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This book [1] comprises the following four sections: (i) the first section is related
to the Polymeric Electrolyte Membranes [2–4]; (ii) the second section, the Gas Diffusion
Layers [5,6]; (iii) the third section, the Membrane–Electrode Assembly [7,8]; (iv) the fourth
section, the Numerical Simulation and/or Experimental Study of Flow Field [9,10] for poly-
mer electrolyte fuel cell (PEFC) and/or polymer electrolyte water electrolysis (PEWE). A
polymer electrolyte could be a proton exchange membrane or an anion exchange membrane.
The topic of each section is outlined as follows.

1. Polymer Electrolyte Membranes

A. Proton exchange composite membranes using hydrophilized porous substrates [2].
B. KOH-doped polybenzimidazole membranes with asymmetrical pore distribution [3].
C. Pore-filled anion exchange membranes with double cross-linking [4].

2. Gas Diffusion Layers

A. Optimization of the preparation method of perfluoropolyether-based gas diffu-
sion media [5].

B. Semi-empirical model to predict the electrical conductivity of gas diffusion
layers using sintered metal fibers [6].

3. Membrane–Electrode Assembly

A. Innovative preparation method of membrane–electrode assemblies for proton
exchange membrane water electrolysis [7].

B. Effect of dispersion solvents in catalyst inks on the performance and durability
of catalyst layers for proton exchange membrane fuel cells [8].

4. Numerical Simulation and/or Experimental Study of Flow Field

A. Experimental studies of the effect of land width of serpentine follow field in
proton exchange membrane fuel cells [9].

B. Study on liquid water transport in porous metal foam flow-field using a two-
phase numerical modelling and an ex situ experimental study in proton ex-
change membrane fuel cells [10].

All the sections cover the recent studies on the main components of PEFC’s or PEWE’s
stack. The studies provide the underlying material, electrochemical and/or mechanical
aspects that improve the mass transport of gas, ions (liquid) and electrons for the PEFC’s
or PEWE’s electrochemical reactions at the triple-phase boundary in electrodes. Each study
offers the fundamentals and comprehensive background and the clear-edge technology on
the aforementioned materials and mass transport phenomena.
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