundary layer thickness. Furthermore, an instant
decrease in temperature was observed. The influence of the stretching ratio constraint, γ,
on the heat coefficient can be seen in Figure 5c. The temperature distribution as well as
the thermal boundary layer are receding functions of γ in this illustration. The behavior
of the temperature profile under the different study parameters M, λ, and γ, can be
observed from Figure 5a–c. Although the temperature is decreasing gradually under the
increasing magnetic field, rotation, and stretching ratio, under the increasing stretching
ratio parameter, the maximum boundary layer of fluid is found, as in Figure 5c.

Figure 5. Cont.
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Figure 5. (a) The influence of M on r(η), (b) the influence of λ on r(η), and (c) the influence of γ on
r(η).

The accompanying figures and tables are designed to examine the impacts of inter-
esting physical constraints on the skin friction coefficient and Nusselt number. Table 2
was prepared to measure the precision of the present outcomes, which are compared
with already available works. Tables 3 and 4 present the numerical results. Figure 6a,b
shows that by increasing the rotation parameter, λ, with a non-zero constant stretching
ratio constraint, γ, and increasing the magnetic constraint, M, it is observed that, in the
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x-direction, a normal pressure in the tangential direction increases to a specific value,
but in the y-direction, similar tangential stress decreases. Whereas Figure 6c shows that
Zn-water nanofluid has a high Nusselt number, as compared to other nanofluids. The
Zn-water nanofluid case provides us with suitable results for the heat transfer coefficient
under certain increasing study parameters, and it can be seen from Table 3 that as the fluid
rotation is increased, the maximum Nusselt number is observed. Table 4 shows the Nusselt
number results for the TiO2-water case, which are comparatively low under the influence
of the study parameter as compared to the Zn-water case.

Table 2. For specific situations, the present results are compared to prior research.

λ
Current Outcomes Wang [45] Nazar et al. [8]

p”(0) q
′
(0) p”(0) q

′
(0) p”(0) q

′
(0)

0 −1.0042 0 −1 0 −1 0
0.5 −1.1718 −0.5488 −1.13 −0.51 −1.13 −0.51
1.0 −1.358 −0.8589 −1.32 −0.83 −1.32 −0.83
2.0 −1.6803 −1.3027 −1.65 −1.28 −1.65 −1.28

Table 3. Impacts of different constraints on skin friction
(
Cfx, Cfy

)
and Nusselt number (Nu) for

Zn-water nanofluid for Pr = 6.2, ϕ = 0.1, and δ = 1.0.

γ λ M 1
(1−φ)5/2 p”(0) 1

(1−φ)5/2 q”(0) −knf
kf

r
′
(0)

0.1 0.3 0.8 −1.54562 −1.56269 2.97912
0.2 −1.41984 −3.96466 3.67241
0.3 −1.36439 −8.75791 4.14194
0.4 −1.33724 −16.4982 4.48949
0.5 0.1 0.8 −1.56349 −1.87907 2.27043

0.2 −1.65041 −2.82227 1.96687
0.3 −1.77573 −3.54611 1.71304
0.4 −1.90465 −4.15217 1.51723

0.5 0.1 0.0 −1.50594 −0.382448 2.61189
0.1 −1.89001 −0.720246 2.48536
0.2 −2.73174 −1.23201 2.25914
0.3 −2.25914 −1.77523 2.01437

Table 4. Impacts of different constraints on skin friction
(
Cfx, Cfy

)
and Nusselt number (Nu) for

TiO2-water nanofluid for Pr = 6.2, ϕ = 0.1, and δ = 1.0.

γ λ M 1
(1−φ)5/2 p”(0) 1

(1−φ)5/2 q”(0) −knf
kf

r
′
(0)

0.1 0.3 0.8 −1.45376 −1.46874 2.92044
0.2 −1.34304 −3.67532 3.60029
0.3 −1.29282 −8.02293 4.07366
0.4 −1.26807 −15.0339 4.43019
0.5 0.1 0.8 −1.45396 −1.70304 2.28394

0.2 −1.52366 −2.55282 2.04226
0.3 −1.63243 −3.20773 1.82357
0.4 −1.74623 −3.75668 1.64007

0.5 0.1 0.0 −1.36727 −0.351682 2.56409
0.1 −1.77874 −0.698189 2.44193
0.2 −2.65633 −1.21686 2.22396
0.3 −3.68213 −1.76417 1.98899
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Figure 6. (a) Skin friction along the x-axis, (b) skin friction along the y-axis, and (c) Nusselt number.
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5. Conclusions

In this research, a numerical investigation was implemented on MHD, three-dimensional
flow above the stretching surface/sheet. Two nanofluid combinations were considered in
order to observe and compare the enhanced heat transfer and reduction in skin friction
for both cases. The BVP-4C technique was used to tackle the problem. Via similarity
transformation, the arising partial differential equations were converted to ordinary differ-
ential equations through a newly defined set of variables. The numerical results have been
numerically validated with previously published work. Further deductions can be made
as follows:

1. Increasing the magnetic parameter, M, resulted in decreasing the temperature transfer
rate for both nanofluids;

2. As magnetic, M, and rotation, λ, parameters were increased, the velocity of both
nanofluids dropped;

3. As the rotation, λ, parameter increased, the decay rate of skin friction and a rise in
heat flux for both types of nanofluids increased;

4. An increase in the temperature profile because of the magnetic parameter, M, was
found to be less conspicuous for TiO2-water as compared to Zn-water nanofluid;

5. An increase in surface stretching ratio, γ, decreased the temperature of nanofluids;
6. The study found that the Zn-water nanofluid has high rates of heat transfer as com-

pared to the other considered nanofluid, TiO2-water.
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Nomenclature

a, b Stretching rates of surface
Cfx, Cfy Skin friction alongside x-axis and y-axis
Cp Specific heat capacity
ρCp Volumetric heat capacity
k Thermal conductivity
M Magnetic parameter
γ Surface stretching ratio parameter
λ Rotation parameter
Nux Nusselt number
Pr Prandtl number
Re Reynold number
T Temperature of fluid
Tw Temperature at wall
T∞ The temperature outside the surface
u, v, w Velocity constituents of x-, y-, and z-axis, respectively
αnf Thermal diffusivity of nanofluid
vnf Kinematics viscosity of nanofluid
ρnf Density of nanofluid
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ω∗ Angular velocity
φ The volume concentration of nanoparticles
f, s, nf Subscripts for fluid, solid nanoparticles, and nanofluid, respectively
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