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Abstract: One of the most common problems in science is to investigate a function describing a
system. When the estimate is made based on a classical mathematical model (white-box), the function
is obtained throughout solving a differential equation. Alternatively, the prediction can be made
by an artificial neural network (black-box) based on trends found in past data. Both approaches
have their advantages and disadvantages. Mathematical models were seen as more trustworthy as
their prediction is based on the laws of physics expressed in the form of mathematical equations.
However, the majority of existing mathematical models include different empirical parameters, and
both approaches inherit inevitable experimental errors. Simultaneously, the approximation of neural
networks can reproduce the solution exceptionally well if fed sufficient data. The difference is that
an artificial neural network requires big data to build its accurate approximation, whereas a typical
mathematical model needs several data points to estimate an empirical constant. Therefore, the
common problem that developers meet is the inaccuracy of mathematical models and artificial neural
networks. Another common challenge is the mathematical models’ computational complexity or
lack of data for a sufficient precision of the artificial neural networks. Here we analyze a grey-box
solution in which an artificial neural network predicts just a part of the mathematical model, and its
weights are adjusted based on the mathematical model’s output using the evolutionary approach to
avoid overfitting. The performance of the grey-box model is statistically compared to a Dense Neural
Network on benchmarking functions. With the use of Shaffer procedure, it was shown that the
grey-box approach performs exceptionally well when the overall complexity of a problem is properly
distributed with the mathematical model and the Artificial Neural Network. The obtained calculation
results indicate that such an approach could increase precision and limit the dataset required for
learning. To show the applicability of the presented approach, it was employed in modeling of the
electrochemical reaction in the Solid Oxide Fuel Cell’s anode. Implementation of a grey-box model
improved the prediction in comparison to the typically used methodology.

Keywords: grey-box model; mathematical model; artificial neural networks; evolutionary computing;
solid oxide fuel cell

1. Introduction

Predicting the output of a system is one of the most frequent tasks in the fields of
research in engineering, economics, medicine, etc. It may be a performance estimation of a
device, cost analysis, or predictive medicine. Whenever possible, classical mathematical
models are developed based on the laws of physics, observations, and, unavoidably,
assumptions. In this paper, the phrase “the classical mathematical model” is used as an
equivalent of white-box model. Mathematical models often can be inaccurate, incomplete,
or very hard to formulate due to gaps in the existing knowledge. In such cases, to be able to
predict a system’s output, approximation methods are used. Computational models known
as Artificial Neural Networks (ANN) have brought a vast improvement to predictions
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in many fields. An ANN can achieve excellent performance in function approximation,
comparable to accurate mathematical models [1]. For such high accuracy, an ANN needs
a lot of data. Obtaining enough samples may be expensive and time-consuming, and, in
effect, unprofitable. Data numerousness is mostly dependent on the complexity of the
process one wants to predict. As a vivid example of such a problem, we can offer a fuel
cell modeling a multiscale and interdisciplinary problem. The fuel cell models are hard
to generalize over different types and have very complicated models because of various
species transport phenomena and electrochemical reaction kinetics [2,3]. Obtaining the
necessary tomographic data for electrodes’ microstructure characterization costs a few
months of operator work [4,5]. For such a problem, collecting more than twenty data points
per dimension would take years and therefore is infeasible in many cases [6–8].

In this paper, we address the problem of data shortage by integrating the classical
mathematical model with an artificial neural network as presented in Figure 1. For clar-
ification, we will refer to our implementation of a grey box model as the Interactive
Mathematical modeling-Artificial Neural Network (IMANN). The approach presented in
this study stems from the fact that every mathematical model’s solution, including the
example given above, is represented as a function or a set of functions. The method consists
of determining the most uncertain parts of a mathematical model or lacking a theoretical
description, and substituting them with a prediction of an ANN, instead of using the
mathematical model or the ANN alone. With that being said, the work with the IMANN
differs from the practice with a regular ANN. In a conventional procedure, a dataset is
divided into training and test data. In addition to these steps, the IMANN requires to
divide the problem into two parts. The mathematical model describes one of them, and the
artificial neural network approximates the other. The decision regarding this division
is a crucial part of working with IMANN, which affects the architecture of the network
as well as the data. The underlying research of this paper is to improve the predictive
accuracy under a limited dataset, which is understood as less than twenty points per input
dimensionality. This research problem is addressed by incorporating an artificial neural
network to predict different parts of benchmark functions, which are regarded as a general
representation of mathematical models. The ANN is learned based on the mathematical
model’s output. A detailed description is presented in Section 3. In practice, it might be
understood that the ANN prediction replaces only some equations in a model (or even just
a part of an equation) and adapts to the system’s behavior. As an example, let us consider
a system of equations in which one of the equations is replaced by the prediction done by
an artificial neural network. The obtained approximation values of that function would
be forced by the numerical model to fulfill all equations in the system. If the prediction is
incorrect there would be a discrepancy between the measured and the expected output
during training. As a consequence, the ANN would be forced to improve its weights and
biases until the model is in accordance to the experimental data. As we note later in this
work, such a replacement can benefit the accuracy and minimal dataset needed for an
artificial neural network prediction.

(a)

(b)

Figure 1. The comparison of two approaches to the prediction problem with use of an ANN (a) black
box (b) combination of a mathematical model and ANN grey box.
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2. Literature Review

The problem with limited datasets is addressed frequently in the literature with many
different approaches [9–12]. One type of method is a data augmenting—the generation of
a slightly different sample by modifying existing ones [13]. Baird et al. used a combination
of many graphical modifications to improve text recognition [14]. Simard et al. proposed
an improvement: the Tangent Prop method [15]. In Tangent Prop, modified images were
used to define the tangent vector—an imitation of function derivative, which was included
in error estimation [15]. Methods in which such vectors were used are still improved in
recent works [16,17]. In the literature, one can find a variety of methods that can modify
datasets, improving ANN learning. A remarkably interesting approach, when dealing
with two- and three-dimensional images is based on a persistent diagram (PD) technique.
The PD changes the representation of the data to extract crucial characteristics [18] and
uses as little information as possible to store them [19]. Adcock et al. in [20] presented how
persistent homology can improve machine learning. All mentioned techniques are based
on the idea to manipulate the dataset on which the ANN is trained.

Another method is to alter the ANN by including knowledge into its structure. Typical
models are of black-box or white-box type. White-box models are robust and trustworthy
due to the incorporation of physical laws. On the other hand, white-box models need
empirical parameters and usually work only for specific conditions. Black box models
need big datasets and can return unrealistic results, but they are great for generalization
and, after training, their response time is negligible. A natural idea is to combine these
two approaches into a grey model, which can result in great accuracy and generality.
A successful attempt to add knowledge is made by a Knowledge-Based Artificial Neural
Networks (KBANN) [21]. The KBANN starts with some initial logic, which is transformed
into the ANN [21]. This ANN is then refined by using the standard backpropagation
method [21]. The KBANN utilizes a knowledge which is given by a symbolic representation
in the form of logical formulas [21]. In situations when knowledge is given by a functional
representation, i.e., containing variables, an interesting approach was presented by Su et al.
in [22]. The authors proposed a new type of neural network—an Integrated Neural
Network (INN) [22]. In the INN, an ANN is coupled with a mathematical model in
such a way that it learns how to bias the model’s output, to improve concurrence with
the modeled system [22]. The INN output consists of the sum of the model and ANN
output [22]. A similar approach to improving the mathematical model was presented by
Wang and Zhang in [23]. They proposed an ANN, in which some of the neurons had their
activation functions changed to the empirical functions [23]. The ANN was used to alter
the empirical model of the existing device in such a way, that it can be used for a different
device. This idea led to a Neuro-Space Mapping (Neuro-SM) in which the functional model
is a part of the ANN [24,25]. Neuro-SM can be viewed as a model augmented by the
ANN. In the Neuro-SM, the ANN maps the input and output of the model, but it does not
interfere with the functional representation itself.

In more recent works, the most successful attempt for the interaction between physics
and ANN is coupling ANNs with differential equations. The very first attempt to connect
ANN with differential equations was performed by Psichogios and Ungar in [26]. The au-
thors presented a way to improve the white-box model by estimating the empirical part
of a differential equation describing a fed-batch bioreactor with an ANN. The work of
Psichogios and Ungar was continued by Hagge et al. [27] with use of modern machine
learning techniques on the same physical problem as Psichogios. The fed-batch bioreactor
problem was further addressed in [28–30]. Many more researchers attempted to solve
the problem in a similar manner—identify the difficult to model parts in first principles
and substitute them with machine learning techniques: Cubillos et al. [31] in solid dry-
ing process, Piron et al. in crossflow microfiltration process [32], Oliveira in fed-batch
bioreactor and bakers’ yeast production [30], Vieira and Mota in water gas heater sys-
tem [33], Romijn et al. in energy balance for a glass melting process [34] and Chaffart and
Ricardez-Sandoval in thin film growth process [35]. Cen et al. [36] presented a method for
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incorporating several neural networks into nonlinear dynamic systems for fault estimation
problems. A different approach, which used differential equations as a basis for ANN was
presented by Lagaris et al. [37]. The mathematical model solution was presented as a sum
of a predefined function which fulfilled the boundary conditions and Neural Network
prediction. Error was estimated by providing the ANN solution to the differential equation.
An interesting approach called Physics-Informed Neural Network (PINN) was presented
by Raissi et al. [38]. The authors presented a framework in which ANN was used to solve
PDE system [38]. In PINNs, an ANN is used to learn how to solve given PDE system with
use of sum of two errors—one consists of difference between imposed boundary conditions
and second is a residual on arbitrary set of collocation points. The general framework was
presented by Parish et al. in [39]. The idea is currently extensively studied as can be seen
in [40–42] and used in complex applications [43,44]. An advanced approach in the field
of Computational Fluid Dynamics (CFD) was proposed by Ling et al. [45] and later on by
Wu et al. in [46]. Chan and Elsheikh [47] proposed ANN architecture for application in mul-
tiscale methods. An interesting utilization of ANN was presented by Tripathy and Bilionis
in [48]. Authors used Neural Networks for high dimensional uncertainty quantification,
which can be used for computation-heavy numerical simulations.

As presented in the literature survey, the grey-box models attract continuously in-
creasing attention. Unlike other artificial intelligence methods, artificial neural networks
that incorporate knowledge in their structure receive the technology’s continuous growth.
The increasing focus on technology is due to the high utilitarian value of this approach.
Including artificial neural networks to make a data-driven prediction for the most nonlin-
ear part of the model significantly reduces the required dataset and improves accuracy.
The need for a more computationally complex problem creates a need for developing new
methods of integrating models and the network.

In this paper, we present a new approach, in which almost any part of a model, from a
constant to an entire equation, can be replaced by ANN’s estimation. The interaction
is implemented by shifting a part of the mathematical model to be predicted by the
ANN and teaching the ANN with an evolutionary algorithm (EA) using a numerical
model’s output errors. Learning with evolutionary algorithms allows flexibility and many
broad applications, e.g., in standard backpropagation algorithm, an error is needed for
every output, which is not possible when the ANN has to approximate a function for
every domain point required for the model. The novelty of our approach lies in the
interaction between the numerical model and the ANN, in which any intermediate variable
or parameter from the numerical model can be an ANN’s input, and the ANN can be called
multiple times during one model prediction, without affecting learning algorithm. We
have tested our approach statistically with simple benchmarking functions as well as with
a real-life application in Solid Oxide Fuel Cell modeling.

3. Methodology
3.1. Implementation

System boundaries are supplied to the ANN, which predicts the assigned part of the
mathematical model. System boundaries alongside with an ANN’s output are provided
to the numerical model. The numerical model computes the predicted system output.
At the learning phase, the predicted output error is used to calculate the proper weights
and biases of the ANN. When there is a necessity (e.g., a function is needed to obtain
model prediction), IMANN is implemented in such a way that the numerical model sends
a request for a part of the mathematical model to ANN with additional parameters (e.g.,
state of the model, coordinates etc.) Such an approach allows for an interaction between
the numerical model and ANN. It should be noted that this is not limited to one request,
i.e., the numerical model can request the ANN’s prediction multiple times while producing
one output. The proposed approach to a prediction problem is graphically presented
in Figure 2. The general approach to developing the IMANN network for any existing
numerical model is performed as follows. Having a numerical model M(i), where i are the
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system boundaries and parameters, define a part of the model which will be substituted
by an ANN prediction. In place of that part, insert a call to the ANN with input as y,
where y is a vector of all ANN’s input, which will contain selected variables from i as
well as from variables known by the numerical model during computation. Add ANN as
an input to the numerical model. The described algorithm will be further addressed as
IMANN(M, ANN). The selection of weights and biases is performed by an evolutionary
algorithm, which was suggested in the literature for grey-box models [30] but not treated
in much detail. Every individual is a representation of one network, i.e., its weights and
biases are in the form of a vector. The fitness function is a measure of the discrepancy
between a IMANN’s output and a modeled system.

Figure 2. The Interactive Mathematical Modeling-Artificial Neural Network block diagram.

3.2. Learning Process

To train the IMANN, the Covariance Matrix Adaptation-Evolution Strategy (CMA-ES)
algorithm is chosen. The CMA-ES algorithm was introduced in [49]. It is an effective and
flexible algorithm, which is ideally suited to IMANN learning, where the problem taken
under consideration can have different degrees of dimensionality. Here, the dimensionality
of the problem is the number of weights and biases in the IMANN. To train the IMANN,
the CMA-ES uses a vector made from the network’s weights and biases. The CMA-ES
optimizes the vector values based on the error obtained on the training data. Details about
the objective function are discussed in the following section. Open-source implementation
of CMA-ES in Python was adopted for evolutionary weights adjustments [50].

3.3. Learning Algorithm

1. Having an empirical dataset D of a N system’s input (x) and output (Ξ) paired vectors,
define a function which divides the dataset D into training and test data sets—Dtrain
and Dtest.

2. Having a numerical model M and neural network NN, define a function IMANN(M,NN)
that combines the M and NN into IMANN.

3. For a given CMA-ES, optimization parameters (pCMA) initialize the CMA-ES opti-
mization algorithm.

4. Perform one optimization step for optimization of the weights and biases vector w
based on a fitness function Etrain dependent on the Dtrain and w.

5. For every solution wi check squared error made on Dtrain (Etrain) and Dtest (Etest), save
the lowest, throughout whole optimization, value of E2

train + E2
test and the correspond-

ing solution wi.
6. Repeat steps 4 and 5 until one of the optimization’s stopping criteria is satisfied.

The above steps in the form of pseudocode are presented in Algorithm 1. Using the
squared values of training and test errors is a way to avoid overfitting.
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Algorithm 1 IMANN training process
Require: Empirical dataset D = {(xi, Ξi)|0 ≤ i ≤ N}, CMA-ES optimization

parameters pCMA, numerical model M
1: fmin = ∞
2: (Dtrain, Dtest) = DivideData(D) // Divide data to training and test sets
3: CMAoptimizer = InitializeCMA(pCMA) // Initialize optimizer
4: do
5: NextGeneration(CMAoptimizer)
6: P = GetPopulation(CMAoptimizer) // Get current population
7: for ci ∈ P do
8: I = Network(ci) // Initialize network from ci candidate’s weights vector wi
9: IM = IMANN(M, I) // Initialize IMANN as an integration of the numerical

model and the ANN
10: Etrain = Error(IM, Dtrain)
11: setCandidateFitness(ci, Etrain)
12: Etest = Error(IM, Dtest)
13: E = E2

train + E2
test

14: if fmin > E then
15: fmin ← E
16: save(wi)
17: end if
18: end for
19: while !stopCondition(CMAoptimizer)

The difference between the PINN and the IMANN training scheme is the usage of
models output. In PINN’s learning, the physical model is a part of the neural network and,
therefore, is treated as an activation function used to backpropagate the error. Additionally,
fulfillment of the corresponding PDE is a part of the optimization. In the IMANN, the part
of the solution proposed by the ANN is provided to the numerical model. In terms
of fulfilling the PDE, IMANN relies on the numerical model to provide a physically
correct prediction.

3.4. This Study

Choosing an EA as a primary optimization technique in the grey-box model comes
from two factors. First, introduced earlier in this section, the ability to adjust weights based
on a full function predicted by an ANN without the knowledge of the error in each point.
Second, the BP algorithm uses derivatives to improve the prediction. Treating the model
as an activation function in the last neuron can be poorly conditioned or impossible to
solve in specific applications. As a simple example, estimating a constant a in the equation
sin(ax) is used. We use two datasets consisting of 20 and 100 points. In both, every fifth
point is assigned to the test set (overall 20%). Estimation is performed with the EA and BP
algorithms for 500 attempts. The error estimation procedure is described at the beginning of
Section 5. Histograms are presented in Figures 3 and 4. For both datasets, the distribution
of errors made by the EA’s approach is smaller. The EA and BP approaches struggle with
the ambiguous nature of the function - for the finite amount of uniformly distributed data
points generated using a trigonometric function, one can find a different function of the
same type but with a higher frequency that will have the same function values in provided
data points. The BP algorithm additionally has a problem with the last activation function
derivative, which is equal to x cos(ax). Such derivative stops the BP algorithm in a local
minimum, if the initial weights are not chosen close enough to a good solution. Since the
ambiguity of many real problems can lead to unreal models, the parameters proposed
by the IMANN should be monitored. In real applications, physical constraints should be
added, such as boundaries for the parameters imposed on the ANN output or in the form
of additional error terms during learning.
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Figure 3. Error probability distribution comparison between EA and BP algorithms for constant
estimation based on 20 data points.
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Figure 4. Error probability distribution comparison between EA and BP algorithms for constant
estimation based on 100 data points.

4. Benchmarking Functions

Every system’s output, physical or theoretical, depends on its boundaries (inputs)
and characteristics (adaptable parameters). Mathematical models are functions that try to
reflect real system behavior. Mathematical models are often based on assumptions and
empirical parameters due to the gap in existing knowledge regarding the phenomena.
The simplifications in problem formulation results in the discrepancy between the model
and the real system outputs. The difference can dissolve only for hypothetical cases where
the system output is described by mathematical equations and well-defined.

Every function can be treated as a system, and any arbitrary function can be treated as
its mathematical model. The concept of IMANN strives to be reliable and applicable to
any system: physical, economic, biological, or social, only when a part of this system can
be represented in a mathematical form. To be able to represent a wide range of possible
applications, benchmark functions were employed as a representation of the system. The
system’s inputs (x) and measurable outputs (Ξ(x)) correspond to the inputs and outputs of
benchmarking functions. The ANN predicts a part of the system, and the numerical model
calculates the rest of it. From the model’s view, the ANN’s prediction is a parameter or
one of the model’s equations. Values calculated by the benchmarking functions represent
the measurable system outputs. If the subfunction values predicted by the ANN had the
same value as calculated from the extracted part of the benchmark function, this would
represent a perfect match between the IMANN and the system output. If the real system
output differs from the predicted one, the IMANN will be forced to improve the weights
and biases.

Functions

To test the IMANN, two benchmarking functions are used. Typical test functions used
in optimization problems were used. One polynomial function—Styblinski-Tang function—
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for a one-dimensional input and Rosenbrock function for two dimensions. The chosen
polynomial function is given by formula:

fP(x) = x5 − 16x3 + 5x2, (1)

the two-dimensional Rosenbrock function is given by:

fR(x, y) = 100
(

y− x2
)2

+ (1− x)2. (2)

In the case of polynomial functions, eight formulations of mathematical models are
used, four with one subfunction and four with two subfunctions. The difference between
the formulations lies only in the form and number of the subfunctions. Model formulations
with one subfunction are given by the following equations:

f1(x) = a(x)x5 − 16x3 + 5x2, (3a)

f2(x) = â(x)x4 − 16x3 + 5x2, (3b)

f3(x) = ã(x)x3 − 16x3 + 5x2, (3c)

f4(x) = ā(x)− 16x3 + 5x2, (3d)

where a, â, ã and ā are subfunctions, and fi is the i-th model function. We have chosen
the formulations to distribute the complexity of prediction between ANN and numerical
model in different scenarios. Equation (3a) is a case where ANN is responsible for a
very simple task, while Equation (3d) results in a complexity similar to the predicting
a value of Equation (1). For a perfect match with the modeled benchmarking function,
the subfunctions should be functions of x in the form:

a(x) = 1 (4a)

â(x) = x (4b)

ã(x) = x2 (4c)

ā(x) = x5. (4d)

The polynomial function’s model formulations with two subfunctions are defined as:

f5(x) = a(x)x5 + b(x)x3 + 5x2, (5a)

f6(x) = â(x)x4 + b̂(x)x2 + 5x2, (5b)

f7(x) = ã(x)x3 + b̃(x)x + 5x2, (5c)

f8(x) = ā(x) + b̄(x) + 5x2, (5d)

where a, â, ã, ā, b, b̂, b̃ and b̄ are subfunctions. The idea behind choosing different
formulations is the same as for Equation (3a–d). All model functions are defined in
the domain Ω = {x : x ∈ [−4, 4]}. Ideally, the subfunctions should be functions of x in
the form:

a(x) = 1, b(x) = −16, (6a)

â(x) = x, b̂(x) = −16x, (6b)

ã(x) = x2, b̃(x) = −16x2, (6c)

ā(x) = x5, b̄(x) = −16x3. (6d)

In the case of the Rosenbrock function, the model formulation is defined in Ω =
{(x, y) : x ∈ [−2, 2], y ∈ [−1, 3]} and is given by:

f9(x, y) = c2
1(x, y) + c2

2(x, y), (7)
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where c1 and c2 ideally are subfunctions of x and y in the form of:

c1(x, y) = y− x2, c2(x, y) = 1− x. (8)

The ANN in the grey-box model is responsible for predicting the value of all subfunc-
tions mentioned above and provides them into the model. The ANN is learned with the
difference between the model output Ξ(x, w) and the data generated from a benchmark-
ing function Ξ̂(x) in n sample points xi, from which m (m < n) are training data points,
and n−m are test data points. w is the vector of weights and biases of a neural network.
The learning process is performed by an evolutionary algorithm, here with the use of a
CMA-ES library for Python as explained in Section 3.2. The vector w, which fully describes
one network, is optimized by an optimization algorithm based on the fitness value:

F(w) =
m

∑
i=1

(
Ξ(xi, w)− Ξ̂(xi)

)2, (9)

and the best network is chosen based on the whole dataset according to:

min



(

n

∑
i=m+1

(
Ξ(xi, w)− Ξ̂(xi)

)2
)2

+ F2(w)


. (10)

The dimensionality of the optimization of the fully connected network for the consid-
ered problem can be expressed with the following formula:

D = ninn1 +
k

∑
i=2

ni−1ni + nknout +
k

∑
i=1

ni + 2nout, (11)

where D is the optimization dimensionality, k is the number of hidden layers, ni is the
number of neurons in the i-th hidden layer and nin and nout are the input and output
dimensionality, respectively. For instance, the IMANN architecture for the polynomial
prediction with one subfunction, the dimensionality of the optimization problem is equal
to 47. The computational complexity of the CMA-ES algorithm is at least O

(
D2). Every

candidate solution consists of calling ANN for output, which is negligible, and a model
function call. Assuming that a numerical model is a unit operation and runs at O(1),
the overall computational complexity would be O

(
D2). If computational complexity of a

numerical model is dependent on some parameter ` and is equal to O( fNM(`)) with some
unit operation, the overall computational complexity would be O

(
D2 fNM(`)

)
.

5. Results

To quantify the difference between the benchmark function’s output and the predicted
value, the integral of the squared error is used as an accuracy indicator:

R(x, w) =
∫

Ω

(
Ξ(x, w)− Ξ̂(x)

)2dx. (12)

The integral in Equation (12) is computed with eighty points per dimension Gauss-
Legendre quadrature. The IMANN is compared to the DNN implemented with the use
of the TensorFlow library [51]. The DNN learns in a standard way, treating the system as
a black box. To neglect the stochastic error in the computations, one hundred attempts
were performed for the IMANN and the DNN, for every numerousness of the dataset. The
mean value of R from these 100 attempts is represented as Rm.

D = ninn1 +
k

∑
i=2

ni−1ni + nknout +
k

∑
i=1

ni + 2nout, (13)
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For both networks, the training to test dataset numerousness ratio was 7:3. The
training set was chosen randomly for each attempt from the same dataset. The best
network was chosen according to the algorithm described in the Section 3.3, and an R value
was evaluated. An R value was not used for choosing the best network, because it cannot
be estimated in real applications. R is used because it is a better measure of a network’s
performance than the error made on the training and test data sets. The term ANN is used
when referring to ANN part of IMANN and DNN for a typical ANN implementation.

5.1. Architecture

The implementation of the IMANN has a feedforward architecture consisting of
fully connected layers with the last two layers called the part of the model layer (PM
layer) and the model layer. In the input layer, the number of neurons corresponds to
the conditions in which the system is located. Further layers are standard hidden layers.
The number of layers and the number of neurons contained therein are selected according
to the complexity of the problem modeled by the network. The next layer is the mentioned
PM layer, where the number of neurons corresponds to the number of replaced parts of the
model. The output from that layer multiplied by the weights is directly entered into the
model layer. The numerical model also receives all arguments that were supplied to the
network’s input, alongside the system parameters. The calculated numerical model result
is the final output of the IMANN. Schematically, the IMANN’s architecture is presented in
Figure 5. The implementation of the DNN was done by using the TensorFlow 1.12.0 library.
The neural network is trained with the backpropagation algorithm using batches of size
equal six. The optimizer used is Adam with default settings. For both DNN and IMANN,
Bent Identity activation functions are used in all neurons. The IMANN’s architectures
for problems (4a–d), (6a–d) and (8) were 1-5-5-1, 1-5-5-2 and 2-5-5-2, respectively. DNN’s
architectures for problems (1) and (2) were 1-32-16-16-1 and 2-32-32-16-1, respectively.
Architectures, as well as activation functions, were adjusted by trial and error for the
best performance.

Figure 5. Architecture schema of the IMANN used in benchmark problems.

In terms of Figures 2 and 5, x or (x, y) are the “System boundaries”, i.e., inputs, to both
the numerical model and the ANN. “Measurable system parameters” can be viewed as any
of the constants present in the corresponding problem. The “request for ANN predicted
part of mathematical model” is the calling of ANN for a prediction, here without providing
any additional inputs. “Part of the mathematical model” is the corresponding subfunction
provided by the ANN. The model prediction is the value of fi, and the “measurable system
response” is a real value corresponding to the input.

5.2. Statistical Testing

The first paragraph covers the statistical comparison of IMANN and DNN algorithms
over the case problems defined in Section 4. One must keep in mind that all IMANN
implementations (i.e., IMANN’s designed for every model formulation f1– f8) were treated
as if they were different algorithms. The algorithm and its prediction are represented
with the same notation—subscript denotes problem (modeled function), and superscript
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indicates implementation (DNN or IMANN)—and the meaning is clear based on the
context. Every algorithm has to minimize the errors of problems defined as a pair of
functions and the dataset’s size. Errors were defined according to Equation (12). Means of
errors obtained for the problems for every dataset are presented in Table 1 and graphically
in Figures 6 and 7. Statistical testing was performed according to the guidelines indicated
in Derrac et al. [52]. The Quade test was used for testing the null hypothesis, asserting
the equality of medians between the distribution of errors made by different algorithms
on overall problems to test if the algorithms differ significantly from each other [52].
Average Quade rankings are presented in Table 2. Quade statistic distributed according to
F-distribution with 8 and 120 degrees of freedom is equal to 46.624. p-value computed by
Quade Test is 2.6476× 10−33, which rejects the null hypothesis and, in the result, states that
the algorithms’ performance differs significantly. The next step is to test the hypothesis of
equality between all pairs of algorithms [52]. For this step, the Shaffer post-hoc procedure
is used. z-values, associated p-values and adjusted p-values for α = 0.05 are presented
in Table 3. The z-value is used to determine the p-value from the normal distribution
N (0, 1). Adjusted p-value takes into account the accumulation of errors made by multiple
comparisons. If adjusted p-value is less than the α value, the algorithms’ performance
differs with the level of significance α equal to 0.05. In Table 3, significant differences are
separated with an additional line. It can be seen in the Table 3 that when the ANN in
the IMANN has to predict non-complex function (model formulations f1, f2, f3 , f5 and
f6), the grey box outperforms the DNN, which is indicated by the low adjusted p-value
between the corresponding pairs. For more complex problems (model formulations f4, f7
and f8) the difference is not significant. Another dependency worth noticing in Table 3 is
that the number of parameters does not change the performance significantly (hypotheses
of equality between pairs f1 and f5, f2 and f6, f3 and f7 and f4 and f8 cannot be rejected
with 5% significance level).

Figure 6. Mean integral squared error Rm for algorithms f IMANN
1 – f IMANN

4 and f DNN
P change with

numerousness of dataset.

Figure 7. Mean integral squared error Rm for algorithms f IMANN
5 – f IMANN

8 and f DNN
P change with

numerousness of data set.
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Table 1. Mean integral squared error value Rm.

Dataset f IMANN
1 f IMANN

2 f IMANN
3 f IMANN

4 f IMANN
5 f IMANN

6 f IMANN
7 f IMANN

8 f DNN
P

5 6.189 2.317× 103 2.203× 104 4.362× 105 1.732× 104 3.991× 104 3.797× 104 5.850× 104 9.278× 104

6 3.658× 10−1 1.126× 103 1.073× 104 2.699× 105 1.276× 103 1.521× 104 2.784× 104 3.810× 104 5.478× 104

7 2.476 5.610× 102 9.232× 103 2.566× 105 9.626× 102 1.868× 104 2.346× 104 3.196× 104 4.313× 104

8 1.767× 10−1 4.275× 102 5.689× 103 1.658× 105 1.418× 102 5.983× 103 1.413× 104 2.517× 104 3.773× 104

9 5.255× 10−2 1.860× 102 3.649× 103 1.007× 105 4.072× 101 3.841× 103 9.483× 103 1.839× 104 2.669× 104

10 5.108× 10−2 4.905× 101 1.925× 103 7.772× 104 6.396 2.075× 103 5.054× 103 1.548× 104 1.935× 104

11 4.381× 10−2 1.294× 102 2.556× 103 8.912× 104 1.699× 101 1.644× 103 5.097× 103 1.521× 104 1.926× 104

12 1.787× 10−2 6.870× 101 1.538× 103 4.757× 104 3.637× 10−1 8.952× 102 3.343× 103 1.197× 104 1.498× 104

13 1.698× 10−2 2.118× 101 1.152× 103 3.079× 104 1.558× 10−1 5.827× 102 2.729× 103 8.841× 103 1.339× 104

14 7.411× 10−3 2.605× 101 1.516× 103 4.183× 104 1.089× 10−1 2.632× 102 2.152× 103 1.018× 104 1.119× 104

15 9.115× 10−3 1.723× 101 9.104× 102 3.369× 104 2.149× 10−1 3.141× 102 2.487× 103 7.593× 103 9.632× 103

16 7.915× 10−3 5.880 9.728× 102 2.366× 104 1.518× 10−1 6.545× 101 1.177× 103 5.332× 103 8.875× 103

17 5.446× 10−3 2.460× 101 7.609× 102 2.291× 104 3.772× 10−2 3.529× 102 1.432× 103 6.060× 103 8.147× 103

18 6.344× 10−3 2.899 7.958× 102 1.574× 104 8.170× 10−3 2.649× 101 1.133× 103 4.631× 103 7.363× 103

19 5.733× 10−3 4.288× 10−1 5.663× 102 1.247× 104 1.355× 10−2 1.795× 101 7.061× 102 4.825× 103 1.034× 104

20 4.135× 10−3 2.295 5.869× 102 8.989× 103 1.359× 10−2 9.447 3.349× 102 2.445× 103 6.013× 103

Table 2. Average rankings of the algorithms (Quade).

Algorithm Ranking

f IMANN
1 9.000

f IMANN
2 7.331

f IMANN
3 5.581

f IMANN
4 1.000

f IMANN
5 7.669

f IMANN
6 5.294

f IMANN
7 4.125

f IMANN
8 3.000
f DNN
P 2.000

Table 3. Shaffer Table for α = 0.05.

Algorithms z p Adjusted p

f IMANN
1 vs. f IMANN

4 8.26236 1.428 15× 10−16 5.141 33× 10−15

f IMANN
1 vs. f DNN

P 7.22957 4.845 30× 10−13 1.356 68× 10−11

f IMANN
4 vs. f IMANN

5 7.03592 1.979 51× 10−12 5.542 62× 10−11

f IMANN
2 vs. f IMANN

4 6.39042 1.654 28× 10−10 4.631 98× 10−9

f IMANN
1 vs. f IMANN

8 6.19677 5.763 24× 10−10 1.613 71× 10−8

f IMANN
5 vs. f DNN

P 6.00312 1.935 56× 10−9 5.419 58× 10−8

f IMANN
2 vs. f DNN

P 5.35763 8.432 21× 10−8 2.361 02× 10−6

f IMANN
1 vs. f IMANN

7 5.03488 4.781 52× 10−7 1.338 83× 10−5

f IMANN
5 vs. f IMANN

8 4.97033 6.683 95× 10−7 1.871 51× 10−5

f IMANN
4 vs. f IMANN

6 4.71213 2.451 41× 10−6 5.393 11× 10−5

f IMANN
3 vs. f IMANN

4 4.45393 8.431 23× 10−6 1.854 87× 10−4

f IMANN
2 vs. f IMANN

8 4.32483 1.526 49× 10−5 3.358 27× 10−4

f IMANN
1 vs. f IMANN

3 3.80843 1.398 50× 10−4 3.076 70× 10−3

f IMANN
5 vs. f IMANN

7 3.80843 1.398 50× 10−4 3.076 70× 10−3

f IMANN
6 vs. f DNN

P 3.67933 2.338 44× 10−4 5.144 56× 10−3

f IMANN
1 vs. f IMANN

6 3.55023 3.848 88× 10−4 8.082 64× 10−3

f IMANN
3 vs. f DNN

P 3.42114 6.236 03× 10−4 1.122 49× 10−2

f IMANN
4 vs. f IMANN

7 3.22749 1.248 83× 10−3 2.247 90× 10−2

f IMANN
2 vs. f IMANN

7 3.16294 1.561 86× 10−3 2.811 36× 10−2
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Algorithms z p Adjusted p

f IMANN
6 vs. f IMANN

8 2.64654 8.132 02× 10−3 1.301 12× 10−1

f IMANN
3 vs. f IMANN

5 2.58199 9.823 27× 10−3 1.571 72× 10−1

f IMANN
3 vs. f IMANN

8 2.38834 1.692 47× 10−2 2.538 70× 10−1

f IMANN
5 vs. f IMANN

6 2.32379 2.013 68× 10−2 2.617 78× 10−1

f IMANN
7 vs. f DNN

P 2.19469 2.818 58× 10−2 3.664 15× 10−1

f IMANN
4 vs. f IMANN

8 2.06559 3.886 71× 10−2 4.664 05× 10−1

f IMANN
2 vs. f IMANN

3 1.93649 5.280 75× 10−2 5.808 83× 10−1

f IMANN
1 vs. f IMANN

2 1.87194 6.121 46× 10−2 6.121 46× 10−1

f IMANN
2 vs. f IMANN

6 1.67829 9.329 00× 10−2 8.396 10× 10−1

f IMANN
6 vs. f IMANN

7 1.48464 1.376 38× 10−1 1.00000
f IMANN
1 vs. f IMANN

5 1.22644 2.200 31× 10−1 1.00000
f IMANN
3 vs. f IMANN

7 1.22644 2.200 31× 10−1 1.00000
f IMANN
7 vs. f IMANN

8 1.16190 2.452 78× 10−1 1.00000
f IMANN
4 vs. f DNN

P 1.03280 3.017 00× 10−1 1.00000
f IMANN
8 vs. f DNN

P 1.03280 3.017 00× 10−1 1.00000
f IMANN
2 vs. f IMANN

5 0.64550 5.186 05× 10−1 1.00000
f IMANN
3 vs. f IMANN

6 0.25820 7.962 53× 10−1 1.00000

Another test was performed to test the differences between standard DNN and
IMANN formulations for Rosenbrock with two-dimensional input. Mean errors over
one hundred trials obtained for every different dataset numerousness are presented in
Table 4 and graphically in Figure 8. To compare these two formulations, Wilcoxon proce-
dure was employed, as proposed by Derrac et al. [52]. Wilcoxon ranks are presented in
Table 5. The lower of the two should be less than or equal to the critical value obtained
from the Wilcoxon distribution. The critical value obtained from Wilcoxon distribution for
16 degrees of freedom and the level of significance α = 0.05 is equal to 29, which is lower
that 57; therefore, the null hypothesis of equality of means cannot be rejected. Still, a great
increase of IMANN’s performance with enough data points presented in Figure 8, shows
promising potential. High mean error value for IMANN, when the data numerousness
is lower than 11 points per input dimension, is caused by 2 trials per 100 with very high
error value. This problem may be addressed with a different learning approach.

Table 4. Mean integral squared error value Rm.

Dataset f IMANN
9 f DNN

R

25 1.327× 105 1.983× 105

36 4.969× 104 5.694× 104

49 2.033× 104 1.666× 104

64 2.403× 104 7.762× 103

81 8.267× 103 4.806× 103

100 3.299× 103 2.504× 103

121 4.432× 103 1.996× 103

144 2.440× 102 1.417× 103

169 3.205× 101 1.128× 103

196 1.426× 102 9.741× 102

225 1.312× 101 9.380× 102

256 1.502 6.607× 102

289 1.772× 10−1 5.625× 102

324 1.059× 10−1 5.409× 102

361 7.778× 10−1 4.868× 102

400 3.285× 10−1 4.457× 102
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Table 5. Ranks of the algorithms (Wilcoxon).

Algorithm Ranking

f IMANN
9 57
f DNN
R 79

Figure 8. Mean integral squared error Rm for problems f9 and f DNN
R change with numerousness of

data set.

5.3. Examples of Prediction

To illustrate the difference between the prediction of IMANN and DNN, an IMANN
implementation for f3 and f7 is chosen. Mean with one standard deviation distance of
the predicted parameter ã for f3 is presented in Figure 9. One can see that the highest
deviation is close to x = 0, where the term ãx3 vanishes and thus does not count in error
significantly. This observation is especially significant when one wants to interpret the
value of the parameter predicted by the IMANN. In a domain where the parameter’s
impact on system behavior is insignificant, its value should be treated as obtained with
very low accuracy. Same figure type for two parameters ã, b̃ for formulation f6 is presented
in Figure 10. Here the deviation between ideal parameters’ values and predicted by the
IMANN is very high. The reason for such a difference is the ambiguity that arises when two
parameters are predicted. In the Figure 11 the blue line and the blue area indicates the fP
mean prediction made by the IMANN and one standard deviation area, the green line and
the green area indicates the fP prediction made by the DNN and one standard deviation
area while the red line is the fP. As can be seen, even though IMANN-predicted parameters
have formed different than expected, the resulting prediction of the function fP is highly
accurate. This implies two important remarks. First, interpreting subfunctions’ values
provided by IMANN should be checked for ambiguity, and second, proper constraints put
on subfunctions’ values can reduce the number of ambiguous solutions. The constraints can
be introduced by adding an additional penalty term in the error function during training.
The penalty can correspond to subfunction values in specific points, range, or even shape
described with derivative (e.g., monotonicity).

Comparison between IMANN and DNN mean predictions of Rosenbrock function
for two different dataset numerousness are presented in Figure 12 for 36 data points
(25 training points) and in Figure 13 for 256 data points (179 training points). For a low
number of data points, the maximum discrepancy between prediction and original function
for IMANN is of one order of magnitude lower than for DNN. For a higher number of
points, the advantage of IMANN over DNN is greater, reaching the difference of two orders
of magnitude.
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Figure 9. Mean prediction µã of a ã subfunction made by IMANN with indicated one standard
deviation σã region.

Figure 10. Mean predictions µã and µb̃ of a ã and b̃ subfunction made by IMANN with indicated one
standard deviation σã and σb̃ regions.
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Figure 11. Mean predictions µDNN
fP

and µIMANN
fP

of fP function with corresponding one standard

deviation regions σDNN
fP

and σIMANN
fP

. IMANN prediction corresponds to formulation f7, for which

mean values of parameters ã and b̃ can be found in Figure 10.
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Figure 12. Rosenbrock function prediction with DNN and IMANN for 36 data points. Surfaces
correspond to predicted values, wireframe to original function, blue points indicate data points and
colormap on the bottom indicates absolute error.

Figure 13. Rosenbrock function prediction with DNN and IMANN for 256 data points. Surfaces
correspond to predicted value, wireframe to original function, blue points indicate data points and
colormap on the bottom indicates absolute error.
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6. Discussion

From the idea of the IMANN, one can see that by decreasing the load on the ANN
part to zero in the IMANN will result in the IMANN’s prediction performance equal
to the model (see Figure 2). In the proposed benchmarking case, the numerical model
performance is perfect because we already know the form of the subfunctions. In real
applications, finding even such a simple thing as the constant fitting parameters might be
a problem.

Generalized computations from Section 5 prove that the IMANN can achieve higher
performance than the DNN, as presented in Table 3. Gray-box approach is better than
black-box when the complexity of subfunctions is lower than the complexity of a predicted
function (see the upper part of Table 3). There was no significant difference when one and
two subfunctions were modeled by the IMANN with similar complexity of subfunctions
(see the lower part of Table 3. Therefore, the IMANN can improve the mathematical
model’s performance by modeling its oversimplified, uncertain or missing parts, that are
responsible for the discrepancy between the numerical model’s prediction and the modelled
system.. The power of artificial neural network is utilized only for the problem part that
cannot be solved accurately any other way. Such an approach reduces the complexity
of a problem that is solved by an ANN, resulting in better prediction, especially with a
small number of learning data points. The obtained results indicate great potential in the
integration of mathematical models and artificial neural networks.

There are two major limitations of the IMANN. Since learning requires to run a
numerical algorithm for each training data point each time a set of weights is tested,
a reasonable learning time may not be obtained with computationally heavy numerical
models. A second limitation arises from the fact that a problem of providing a part of the
model by the ANN can become ambiguous, which can result in an unphysical or irrational
form of subfunctions without additional control. A proposed way to keep ANN outputs
physical is to impose additional constraints by adding penalty terms in Etrain. As for results
provided in this paper, this topic is not studied.

7. Practical Application in Solid Oxide Fuel Cells Modeling

Microscale modeling of Solid Oxide Fuel Cell’s (SOFC) anode comes with a highly
difficult problem of modeling a multistep electrochemical reaction between oxygen ions and
hydrogen. The reaction occurs in the so-called triple phase boundary (TPB) and is a basis of
SOFC’s operation. The equation which describes the reaction has empirical parameters that
have to be estimated or fitted into the solution. Simplified equation (without elaborating
the preexponential term i0) takes the form described by the Butler-Volmer formula:

iTPB = i0

[
exp

(
αnF
RT

ηact

)
− exp

(
−βnF

RT
ηact

)]
, (14)

where iTPB is the volumetric exchange current density (A/m3), i0 is the exchange current
density (A/m3), F = 96,485.3415 s A/mol is the Faraday constant, T is the temperature
(K), α and β are the charge transfer coefficients (1) that are obtained by fitting to the
experimental data [53], ηact is activation overpotential (V). Detailed mathematical model of
SOFC’s anode phenomena can be found elsewhere (e.g., [54]).

The Butler-Volmer equation comes with three empirical parameters—i0, α and β,
for which the values and the functional dependence from microstructural and system
parameters is unknown [55]. Here, an ANN is employed to provide α and β values as
functions of temperature T (K) and current density I (A/m2) for numerical model of the
anode. The architecture is schematically presented in Figure 14.
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Figure 14. Architecture schema of the IMANN in application to SOFC’s anode microscale modeling.

Data available in the literature [56] was used as a source of microstructural parameters,
typically used charge transfer coefficients’ values and both training and test datasets.
Training set consisted of twelve data points , six for 800 °C and six for 1000 °C. The test set
was made of six data points for temperature 900 °C.

The ANN’s architecture contains one hidden layer consisting of three neurons with
Bent Identity activation functions. The output layer contains two neurons—one for α and
one for β charge transfer coefficients—with SoftPlus activation functions, as values of
charge transfer coefficients should be positive. The output of activation functions was
directly provided to the numerical model. The inputs to the ANN were temperature and
current density.

To check if the IMANN architecture provides values that are physically feasible, it is
shown what is the proposed functional form of charge transfer coefficients in dependence
from current density, Figure 15, and temperature, Figure 16. In Figure 15 values of both α
and β charge transfer coefficients are presented as functions of current density for three
different operating temperatures. It can be seen that the α value proposed by the ANN
changes nonlinearly with the current density and is increasing monotonically. In Figure 16
charge transfer coefficients are presented as functions of temperature for three different
current densities. The α value changes nonlinearly with the temperature and is decreasing
monotonically. The β value is practically independent from both temperature and current
density. Values of charge transfer coefficients proposed by the ANN are close to the ones
frequently used in the literature. Researchers in the literature propose different values
for charge transfer coefficents. For α and β, one can find values in the ranges [0.7, 1] and
[0.1, 0.5], corespondingly [55,57,58].
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Figure 15. Charge transfer coefficients values proposed by the IMANN versus current density.
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Figure 16. Charge transfer coefficients values proposed by the IMANN versus temperature.

To see the improvement of the overall model, IMANN architecture is compared to the
model with typically used charge transfer coefficient values. In the Figure 17 overpotential
of the anode versus current density is presented for three different temperatures taken from
the literature [56]. Experimental data points are marked as symbols, the standard model is
represented as a dashed line, and the proposed method is represented as a solid line. It
can be seen that for all data points—both training and test—hybrid model outperforms the
classical model in terms of agreement with experimental measurements.
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Figure 17. Overpotential curve comparison between IMANN grey-box model versus experimental
data from [56] and numerical model with standard parameters.

8. Conclusions

The present paper introduced a framework for integrating a classical mathematical
model and an artificial neural network, using an evolutionary algorithm to limit the
required dataset. The methodology can be applied to any system only if a part of it can be
expressed in the form of mathematical equations. The combination of an artificial neural
network and a classical mathematical model is interactive, expressed in the possibility to
exchange information between a numerical model and ANN as a numerical model’s request
and ANN’s response. The Interactive Mathematical Model-Artificial Neural Network was
employed to predict several benchmark functions’ values when given a different number
of training data. Problems presented in this work were narrowed to theoretical cases
with limited complexity compared to real applications. However, the proposed approach
can be applied to simulate any system for which the mathematical model is incomplete
and a limited dataset of experimental data is available. This situation is widespread in
engineering. A practical application in the Solid Oxide Fuel Cell modeling was successfully
presented, in which parameters provided by ANN were physically feasible and model
prediction was improved. Current limitations include computational complexity due to the
use of the derivative-free method for problems of high dimensionality, which requires to
call a potentially numerical-heavy numerical model thousands of times. This problem can
be addressed by searching for the most optimal optimization method in this application.
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Another limitation that was described corresponds to the specific problem, not to the
IMANN idea. Therefore, it has to be controlled during application by forcing physical
and realistic values and comparing the proposed by the IMANN solution to the available
experimental or literature data. In future work, the problem of dimensionality should be
addressed, i.e., making the possibility of using ANN architectures with a greater number
of neurons and layers. More complicated IMANN architectures, including multiple neural
networks assigned to different model parts, convolutional neural networks to reduce
the number of optimized coefficients or feedback loops (like recurrent ANNs) to achieve
additional information for ANN, like the model’s state, can be investigated.
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