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Abstract: Water and energy are two of the most important resources used by humanity. Discharging
highly polluting wastewater without prior treatment is known to adversely affect water potability,
agriculture, aquatic life and even society. One of the greatest threats to water sources are contami-
nated effluents, which can be of residential or industrial origin and whose disposal in nature must
comply with specific laws aimed at reducing their environmental impact. As the oil industry is
closely related to energy consumption, it is among the sectors most responsible for global pollution.
The damage caused by this industrial sector is present in all countries, whose legislations require
companies to carry out wastewater treatment before disposal or recycling in their production process.
Bacterial cellulose membranes have been shown to be efficient as filters for the removal of various
contaminants, including biological and chemical agents or heavy metals. Therefore, their use could
make an important contribution to bio-based technological development in the circular economy.
Moreover, they can be used to produce new materials for industry, taking into consideration current
environmental preservation policies aimed at a more efficient use of energy. This review aims to
compare and describe the applications of cellulose membranes in the treatment of these effluents.

Keywords: nanocellulose; biotechnology; oleophobic filter; oily effluents; fashion industry effluents

1. Introduction

Sustainable development is of utmost importance for the planet, so the use of new
technologies should be done with awareness and recycling natural resources. That said,
biotechnology has been gaining considerable attention in the research community [1]. The
development and implementation of industrial biotechnology are linked to the need to
reduce the effects of the environmental changes and the depletion of fossil assets. At the
same time, they are expected to provide socioeconomic benefits through the generation
of new products and competitive processes [2,3], some fields of application of which are
energy and wastewater treatment [4].
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Water resources are essential for industrial activities, energy production, agriculture,
and life on earth [5]. In particular, the access to potable water and efficient treatment
methods are essential for the prevention of various types of pollution and waterborne
diseases [6]. It is possible to reduce the load of pollutants through the interconnection of
different industrial sectors, so that their by-products are treated and reused, and waste pro-
duction is minimized, with the perspective of becoming raw material in a new production
cycle [7].

As for energy production processes, in many cases they are directly linked to the
availability of clean water, the obtaining of which requires energy, thus configuring an
interdependence process. Furthermore, the use of water for energy production, both for
industrial and/or residential applications, results in the pollution of water, whose treatment
requires additional energy, causing a vicious circle [8]. Every day, huge amounts of
emulsified wastewater are generated worldwide by the petrochemical and other industries
at various stages (transportation, maintenance, manufacturing, etc.) and by oil spill
accidents [9], which are among the main causes of aquatic environment pollution [10].

Industrial pollutants such as dyes, synthetic chemicals, heavy metals, oils, microplas-
tics and others can have different origins and properties, and many of them accumulate in
the environment over time, causing increasing damage [11]. According to Rajasulochana
e Preethy [12], the methods of industrial wastewater treatment vary according to several
factors, including volume, constitution of the effluent and limits imposed by environmental
legislations. Increased research on renewable energy and energy saving technologies has
favored the development of new processes and materials as alternatives to treat complex
wastewater [10,13].

Many publications describe the application of membrane filtration for the treatment
of wastewaters, especially the oily ones. Membrane technologies such as microfiltration,
ultrafiltration and nanofiltration are increasingly used for the treatment and purification
of wastewater and oily emulsions, as well as for the supply of clean water. However,
the most commercially available membranes are made with synthetic polymers of fossil
origin [14,15], which require large amounts of solvents and chemicals. In this sense, interest
is growing in the production of membranes based on natural polymers, especially those
based on cellulose.

Among the possible new biotechnological materials, cellulose stands out, and in
particular, vegetable cellulose (VC), which is the main biopolymer produced by plants.
Although plants are currently the most abundant source of cellulose, several types of
bacteria, mainly belonging to the genera Sarcina, Gluconacetobacter and Agrobacterium have
also been found to produce it as an alternative source [16,17]. The potential of bacterial
cellulose (BC) goes far beyond its existing applications, especially with a view to its large-
scale production as a low-cost raw material to provide industrial functionality in various
sectors in a sustainable way [18]. BC is highly porous and has a reticular structure with
small pore size, which is ideal for fine filtration purposes. However, there is still a limited
number of works in the literature on its use as a raw material for filtration membranes to
be applied to water treatment [10,19–22].

In this context, the objective of this review is to describe and compare different
applications of BC membranes in the treatment of various effluents contaminated mainly
by oils and fats. At the end of the review, the reader can realize how much BC membrane-
based filtration systems, in addition to being sustainable, can reduce energy consumption
and add several advantages to industrial wastewater treatment.

2. Water Resources and Energy Management

Until recently, energy management practices consisted mainly of supplanting wasteful
tools. However, one study has shown that in recent decades “alternative” efforts have been
made to implement better industrial practices, taking into consideration other important
factors such as advanced procedures, increased productivity and better environmental
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conduct, among others. This has led to better results for companies compared with energy
management practices alone [23].

Water and energy are both recognized as indispensable inputs to the economy, and
three factors, namely security of supply, sustainability, and economic efficiency, have been
considered as crucial for the industry. Some examples of the trade-offs between energy and
water security include desalination plants, groundwater pumping for water supply, first
generation biofuels, irrigation techniques and effluent disposal [24].

Since energy is one of the main growth factors of a given population, influencing
the economic, environmental and social spheres, global energy resources have generated
geopolitical tensions since the industrial revolution. However, even with technological
advances, global awareness and the start of an energy transition, the main energy resources
still come from oil [25,26].

Water and energy consumptions can be closely linked (Figure 1) as they are both
essential for industrial production. Water is essential for the production and refinement
of various types of motor fuels and for the extraction of coal and oil, but it is also widely
used in the cooling process in different sectors and in the generation of hydroelectric power
generation, one of the most popular forms of electricity supply in the world [27,28]. Energy
is essential for drinking water production, wastewater treatment, water transport and dis-
tribution to both industry and population. Therefore, the conscious use of water and energy
is a global concern, which has led to the creation of new technologies, making wastewater
treatment and use of clean energy essential areas for sustainable development [29,30].
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Figure 1. Water and energy consumption cycle.

Throughout history, civilizations have been able to develop various types of water
supply systems, water purification devices and wastewater treatment methods. Efforts to
obtain abundant quality drinking water have been intensively encouraged over the past
two hundred years, leading to an increase in human life expectancy around the world [31].

This context directs research to develop new ways to achieve high-performance
wastewater treatment combined with the reduction of energy expenditure, so that the
effluents (a) can be properly disposed of in the environment, not causing future damage to
fauna and flora, (b) can be reused in industry for example in cooling processes and (c) do
not lead to a significant increase in energy purchase costs [32].

3. Water Contamination

The term “pollution” has primarily been linked to the idea of environmental contam-
ination; however, it can also characterize something that poses a threat to all of nature
and life on Earth [33]. A better definition would be that pollution is the introduction of
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contaminants that modify and damage a given ecosystem [34]. Among the main problems
generated by pollution, we can mention the destruction of the ozone layer and the con-
sequent greenhouse effect, acid rain, depletion of water resources, eradication of species,
genetic mutations, changes in population birth and mortality rates and spread of infectious
diseases [35,36].

Over the years, mankind has produced a large amount of waste, resulting in a deterio-
ration of life quality [37]. Figure 2 shows how this damage to the environment has been
caused by several factors including sediment, biological and chemical pollution [38].
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Sediment pollution occurs due to the accumulation of chemicals adsorbed in the
soil, which concentrate pollutants and affect photosynthesis. It can also be caused by
erosion processes, deforestation and mineral extraction, being responsible for several
environmental disasters such as the tragedy that occurred in the cities of Mariana and
Brumadinho in Brazil in 2015 and 2019 [39,40].

Biological pollution, on the other hand, is due to the release of organic waste from
industrial or domestic sewage into watercourses, or even to its infiltration into the soil,
with consequent pollution of the groundwater. The nature of this waste is purely organic,
being a mixture of lipids, proteins and carbohydrates such as human feces, food leftovers
and industrial waste [41]. When such waste begins to decompose, it consumes the oxygen
available in water, causing the death of various aquatic organisms, generates an increase in
the proliferation of algae (eutrophication) due to the high concentrations of nutrients and
might enhance pathogen growth due to the use of contaminated drinking and recreational
water [38].

Finally, chemical contamination is mainly produced by the discharge of chemicals
into wastewater. Agroindustry is largely responsible for the chemical contamination of
underground aquifers, due to the release of agrochemicals from wastewater [15]. Some
of the main chemical pollutants discharged into watercourses are heavy metals (present
in the residues from various industrial sectors such as textiles), domestic and industrial
sewage, pesticides and agricultural fertilizers, plastics and synthetic organic compounds
(oil and petroleum derivatives) [38].

Oil, among these pollutants, is one of those that most pollute the environment and
are most harmful to nature. Moreover, the residues of its derivatives contain significant
quantities of mineral oil, which is highly resistant to biochemical decomposition. These
pollutants can be found in their free form or as emulsions made up of complex mixtures of
water, oil and additives including emulsifiers, corrosion inhibitors and anti-foaming agents.
While free or suspended oils can be easily separated from the aqueous phase of these
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wastes by simple physical processes, emulsions are chemically stabilized and can only be
separated by more complex, and therefore more expensive, separation methods [9,42,43].

Chemical pollution has cumulative effects that cause enormous damage to terrestrial
and aquatic life, as well as to the ecosystem and food chain [44]. The treatment and
remediation of chemically polluted sites constitute one of the major barriers to be overcome,
as in addition to taking time, they have a high cost [15].

4. Filtration Membranes

Over the years, the methodologies used for the treatment of industrial wastewater
have been optimized in different ways depending on the circumstances and their variables
such as volume, flow rate, specific environmental legislation and, above all, the composition
of the effluent to be treated [12]. These treatments have as their main objective the reduction
of the concentrations of contaminants present in industrial effluents, so that their discharge
into water bodies can take place in a proper way [10].

Filtration is a technique that aims to mechanically selectively separate solid particles
or large molecular structures from a liquid suspension with the help of a membrane with
specific porosity that acts as a porous bed to perform phase separation [45,46]. They can be
produced in a wide variety of configurations and structures depending on the volume and
quality of water to be filtered and the separation flow [46].

In industrial filtration processes, filter membranes made up of natural or synthetic
fabrics are generally used [47] to retain solid particles suspended in the air, such as mi-
croorganisms, specific gases, minerals or other volatile substances, or to treat the effluents
from the textile and petrochemical industries [48]. Specific fabrics are also used in hoods,
exhausts and outlets of industrial chimneys, thanks to their ability to withstand high
temperatures [47,48].

The economic and practical importance of the choice of synthetics membranes is
that they can be engineered to result in membranes with specific characteristics that may
optimize the industrial filtration process, in addition to reducing costs for the company,
such as those related to filter purchase, maintenance and energy consumption [47].

The efficiency of a filter membrane is directly related to the pore diameter and the
specific parameters of the material used [49], since it establishes the exact size of the
particle that can pass through the membrane. This defines their specific classification and
application, as shown in Table 1.

Table 1. Classification of membranes and their respective applications.

Classification Application Pore Size (nm) Reference

Microfiltration (MF) Removal of suspended solids,
protozoa, and bacteria 100–5000 [50]

Ultrafiltration (UF) Removal of viruses and colloids 2–100 [51]

Nanofiltration (NF) Removal of water hardness, heavy
metals, and dissolved organic matter 0.5–2 [51]

Reverse osmosis Desalination, water reuse and
ultra-pure water production 0.2–1 [52]

The advantages of separation processes using membranes include (a) low energy
demand for operation, (b) easy handling and maintenance, (c) no need for chemicals and (d)
higher efficiency than other techniques, which depends solely on the membrane itself [49].
However, the membrane treatment also has its drawbacks. According to Hassan et al. [53],
over than 95% of membranes are made up of synthetic polymers of fossil origin, and their
production requires the use of solvents and aggressive chemicals. For this reason, this
technology cannot be considered totally environmentally friendly, as it the production
of the membrane itself has an impact on the environment. Additionally, after use, the
membranes are particularly often not reusable and require specific disposal, as they are not
easily degradable by the action of chemical agents [10].
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For these reasons, over the years there has been a growing interest in the development
of new sustainable and biodegradable products made of natural polymers, and in particular
nanocellulose such as bacterial cellulose [18,54–56].

5. Bacterial Cellulose Membranes

Cellulose, composed of glucose monomers, is the main structural biopolymer of plants,
but it can be also produced by other life forms such as bacteria, fungi and even protozoa.
Such a natural bioproduct, whose great technological importance is justified by its wide
variety of applications [57], is the most abundant in the world, with an estimated annual
production of 1011 tons, most of which is of vegetable origin [58].

According to Donini et al. [57], bacterial cellulose (BC) differs from vegetable cellulose
(VC) in that it has nanometric rather than micrometric size, better mechanical properties
such as higher tensile strength and flexibility, higher purity given that VC is naturally linked
to hemicellulose and pectin, higher crystallinity, water retention capacity, biocompatibility,
biodegradability and biological adaptability [59,60]. These peculiar properties (Figure 3),
attributable to the inter and intramolecular hydrogen bridges that hold the polymer chains
together [46], make BC an extremely versatile biopolymer that can be used in various
sectors of economic importance.
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Figure 3. Main properties of bacterial cellulose.

Regarding its structure, BC consists of β-D-glucopyranose units joined by β-(1-4)
glycosidic bonds, interconnected by intermolecular hydrogen bonds. Even though BC and
VC have the same general formula [(C6H10O5)n], BC’s monomeric units are arranged so
that one molecule is rotated 180◦ relative to the other [61,62].

BC is a natural biomaterial (Figure 4) that has aroused much interest in research
because, in addition to having the interesting properties mentioned above, it can be subject
to different types of modifications depending on the desired application, giving rise to new
composites or polymer blends [63–65].

It can be produced by various microorganisms, either in consortia [10] or alone, as
is the case of bacteria belonging to the genus Gluconacetobacter [66], which have been
extensively studied for their ease of maintenance and ability to use a wide variety of
carbon sources.

The BC membrane acts as a flotation promoter, which allows bacterial cells to remain
in an air/liquid interface to obtain oxygen more easily for growth. It also acts as a physical
barrier that protects cells from ultraviolet radiation, increases the ability to colonize sub-
strates, and allows, thanks to its hygroscopicity, to retain moisture and prevent substrate
dehydration [57].
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sidade Católica de Pernambuco, 2020.

To form the membrane fiber, several adjacent fibrils join through hydrogen bonds
to form layers 40 to 60 nm thick. These intertwined fibers form a gelatinous film called
Zooglea (Figure 5) [67,68], which, due to being made up of about 98% water and having a
lower density than water, remains on the surface of the culture medium. The thickness of
the polymer membrane formed will depend on the fermentation time [18,54].
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tion promoter. Reproduced with permission from [69], Universidade Federal de Pernambuco, 2020.

With the aim of increasing BC productivity, several researchers have been working
on this topic, testing different forms of cultivation in bioreactors and agitated cultures, in
contrast to the traditional static culture, as well as different feeding conditions [57,70,71].

As for their biotechnological application as physical barriers [46,72], BC membranes,
due to their hydrophilic features, can be used to filter wastewater contaminated by oily
substances, in order to increase the efficiency of the entire process and to allow the treated
water to have characteristics in compliance with the environmental standards for disposal
or with reuse within the company itself [10].

Their characteristics make them suitable for use in the treatment of effluents from
various industrial sectors, such as the medical–pharmaceutical [18], food [17], cosmetic [73],
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electronic [74–76] and packaging [56,77] ones, as ultrafiltration membranes [45,78] or
separate apolar effluents [10,79].

6. Influence of Culture Conditions on Bacterial Cellulose Production

All the factors that normally influence fermentations are important for the final BC fea-
tures. These include the cultivation time, the conditions of culture environment, including
the bacterial species, nutrients, pH and dissolved oxygen (DO) level during fermenta-
tion [80], and the physical and mechanical parameters such temperature, aeration and
agitation [46,81,82].

The biopolymer can be produced by submerged fermentation in liquid media, which
can take place statically or under stirring using shakers or bioreactors, and BC will acquire
different shapes and conformations depending on the culture conditions [83,84]. When
production is carried out under static conditions, the regulation of the dissolved oxygen
level and the concentration of the carbon source in the medium are crucial for its forma-
tion [85,86], and the thickness of the formed membrane is directly proportional to the
cultivation time [87]. However, growth stops when the membrane reaches a size that limits
the access of oxygen to the cells in the medium, making them practically inactive [88,89].
Instead, irregular, sphere-like cellulose particles are produced under stirring [90]. In this
type of process, the pellets formed have low mechanical strength and a non-flat structure
with low contact surface, not suitable for applications where these characteristics are neces-
sary, as is the case of filtration systems. However, this production method aims to greatly
increase BC productivity, seeking greater applicability for other industrial purposes [57].

Even in culture media rich in nitrogen and carbon sources, the cultivation period can
vary from 48 h to 6 weeks, depending on the strain used [46,91]. Among the possible causes
of slow cell growth, the transfer of oxygen and nutrients into the film appears to be the
most influential factor [63].

According to Hirai et al. [92], the temperature during BC production not only affects
the productivity, but also its structural characteristics such as morphology and crystallinity.
This phenomenon was demonstrated for cellulose production by Acetobacter xylinum ATCC
23,769 in Hestrin-Schramm medium at two different temperatures, i.e., the typical cellulose
II bands were detected in cellulose produced at 4 ◦C, and those of cellulose I in that
produced at 28 ◦C. Cellulose has the tendency to form as a highly crystalline material, but
there are multiple types of structure of this polymer. The most common structures are
cellulose I and cellulose II, the former being the native form (found in nature as it is), while
the latter being obtained by treating the native one (with high purity). Therefore, cellulose
II has greater crystalline regions, meaning that it has a more stable polymer structure when
compared with cellulose I [93].

Another important factor is the level of DO in the culture medium, which is essential
for cell metabolism [94]. The DO levels must be carefully controlled, because too-high
values increase the concentration of gluconic acid, hindering cell production capacity, while
too low values limit bacterial growth, equally reducing the BC yield [80].

As for microbial producers, although different bacterial species can synthesize BC,
those belonging to the genus Komagataeibacter, formerly known as Gluconacetobacter, take
on a leading role because they ensure high BC yield, essential for industrial production
and marketing, and are able to use different carbon and nitrogen sources [71].

Finally, as seen in Table 2, much research has been conducted with the aim of reducing
costs by using agroindustrial wastes to prepare alternative low-cost culture media and, at
the same time, optimizing cultivation conditions for BC production.
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Table 2. Culture conditions found in the literature on bacterial cellulose production using agroindustrial wastes as low-
cost media.

Culture Medium Microorganism Time (Days) Temperature (◦C) pH Dry Weight Yield (g/L) Reference

Lipid
fermentation
wastewater

Gluconacetobacter
xylinus CH001 5 28 6.0 0.66 [95]

Hydrolysate of
dyed waste cotton

fabrics

Gluconacetobacter
xylinus ATCC 23,770 10 30 5.0 12.80 [96]

Corn Steep Liquor Gluconacetobacter
hansenii UCP1619 10 30 6.0 9.63 [54]

Cheese whey
Komagataeibacter

medellinensis NBRC
3288

10 30 3.5 2.37 [97]

Rotten banana
juice

Komagataeibacter
medellinensis NBRC

3288
10 30 3.5 4.81 [97]

Rotten mango
juice

Komagataeibacter
medellinensis NBRC

3288
10 30 3.5 1.95 [97]

Potato peel wastes Gluconacetobacter
xylinum ATCC 10,245 6 35 9.0 4.70 [98]

Tomato juice
Acetobacter

pasteurianus MTCC
25,117

7 30 4.5 7.80 [99]

Tropical fruit
residues

Gluconacetobacter
hansenii UCP 1619 10 30 6.0 7.60 [89]

Vinasse Komagatacibacter
xylinus 10 30 6.0 1.80 [100]

Cashew apple
juice and soybean

molasses

Gluconacetobacter
xylinus 7 30 5.5 4.54 [101]

Fruit and
vegetable peels

(cucumber, melon,
kiwifruit, tomato,
apple, quince and

pomegranate)

Komagataeibacter
hansenii 21 30 4.5 1.40 [102]

Whey Acetobacter
pasteurianus 8 30 4.0 5.60 [103]

It is worth noting that, in addition to reducing process costs, the use of these by-
products as culture media allows to increase their value through the development of a
sustainable BC production, a possible improvement in yield, and minimization of environ-
mental impact caused by their disposal [101].

7. Bacterial Cellulose in Wastewater Treatment

As BC has hydrophilic and oleophobic properties [49], during the filtration of oily
effluents or emulsions only water droplets pass through the nanometric pores of the
membrane at a certain pressure applied to the system, which means that the oil remains on
its surface (Figure 6).
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For oil/water emulsions, some studies have shown that certain modifying agents are
able to make BC membranes hydrophobic, thus enhancing their oil/water selectivity [22].
This is an attempt to obtain a better filtration yield according to the filtrate specifications.

Moreover, thanks to its nanoporous structure and its susceptibility to chemical deriva-
tization, BC is suitable for the removal of heavy metal ions from aqueous solution [104]. In
this context, grafting of cellulose-based materials with functional groups, such as amino,
carboxyl and thiol groups, has been proposed as a strategy to enhance their adsorption
capacity [105]. However, other reports have shown that the capacity of these altered
materials to adsorb metal ions, as well as their mechanical properties, still need further
improvement through new derivatization strategies [10,104]. For this purpose, studies
have been focusing on improving the flexibility and mechanical strength of these materials
compared with the simple BC [106], the latter being an extremely important property when
they are used to produce reusable membranes. Another strategy to modify the BC structure
is to increase the pore size by preparing composite materials, since its dense nanofibrillar
structure can impair the performance of the separation process due to liquid infiltration that
reduces its efficiency and the possibility of reuse. Furthermore, such a procedure reduces
energy consumption because separation takes place using gravity alone, i.e., without the
need to apply any additional pressure [79].

Importantly, all these modifications to the polymer can be done alone or in combina-
tion, depending on both the desired BC (composite or blend) properties and the specific
application [63,64].

The few studies conducted so far using BC as a filter membrane (Table 3) suggest that
it has enormous unexplored potential, with particular reference to its low sensitivity to
water, so that it does not decompose in contact with substances in liquid state, high degree
of porosity, low density and nanofiber structure that allow nanoscale filtration [18,72].

As shown in Table 3, most of the studies have focused their efforts on modify-
ing BC with incorporation of other active materials, with the purpose to enhance its
properties [22,46,104,106–112]. The results of a recent study, performed on a BC membrane
capable of acting both as a contaminant adsorbent and an antimicrobial agent, have in-
dicated a unique and innovative way to remove viable bacterial cells from water [112].
Such modifications, among which it is worth mentioning amination, addition of aerogels,
silica, chitosan and phosphate functional groups [104,106–109], are studied according to
the specific characteristics of the desired treatment [46,111].

Another study reported the use of BC associated with polyethyleneimine (PEI-BC) as
an adsorbent material for heavy metals, whose maximum adsorption capacity for Cu(II)
and Pb(II) was found to be 141 and 148 mg/g, respectively. The polymeric blend PEI-BC
also showed good reusability after post-treatment regeneration using Na2EDTA. After
treatment, the Cu(II) readsorption capacity of PEI-BC was lower than the initial one, but
kept stable after each cycle of use. Overall, PEI-BC showed good reusability in removing
Cu(II) and Pb(II) from aqueous solutions, showing its potential as a bioadsorbent for the
removal of heavy metal ions from wastewater [104].
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Table 3. Studies relating to the use of bacterial cellulose (BC) as filter membrane to treat effluents.

Title Description Reference

Surface modification of bacterial
cellulose aerogels’ web-like skeleton

for oil/water separation

Nanofibers of BC aerogels were modified on their surfaces by
trimethylsilylation derivatization followed by freeze-drying. The resulting

hydrophobic and oleophilic aerogels were shown to remove a wide range of
organic solvents and oils, with potential use in cleaning up oil spills in the

marine environment.

[22]

Polyethyleneimine-bacterial
cellulose bioadsorbent for effective

removal of copper and lead ions
from aqueous solution

Reductive amination with polyethyleneimine allowed to transform the BC
membrane into a bioadsorbent for the removal of heavy metal ions [Cu (II) and

Pb (II)] from wastewater.
[104]

Facile fabrication of flexible
bacterial cellulose/silica composite

aerogel for oil/water separation

A silica aerogel composite was prepared by BC modification with methylene
diphenyl diisocyanate to increase its hydrophobicity and flexibility, thus

making it a promising oil sorbent.
[106]

Preparation and characterization of
a bi-layered nanofiltration
membrane from a chitosan

hydrogel and bacterial cellulose
nanofiber for dye removal

A membrane was developed by grafting multi-walled carbon nanotubes into
BC molecular chains. The BC powder was dissolved in a solution of LiCl and
N,N-dimethylacetamide, and stannous octoate was used as a reaction catalyst.

The membrane exhibited greater tensile strength, Young’s modulus and
pressure resistance, which practically tripled its flow rate and allowed for a

yield of dye removal above 90%.

[107]

Design of reusable novel
membranes based on bacterial
cellulose and chitosan for the

filtration of copper in wastewaters

Chitosan-modified BC membranes were developed by ex situ (BC immersed in
solutions with different chitosan concentrations) or in situ (addition of

chitosan solutions to BC production medium) techniques for Cu (II) ions
adsorption. The membrane produced by the ex situ technique showed greater

efficiency in removing ions.

[108]

Removal of U(VI) from aqueous
solution using phosphate

functionalized bacterial cellulose as
efficient adsorbent

BC membranes were modified by grafting phosphate functional groups
soaking them in dimethylacetamide and urea. Membrane characterization

confirmed the successful incorporation of phosphate groups. Due to the
presence of polar hydroxyl groups and electrostatic attraction, the membranes

at pH between 4 and 8 were able to adsorb 9 mg/g of U (IV) ions.

[109]

Bacterial cellulose membranes for
environmental water remediation

and industrial wastewater
treatment

BC was produced and cleaned with NaOH to be used as a filter membrane for
the treatment of microbiologically contaminated effluents (Escherichia coli) and
dyes from the textile industry. BC membranes showed better results than the
commercial ones, removing 100% of cells present in the effluent and being able

to be reused for 10 cycles without loss of efficiency.

[110]

Impact of incubation conditions and
post-treatment on the properties of
bacterial cellulose membranes for

pressure-driven filtration

Studies on the permeation properties of BC derivatized with poly-oxyethylene
were carried out to determine the filtration efficiency of both dry and wet

membranes at different pressures and water flow rates.
[46]

Film-like bacterial
cellulose/cyclodextrin oligomer

composites with controllable
structure for the removal of various
persistent organic pollutants from

water

A film-like water purifier, prepared by loading cyclodextrin oligomer onto
ultrafine BC, was described. The system showed high and stable adsorption

capacity toward various target pollutants such as phenol, bisphenol A,
glyphosate and 2,4-dichlorophenol.

[111]

Bacterial cellulose-polyaniline
porous mat for removal of methyl

orange and bacterial pathogens
from potable water

BC membranes were modified with polyaniline by in situ oxidative
polymerization and posterior lyophilization. BC was applied to remove

methyl orange dye and bacterial cells present in drinking water. Membranes
showed an absorption capacity of approximately 300 mg/g and antimicrobial
activity, reducing the microbial load present in the effluent by up to four times.

[112]

The use of microbial cellulose membranes in association with chitosan for copper
removal has also been reported. Membranes prepared using concentrations of chitosan
and cellulose of 50 and 250 mg/L, respectively, were able to remove 50% of Cu. As for
membrane reusability, a decrease in the removal efficiency of less than 10% was observed
after two treatment cycles. These results suggest the possibility of using BC-based polymer
blend membranes to remove copper from wastewater [108].

A nanofiber polymer blend membrane with chitosan hydrogel and BC was also
reported for dye removal from wastewaters [107]. The rejection rate was higher than
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90% for dyes with molecular weight above 600 g/mol and pressure below 0.5 MPa, and
the membrane showed good antifouling properties for both oil and proteins during the
filtration process. These highly promising results indicate that nanofiltration membranes
are effective in removing dyes from wastewater, with high rejection rate and flux at high
pressure [107].

Another interesting application is the use of BC filters for the treatment of pigmented
textile effluents and microbial cell removal. BC membranes were effective in the removal
of Escherichia coli, dye effluents and solids for up to ten cycles, which suggests that they
could be used in various types of wastewater treatments, in addition to playing a role in
the development of new biotechnological tools such as enhanced filtration methods with
more cost-effective materials [110].

Moreover, one of the main advantages of BC membranes, compared with the tradi-
tional ones made of VC, is the possibility of washing them after filtration. Taking this
into account, saturated BC membranes, whose filtration capacity is reduced, can be re-
moved from the filtration system, washed and reused a few times, without losing their
efficiency [10].

There are no patents yet on the use of BC membranes to filter oily effluents. However,
there are some scientific publications on this subject that are worth mentioning, as shown
in Table 4.

Table 4. Articles related to the use of bacterial cellulose (BC) membranes as porous bed for separation of water–oil mixtures.

Title Description Reference

Use of bacterial cellulose and
crosslinked cellulose nanofibers

membranes for removal of oil from
oil-in-water emulsions

Wet BC and crosslinked cellulose nanofibers were used for the removal of oil
from stabilized and non-stabilized oil-in-water emulsions with droplet size of
less than 1 µm. The efficiency of oil removal from stabilized and non-stabilized

emulsions was higher than 92%.

[53]

Functional bacterial cellulose
membranes with 3D porous

architectures: Conventional drying,
tunable wettability and water/oil

separation

A BC membrane was functionalized by the hydrolysis of alkoxysilanes. This
procedure was able to preserve the 3D nanofibrillar architecture of the

membrane even after the drying process and increased its surface wettability
and ability to separate oily emulsions.

[113]

Use of a bacterial cellulose filter for
the removal of oil from wastewater

BC membranes produced in an alternative medium based on corn steep liquor
were cleaned with NaOH without further treatment. When used as filters, they

made it possible to retain almost 100% of the oil present in the emulsion.
[10]

Facile and green route to fabricate
bacterial cellulose membrane with

superwettability for oil–water
separation

A simple method was described to weave BC fibers and BC nanofiber clusters
in aqueous dispersion on a stainless-steel mesh, which resulted in an increase
in the roughness and consequently in the wettability of the biopolymer. The

oil–water separation process showed 99% efficiency.

[114]

Sustainable, superhydrophobic
membranes based on bacterial

cellulose for gravity-driven
oil/water separation

Needle-leaf bleached kraft pulp was added to BC to increase the biopolymer
pore size, thus forming a superhydrophobic/super-oleophilic membrane. The

membrane showed not only an oil–water separation yield by gravity >95%,
but also an excellent recyclability, as it was washed and reused without

significant structural changes after 10 separations.

[79]

The study developed by Galdino et al. [10] has shown that the separation of oil
molecules present in oily emulsions can take place with high efficiency even without
membrane modification. However, further studies are needed to improve factors such as
time of filtration and maximum pressure.

While several studies compared the yield of removal achieved during
filtration [107,110,113,114], none of them developed an effective method for maintain-
ing the retention of contaminants in a qualitative manner (oily or not). This aspect is
important to develop a production or modification method that aims to increase the flow
rate and consequently the filtration speed [10].

Although BC form quickly and its regeneration is not season-dependent, production
on an industrial scale is still relatively expensive [79]; therefore, BC association to form
composites [63] or polymer blends [56] is being studied to make it more feasible.



Energies 2021, 14, 5066 13 of 18

As shown in Table 5, only three patents have been filed on the use of BC as a filter
material [45,78,115]. These inventions propose the use in ultrafiltration and dialysis of BC
membranes treated with silica or gelatin solutions to fill the pore voids.

Table 5. Patents filed on the use of bacterial cellulose membranes (BC) as porous bed for the
separation of water–oil mixtures.

Patent Description Reference

CN103301815B

A method for preparing a BC filter to purify water was
described. The membrane nanofibrils incorporated a silica
solution to assist in the refinement of the filtration process.
BC membranes also acted as a material for drainage and

removal of bacterial cells present in water.

[78]

BR 1020180097369A2

BC membranes functionalized with silica solution, using
sodium tetraborate to bind the silica to cellulose

nanofibrils, were used in chromatographic analyses. BC
did not clog (saturated) even after 10 filtrations, and no
biological matter was detected in the filtered material.

[45]

CN110354693A
BC membrane was modified by incorporating gelatin

microspheres to improve the filtration of reactive and acid
dyes used in textile processes.

[115]

The study by Galdino et al. [10] showed that BC membranes can remove almost 100%
of the oil present in synthetic effluents and can be washed and reused for the same filtration
process more than 20 times without losing their structural characteristics and filtration
capacity. Recent studies have also shown that the filtering properties of BC membranes
are directly linked to the structural network of their fibrils, which can be modified by
variations in culture conditions and ex situ treatments. The permeation properties of BC
vary in fact according to the flow rate and pressure used in the filtering system, as well as
the size of the particles to be retained, which determine the time that the membrane will
take to completely saturate [46].

The great potential of BC membranes as a filter material for oily effluent separation
has already been demonstrated in some scientific works, as described earlier, and the key
to optimizing their use in the industrial field lies in research relating to the control of their
saturation and to the increase in pressure and flow rate they are able to withstand.

8. Conclusions and Perspectives

Bacterial cellulose (BC) is considered an eco-friendly and extremely versatile biopoly-
mer, and this is why studies have increased over the years that envisage its use in the
form of filter membranes for wastewater treatment. The present review showed the great
potential of BC membranes, produced in standard or alternative culture media by single
bacterial species or microbial consortia. Thanks to their peculiar characteristics, mainly
their nanofibrillar structure, they have proven effective as filters to retain small particles
and have been successful in the treatment of industrial effluents, in particular those of the
petroleum industry. Characteristics of BC such as high water retention and tensile strength
make it an excellent sustainable, biocompatible and biodegradable porous filter bed.

Until now, no reports are available on a direct relationship between BC membrane
filtration and related energy expenditure. Further studies are needed to make these
membranes resistant to higher flow rates and pressures, so that they can replace today’s
methods on an industrial and ecofriendly scale. In fact, it is expected that this technology
will allow a reduction in energy and maintenance costs, a possible improvement in the
treatment and a lower emission of pollutants.
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