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Abstract: The influence of statistically stationary, homogeneous isotropic turbulence (i) on the mean
area of a passive front propagating in a constant-density fluid and, hence, (ii) on the mean fluid
consumption velocity uT is explored, particularly in the case of an asymptotically high turbulent
Reynolds number, and an asymptotically high ratio of the Kolmogorov velocity to a constant speed
u0 of the front. First, a short early transient stage is analyzed by assuming that the front remains
close to a material surface that coincides with the front at the initial instant. Therefore, similarly to a
material surface, the front area grows exponentially with time. This stage, whose duration is much
less than an integral time scale of the turbulent flow, is argued to come to an end once the volume of
fluid consumed by the front is equal to the volume embraced due to the turbulent dispersion of the
front. The mean fluid consumption velocity averaged over this stage is shown to be proportional to
the rms turbulent velocity u′. Second, a late statistically stationary regime of the front evolution is
studied. A new length scale characterizing the smallest wrinkles of the front surface is introduced.
Since this length scale is smaller than the Kolmogorov length scale ηK under conditions of the present
study, the front is hypothesized to be a bifractal with two different fractal dimensions for wrinkles
larger and smaller than ηK . Finally, a simple scaling of uT ∝ u′ is obtained for this late stage as well.

Keywords: self-propagating front; turbulent consumption velocity; front area; bifractal

1. Introduction

Turbulent combustion involves various multi-scale and highly non-linear phenom-
ena [1–3] such as turbulence [4–6], complex chemistry [7,8], thermal expansion [9–12], and
differential diffusion [13] effects. Nevertheless, the fundamentals of the influence of turbu-
lence on a flame are often explored by considering the classical problem of a passive front
propagating locally normal to itself at a constant speed u0 in randomly turbulent advected
media [14–16]. Under such simplified conditions, the front speed is associated with the
laminar flame speed. Historically, this problem attracted much attention, particularly in
the 1940s when significant acceleration of flame propagation by turbulence was found. The
phenomenon was explained by Damköhler [17] and Shelkin [18] who highlighted random
advection of a flame by turbulent flow and reduced the influence of the turbulence on the
flame to an increase in the area of the flame surface wrinkled due to large-scale velocity
fluctuations. Following these pioneering ideas, various models of flame propagation in
turbulent flow were created in order to evaluate the mean consumption velocity uT (i.e.,
the averaged mass rate of reactant consumption per unit area of the mean flame surface,
normalized using the fluid density upstream of the flame). The mean consumption velocity
was considered to be a function of the front speed u0 and the rms turbulent velocity u′, with
a ratio of uT/u0 being controlled by the mean increase in the front surface area. Moreover,
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Direct Numerical Simulation (DNS) investigation [19] of the propagation of a dynamically
passive front in a constant-density turbulent flow showed the linear relationship between
uT − u0 and u′, at least at 0.5 ≤ u′/u0 ≤ 10.

However, in spite of long-term investigations of propagation of a front (e.g., a flame)
in randomly advected media (e.g., turbulence), physical mechanisms that result in the
aforementioned linear relation do not seem to be fully clarified. To resolve the problem, tur-
bulent entrainment—which is controlled by large-scale eddies—is commonly highlighted,
with small-scale characteristics of any surface (material or self-propagating) being assumed
to be adjusted to the influence of large-scale turbulent eddies on the surface. Accordingly,
the fractal concept [20] is invoked to describe the surface characteristics at various scales. In
particular, for a moderately slow (uK < u0 � u′) front whose fractal dimension D = 7/3
and the Gibson length scale LG = L(u0/u′)3 � L is inside the inertial interval of the turbu-
lence spectrum [4,5], i.e., ηK < LG, the fractal concept yields uT ∝ u′ [21,22]. Here, L is an
integral turbulence length scale, uK = (νε)1/4 and ηK =

(
ν3/ε

)1/4 designate Kolmogorov
velocity and length scales [4], respectively, ν is the kinematic viscosity of the fluid, and ε is
the mean rate of viscous dissipation of turbulent kinetic energy. However, it is an open
question what happens when u0/uK → 0 and, consequently, the Gibson length scale is
inside the viscous (dissipation) interval, i.e., ηK > LG. Accordingly, the present work aims
to hypothesize a specific physical mechanism that reconciles (i) the scaling of uT ∝ u′ at
u0 � uK, (ii) the concept of turbulent entrainment, and (iii) a well-recognized paradigm
that reduces the effect of turbulence on the front propagation to an increase in the front area
by turbulent eddies, whose characteristics are described by the Kolmogorov theory [4,5,23].

The present study addresses two limiting stages of front area evolution: (i) an early
transient stage, whose duration is much less than an eddy-turn-over time scale τT = L/u′,
and (ii) a late stage when the front area reaches a statistically stationary state. The two stages
could be associated with (i) flame kernel growth after spark ignition in a piston engine, and
(ii) a fully developed turbulent premixed flame, respectively. During the late stage, growth
of the front surface area due to turbulent straining is counterbalanced by a reduction of
the front surface area due to joint actions of (i) the folding of finite-length front elements,
caused by strong advection, and (ii) the subsequent collisions of self-propagating fronts.

2. Analysis and Results
2.1. Earlier Transit Stage

Let us explore the motion of an infinitely thin front in statistically stationary, ho-
mogeneous, isotropic turbulence. The front self-propagates locally normal to itself at a
constant speed u0. The turbulence is (i) unaffected by the front, (ii) characterized by an
asymptotically high turbulent Reynolds number ReL = u′L/ν � 1, and (iii) described
by the Kolmogorov theory [4,5,23]. The front is considered to propagate slowly, i.e., the
Kolmogorov velocity uK is much larger than u0. In this section, we address the early
transient stage, i.e., t� τT , of the evolution of an initially (t = 0) planar front.

The present analysis is based on the theory of surface area growth, developed by
Batchelor [24] for an infinitesimal element of a material surface. The analysis is also based
on the results of DNS studies [25,26] of the same phenomenon, and theoretical and DNS
results [27] on the growth of the area of a finite-length element of a material surface, i.e., an
element whose area is much larger than L2. We also use the theory of turbulent diffusion,
developed by Taylor [28]. As we will see later, the earlier transit stage takes a time interval
much shorter than the eddy turnover time τT . During such a short time interval, the
area growth rates are almost the same for the infinitesimal and finite-length elements of a
material surface [27]. This is because the folding of the finite-length elements, caused by
large-scale eddies, is a relatively slow process.

When a planar material surface—which is normal to the x-axis (streamwise direction
in the following)—is embedded into the Kolmogorov turbulence, the surface adapts itself
to the flow field during a short transient time interval of t ≥ ti ≈ (2.5− 3)τK. Subsequently,
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the mean (ensemble-averaged) surface area AM(t) is expected to grow exponentially with
time [24–26], i.e.,

AM(t) = A0 exp
(

ξt
τK

)
, (1)

where ξ is a constant at about 0.28 [25,26], τK = (ν/ε)1/2 designates the Kolmogorov time
scale, and A0 � L2 is the area of the considered element of the initial planar material
surface at t = 0, i.e., A0 = AM(0). Note that a subsequent DNS study [27] indicates
that, due to the folding of finite-length material surface elements during a later stage,
ξ = 0.345 + 0.00525Re1/2

L in a range of 10 < Re1/2
L < 25 when t ≈ τT .

At the same time, the streamwise dispersion ∆M(t) of a material surface grows linearly
with time [28].

∆M(t) = u′t (2)

at 0 < t � τT , with a similar linear dependence of a mean turbulent flame brush thick-
ness on flame-development time being documented in various experiments reviewed
elsewhere [29]. The constraints of t ≥ ti ≈ (2.5− 3)τK and t� τT are consistent with one
another in the considered case of ReL � 1.

As argued by Yeung et al. [26], Equation (1), which holds for an infinitesimal element
of a material surface, describes also the evolution of the area AF(t) of an infinitesimal
element of a dynamically passive front, provided that u0 � uK and t ≥ ti ≈ (2.5− 3)τK
Moreover, during the studied short earlier stage (t � τT), the same equation holds for
finite-length surface elements [27], as already noted earlier. Thus, if u0 � uK

AF(t) = A0 exp
(

ξt
τK

)
, (3)

∆F(t) = u′t (4)

at ti < t� τT .
Furthermore, the already cited DNS study by Yeung et al. [26] shows that, during

the considered time interval (0 < t � τT), the distance between the material and the
self-propagating surfaces that coincide at t = 0 is smaller than the Kolmogorov length scale
ηK with a high probability. This feature is associated with the well-known fact that positive
rates of strain of a material surface statistically dominate in the Kolmogorov turbulence.
Indeed, if the local rate of strain of a material surface is positive, the locally normal (to
the surface) velocity vector un points to the surface, and the magnitude |un| is increased
with distance from the surface. Consequently, the velocity |un| can be significantly larger
than u0 � uK already at a short distance from the surface. Therefore, as u0 � |un|, self-
propagation of the front plays a minor role locally, the vector un + u0n ≈ un points to the
front, and the local flow impedes further divergence of the front and material surface.

However, there are fundamental differences between the two surfaces. Indeed, first,
there is no cusp formation at a material surface and, second, the neighboring/adjoining
elements of a folded (folds are produced by strong advection) material surface never collide.
Therefore, (i) the area of a material surface is well known to grow exponentially with time,
and (ii) the distance d between the surface elements can be very low. For instance, DNS
data show that the distance d is randomly distributed in a wide range of length scales,
which can be seen in Figure 6 in Ref. [26]. In the case of a self-propagating front, cusp
formation and collisions of its elements result in the local surface annihilation if the local
distance between the neighboring front elements is small enough. However, during the
studied short earlier stage, both effects may be neglected, as discussed earlier.
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Let us compare the fluid volume consumed by the front at instant t with the volume
of the streamwise turbulent dispersion of the front, i.e., a volume bound by the leading
and trailing edges of the front. The former volume can be estimated as follows:

VF(t) = u0

∫ t

ti

AF(θ)dθ = u0 A0

∫ t

ti

exp
(

ξ
θ

τK

)
dθ = u0τKξ−1 A0

[
exp

(
ξ

t
τK

)
− exp

(
ξ

ti
τK

)]
, (5)

where u0 AF(θ) is the volume rate of the fluid consumption at instant θ.
If ti � t, the second term in square brackets is negligible, and

VF(t) ≈ u0τKξ−1 A0 exp
(

ξt
τK

)
, (6)

i.e., the volume of the consumed fluid is controlled by the small-scale turbulence and grows
exponentially with time.

By virtue of Equation (4), the volume of the streamwise dispersion of the front is
equal to

VT(t) = A0∆F(t) ∝ A0u′t (7)

and, consequently, is controlled by large-scale turbulent eddies. This volume grows linearly
with time at 0 < t� τT , contrary to the exponential growth of VF(t). Therefore, in spite
of VF(t) � VT(t) at ξt/τK = O(1), because u0 � uK � u′, the exponentially growing
volume VF(t) and the linearly growing volume VT(t) should become equal to one another
at certain instant t∗. In other words, at instant t∗, the fluid consumed by the front fills the
volume formed by the streamwise dispersion of the front.

To estimate this critical instant, let us invoke the following simple constraint:

VF(t∗) = VT(t∗). (8)

Henceforth, numerical factors are skipped for simplicity. Equation (8) can be rewritten as
follows:

VF(t∗)
AF(t∗)

= l(t∗) = d(t∗) =
VT(t∗)
AF(t∗)

. (9)

Here, l(t∗) is the mean thickness of a thin layer consumed by the front, or, in other words,
the mean distance between initially coinciding elements of the front and material surface.
The symbol d(t∗) designates the mean distance between opposed elements of either the
front or the material.

Equations (3) and (6) yield

l(t∗) = ξ−1`0
`0 = u0τK = u0

uK
ηK � ηK.

(10)

Both the distance l(t∗) and the microscale `0 are much less than the Kolmogorov length
scale, i.e., they are inside the dissipation subrange of the turbulence spectrum. This estimate
agrees with the DNS data by Yeung et al. [26], thus supporting the present study. Note
that the microscale `0 will also play an important role in an analysis of the statistically
stationary state of the front evolution, discussed in the next subsection.

Substitution of Equations (6) and (7) into Equation (8), or substitution of Equations (1),
(3), (6), and (7) into Equation (9) yields.(

u′

u0

)(
ξt∗

τK

)
≈ exp

(
ξ

t∗

τK

)
. (11)

Taking logarithm of Equation (11), we arrive at

ξ
t∗

τK
≈ ln

(
u′

u0

)
+ ln

(
ξt∗

τK

)
. (12)
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Under the considered conditions of u0 � uK � u′, term ln(u′/u0) � 1. Therefore,
ξt∗/τK � 1, the last term on the right-hand side of Equation (12) may be neglected
when compared to the left-hand side. Consequently, the non-linear Equation (11) has the
following approximate solution:

t∗ ≈ ξ−1τK ln
(

u′

u0

)
≈ ξ−1τTRe−1/2

L ln
(

u′

u0

)
. (13)

By virtue of Equation (13), the following necessary condition

ln
(

u′

u0

)
� Re1/2

L (14)

should be satisfied in order for t � τT , which is required for Equations (2) and (4) to
be valid.

At instant t∗, the front area given by Equations (3) and (11) is equal to

AF(t∗)
A0

= ξ

(
u′

u0

)(
t∗

τK

)
≈
(

u′

u0

)
ln
(

u′

u0

)
. (15)

The turbulent consumption velocity is equal to

uT(t∗) = u0
AF(t∗)

A0
= ξ

(
t∗

τK

)
u′ ≈ u′ ln

(
u′

u0

)
. (16)

The volume of the consumed fluid is equal to

VF(t∗) = A0u′t∗, (17)

see Equations (7) and (8). Finally, the mean consumption velocity averaged over 0 < t < t∗

is equal to

uT =
VF(t∗)
A0t∗

= u′. (18)

Independence of the mean consumption velocity on the Kolmogorov scales does not
mean that the Kolmogorov eddies are unimportant. On the contrary, it is the Kolmogorov
eddies that create front surface within the framework of the above analysis. Nevertheless,
the outcome, i.e., the mean uT , is independent of the Kolmogorov scales. This apparent
paradox is basically similar to the well-known independence of the mean dissipation rate
on viscosity in the Kolmogorov turbulence at ReL → ∞ , or independence of the mean
rate of entrainment of ambient irrotational fluid into turbulent fluid on viscosity in shear
flows [30]. While both the dissipation and entrainment occur due to viscosity, the mean
rates of the two processes are controlled by large-scale velocity fluctuations at ReL → ∞ ,
whereas small-scale phenomena adjust themselves to these mean rates. As noted by
Tsinober [6], “small scales do the ‘work’, but the amount of work is fixed by the large scales in such
a way that the outcome is independent of viscosity”.

2.2. Statistically Stationary State

The method used in Section 2.1 to analyze the early (t� τT) transient stage of front
propagation under conditions of u0 � uK � u′ is based on the hypothesis that a material
surface and a self-propagating front that coincide at t = 0 are very close to one another (i.e.,
the distance between them is smaller than the Kolmogorov length scale) during a short
(t � τT) time interval. This hypothesis allows us to model temporal growth of the front
surface area by invoking results that are well known for material surfaces. However, this
hypothesis does not hold at t � τT when the front area reaches a statistically stationary
state. In this limit, the growth of the front surface area due to turbulent straining is
counterbalanced by a reduction of the front surface area due to joint actions of folding
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of finite-length front elements, caused by strong advection, and subsequent collisions of
self-propagating fronts. As a result, neighboring front surface elements collide, and the
front surface area is reduced.

Here, to examine the statistically stationary regime of slow front propagation, we will
show that the smoothing of small-scale wrinkles occurs in the dissipation range of the
turbulence spectrum (i.e., at length scales smaller than the Kolmogorov scale). Accordingly,
we will consider the front surface to be a bifractal, i.e., two fractals with different dimen-
sions, associated with the dissipation and inertial ranges. A similar scenario was explored
by Sreenevasan et al. [20] when discussing turbulent mixing for Schmidt numbers far
greater than unity, as portrayed in Figures 2a and 6 in the cited paper. Recently, such ideas
were developed for a flame of a finite thickness [31,32]. In the present communication,
the bifractal concept is applied to an infinitely thin front. In particular, to explore the
influence of turbulent eddies on the area of a slowly (u0 � uK) propagating front, the
area response to small-scale and large-scale turbulent eddies is modeled by invoking two
different fractal submodels. More specifically, both large-scale and small-scale wrinkles
of the front are considered to be fractals, but with different dimensions (D f ,1 and D f ,2)
and different cut-off scales. Moreover, the outer cut-off scale for the small-scale fractal is
considered to be equal to the inner cut-off scale for the large-scale fractal. These two equal
cut-off scales are called a crossover length scale in the following. Thus, the focus of the
following discussion is placed on the two fractal dimensions, the crossover length scale, as
well as the inner `in and outer `out cut-off scales for small-scale and large-scale wrinkles of
the front surface, respectively.

First, following a common supposition [20–22], the large outer cut-off scale `out is
assumed to be proportional to a turbulent integral length scale L.

Second, the crossover length scale is associated with the boundary between inertial
and dissipation ranges of the turbulence spectrum. Therefore, the crossover length scale is
proportional to the Kolmogorov length scale ηK. Thus, the large-scale fractal covers the
following range ηK < r < L of wrinkle scales r. It is worth noting that ηK is considered to be
the inner cut-off scale not only in single-fractal models of non-reacting turbulent flows [20]
or a bifractal model of turbulent mixing at a large Schmidt number [20], but also in certain
single-fractal models of highly turbulent flames [33]. Contrary to the latter models, the
front is hypothesized to be another fractal even at smaller length scales `in < r < ηK, rather
than a smooth interface. The point is that, under the considered conditions of an infinitely
thin and slowly propagating (i.e., u0 � uK) front, there is no physical mechanism that can
smooth the front surface at scales larger than the Kolmogorov length scale.

Indeed, third, the sole physical mechanism of smoothing small-scale wrinkles on
the surface of an infinitely thin front consists of kinematic restoration due to the self-
propagation of the front [21,22]. This is the key difference between the present study and
a recently developed bifractal model [32] of a highly turbulent reaction wave that has a
mixing zone of a finite thickness. For such waves, the inner cut-off scale is controlled
by molecular mixing [32]. For an infinitely thin front, the small inner cut-off scale `in is
identified as the Gibson scale corresponding to the front velocity u0. Therefore, the scale
`in is found using the following constraint:

|∆u(`in)| = u0, (19)

where ∆u(`in) designates the velocity difference in two points separated by the distance `in.
The same constraint is adopted in the classical single-fractal models of turbulent

flames [21,22], which address the case of u0 > uK and, accordingly, estimate the velocity
difference following the Kolmogorov scaling for the inertial interval [4,5], i.e., |∆u(`in)| ∝
uK(r/ηK)

1/3 > uK. However, under conditions of u0 � uK examined here, the scale `in
belongs to the viscous (dissipation) subrange of the turbulence spectrum. Therefore, the
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difference |∆u(`in)| should be estimated using the Taylor expansion [4]. Consequently, by
retaining the linear term in the expansion, we arrive at

|∆u(`in)| ≈ |∇u|`in ∝
`in√
ε/ν

=
`in
τK

. (20)

Equations (19) and (20) yield

`in = u0τK =
u0

uK
ηK � ηK. (21)

A comparison of Equations (10) and (21) shows that the inner cut-off scale `in is
equivalent to the microscale `0 introduced in Section 2.1. Obviously, the scales `in and `0

differ from the common Gibson length scale LG = L(u0/u′)3 = ηK(u0/uK)
3 [21,22], which

characterizes interaction of the front with turbulent eddies from the inertial range.
Fourth, the area of a bifractal surface is evaluated as follows [20,32]:

A f ,1 = A0

(
L

ηK

)D f ,1−2
, (22)

A f = A f ,1

(
ηK
`0

)D f ,2−2
, (23)

where subscripts 1 and 2 refer to the large-scale interval of ηK < r < L and the small-scale
interval of `0 < r < ηK, respectively. In terminology by Sreenivasan et al. [20], A f ,1 is the
area measured with resolution ηK, and A f is the true front surface area increased jointly by
large-scale and small-scale wrinkles.

Substitution of Equation (22) into Equation (23) yields

A f = A f ,1

(
ηK
`0

)D f ,2−2
= A0

(
L

ηK

)D f ,1−2( ηK
`0

)D f ,2−2
= A0Re

3(D f ,1−2)/4
L

(
uK
u0

)D f ,2−2
. (24)

The value of the fractal dimension D f ,2 of the small-scale wrinkles can be found by noting
that the scales `0 < r < ηK are inside the dissipation subrange. Accordingly, the small-scale
wrinkles of the front surface fill the space between `0 and ηK, and, hence, D f ,2 = 3 [34],
as proposed by E. Hawkes during discussion with the first author in Dubrovnik in April
2017. For the fractal dimension D f ,1 of wrinkles whose scale is larger than ηK, the common
value [20–22] of D f ,1 = 7/3 may be adopted.

Subsequently, Equations (22) and (24) read

A f ,1 = A0Re1/4
L , (25)

A f = A0Re1/4
L

uK
u0

= A0
u′

u0
. (26)

Thus, the turbulent consumption velocity is equal to

uT = u0
A f

A0
= u′. (27)

Finally, it is worth noting the following point. If we consider the entire small-scale
(`0 < r < ηK) fractal to be a broadened front propagating at an increased speed

u f ,2 = u0

(
ηK
`0

)D f ,2−2
= u0

ηK
`0

= uK, (28)

then the Gibson length scale for this front is equal to ηK, which, in its turn, is equal to the
crossover length scale or the inner cut-off scale for the large-scale (ηK < r < L) fractal.
This example shows self-consistency of the present estimates of the two inner cut-off scales
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`0 and ηK, as they both are associated with Gibson scales obtained by comparing the
front speed and velocity difference for the appropriate range of the turbulence spectrum.
Moreover, the turbulent consumption velocity is again equal to u′. Indeed,

uT = uK
A f ,1

A0
= u′. (29)

3. Discussion

When small-scale turbulent eddies increase the area of a slowly (u0 � uK) propa-
gating front by stretching it, the exponential growth of the area cannot last a long time,
because the front packing in a finite volume is limited by annihilation of the front elements
in mutual collisions. Accordingly, a stage characterized by a rapidly growing front area
and consumption velocity should be followed by another stage, during which the area
partly disappears and the consumption velocity decreases. Due to such a physical mech-
anism, transient effects (oscillations) could appear even during a fully developed stage
of the front propagation. Moreover, due to the emphasized physical mechanism and the
aforementioned transient effects, the mean turbulent consumption velocity uT adjusts itself
to the rate of turbulent entrainment, i.e., to the rms turbulent velocity u′ characterizing
large-scale eddies. While the instantaneous front area growth and the increase in a ratio of
uT(t)/u0 are controlled by the smallest eddies of the Kolmogorov scales, such eddies do
not affect the time-averaged front area and turbulent consumption velocity. In some sense,
the Kolmogorov eddies behave like the Cheshire cat from Alice in Wonderland.

If the speed u0 of a self-propagating infinitely thin front is less than the Kolmogorov
velocity uK, the front surface should be wrinkled by eddies that are even smaller than the
Kolmogorov ones, because the sole mechanism of smoothing the surface wrinkle for the
infinitely thin front, i.e., kinematic restoration, can only be efficient at scales smaller than
the Kolmogorov length scale ηK in the considered case. Due to this mechanism, wrinkles
with a length scale smaller than `0 = u0τK = ηK(u0/uK)� ηK are smoothed out. In other
words, the newly introduced length scale `0 characterizes the smallest possible wrinkles of
the surface of a slowly propagating front. Since eddies from both inertial and dissipation
ranges of the turbulence spectrum wrinkle the front surface, the surface is expected to be
a bifractal with two different fractal dimensions for scales smaller (i.e., `0 < r < ηK) and
larger (i.e., ηK < r < L) than the crossover scale, which is equal to ηK under the considered
conditions. In spite of the apparent complexity of the above scenario, the mean fluid
consumption velocity is simply controlled by the rms turbulent velocity u′ � u0 during
the late statistically stationary phase of the evolution of the front.

The simple physical scenarios outlined above should be explored in future DNS studies.

Author Contributions: Investigation, V.A.S. and A.N.L.; Methodology, V.A.S. and A.N.L.; Writing—
original draft, A.N.L.; Writing—review and editing, V.A.S. Both authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by ONERA, Ministry of Education and Science of the Russian
Federation (Contract No. 14.G39.31.0001 of 13 February 2017), and the Combustion Engine Research
Center (CERC).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All equations are reported in the paper.

Acknowledgments: The first author is grateful to E. Hawkes for fruitful discussion in Dubrovnik in
April 2017.

Conflicts of Interest: The authors declare no conflict of interest.



Energies 2021, 14, 5102 9 of 10

Nomenclature

A0 initial surface area
AF area of self-propagating front
AM material surface area
D fractal dimension
d mean distance between neighboring front elements
L integral length scale of turbulence
LG Gibson scale
l mean thickness of layer consumed by self-propagating front
l0 = u0τK newly introduced microscale
`in inner cut-off scale
`out outer cut-off scale
ReL turbulent Reynolds number
t time
u velocity vector
u′ rms turbulent velocity
u0 speed of a self-propagating front
uK Kolmogorov velocity
uT mean turbulent consumption velocity
VF volume occupied by self-propagating front
VM volume occupied by material surface
∆F streamwise dispersion of self-propagating front
∆M streamwise dispersion of material surface
ε viscous dissipation rate of turbulent kinetic energy
ηK Kolmogorov length scale
ν kinematic viscosity
ξ constant
τK Kolmogorov time scale
τT turbulence time scale
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