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Abstract: The development of electric vehicles (EVs) is an important step towards clean and green
cities. An electric powertrain provides power to the vehicle and consists of a charger, a battery, an
inverter, and a motor as the main components. Supplied by a battery pack, the automotive inverter
manages the power of the motor. EVs require a highly efficient inverter, which satisfies low cost,
size, and weight requirements. One approach to meeting these requirements is to use the new
wide-bandgap (WBG) semiconductors, which are being widely investigated in the industry as an
alternative to silicon switches. WBG devices have superior intrinsic properties, such as high thermal
flux, of up to 120 W/cm2 (on average); junction temperature of 175–200 ◦C; blocking voltage limit of
about 6.5 kV; switching frequency about 20-fold higher than that of Si; and up to 73% lower switching
losses with a lower conduction voltage drop. This study presents a review of WBG-based inverter
cooling systems to investigate trends in cooling techniques and changes associated with the use
of WBG devices. The aim is to consider suitable cooling techniques for WBG inverters at different
power levels.

Keywords: cooling system; wide-bandgap (WBG); silicon carbide (SiC); gallium nitride (GaN);
automotive inverter; electric vehicle

1. Introduction

The electric vehicle (EV) market has grown rapidly for several decades as an alterna-
tive to conventional internal-combustion engine (ICE) vehicles, resulting in reduced air
pollution [1]. The trend of reducing emissions in the atmosphere is demonstrated by the
results of the voluntary agreement between the European Commission and the European
Automobile Manufacturers Association (ACEA), the Japanese Automobile Manufacturers
Association, and the Korean Automobile Manufacturers Association. This agreement has
a target to reduce CO2 emissions by at least 37.5% compared to a 2021 baseline, which
equates to the reduction of CO2 emissions to 59.4 g/km by 2030 (fleet-average emissions
are tested through the New European Driving Cycle) [2,3]. Moreover, the European Union
(EU) has set targets to reduce greenhouse emissions in the 2030 climate and energy frame-
work to 55% compared to 1990 [3]. According to the ACEA, the percentage of electrically
chargeable and hybrid cars compared to the total of all newly registered cars in Europe
increased from 4.3% to 22.4% between 2017 and 2020 (Figure 1) [4].
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Figure 1. ACEA statistics: fuel types of new passenger cars in Europe, %. 

The propulsion system plays a central role in providing tractive effort and energy 
management of an electric vehicle. The propulsion system includes the energy storage, 
power converters, electric motors, and associated controllers [5]. EV propulsion systems 
have been steadily improved, with the main development trends including higher power 
density, and reduction in size, weight, and cost [6]. The increase in power density and 
decrease in size can lead to poor heat dissipation and thermal stress, which in turn leads 
to additional failures of power converters [7]. Thus, to boost reliability, the main challenge 
of the propulsion’s thermal management is to obtain a compromise between power den-
sity and size. This compromise allows thermal stress to be avoided and provides a better 
operating condition through a proper cooling system design [8]. 

Initially, cooling systems in EVs used forced air cooling, before evolving to liquid 
cooling as a more effective solution [9]. Because air cooling is less thermally efficient than 
liquid cooling, in current automotive applications the inverter air cooling is only possible 
for low power levels. Liquid cooling of EVs is usually provided using a low-temperature 
cooling loop (65 °C) for the power inverter [10,11], a high-temperature loop for the electric 
machine [12], and a separate battery-cooling loop (20–40 °C) [13–15]. This research focuses 
on the cooling design issues of automotive inverters with new wide-bandgap (WBG) sem-
iconductors. Recent contributions regarding the advanced cooling of automotive inverters 
show two main approaches. The first approach is to eliminate the low temperature loop 
through high thermal performance cooling circuits, such as direct liquid cooling and dual-
sided cooling. [13,16–19]. The second approach is to use air cooling for the inverter and 
machine, instead of separate cooling loops for each. An example is the integrated motor 
drive (IMD) [20]. The air-cooling loop for the IMDs requires the inverter to operate at high 
temperatures. Because the inverter operating temperatures are limited with silicon (Si) 
semiconductors, using new semiconductor materials may lead to wider applications of air 
cooling. WBG semiconductors are a possible substitution for Si semiconductors in auto-
motive applications.  

The thermal performance of a device can be evaluated using different parameters. 
The thermal resistance, Rth, is a parameter of power modules that indicates the heat trans-
fer capability and determines the temperature difference between a heat source and a case 
or a heat sink, if specified. Therefore, the junction to heat sink thermal resistance value, 
Rthj-h, is a crucial parameter for heat dissipation efficiency. In addition, the design of power 
modules or cooling systems favors devices with a low Rth to maintain the junction tem-
perature, Tj, within the acceptable range. The thermal resistance value is directly propor-
tional to the material thickness (t) and inversely proportional to the thermal conductivity 
(σ) and dissipation area (A) [21–28]. 

High thermal performance of a power converter can be achieved in different ways, 
for example, using new materials with interesting thermal properties for power module 
manufacturing. Some of these materials can only be applied at manufacture, for example, 
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The propulsion system plays a central role in providing tractive effort and energy
management of an electric vehicle. The propulsion system includes the energy storage,
power converters, electric motors, and associated controllers [5]. EV propulsion systems
have been steadily improved, with the main development trends including higher power
density, and reduction in size, weight, and cost [6]. The increase in power density and
decrease in size can lead to poor heat dissipation and thermal stress, which in turn leads to
additional failures of power converters [7]. Thus, to boost reliability, the main challenge of
the propulsion’s thermal management is to obtain a compromise between power density
and size. This compromise allows thermal stress to be avoided and provides a better
operating condition through a proper cooling system design [8].

Initially, cooling systems in EVs used forced air cooling, before evolving to liquid
cooling as a more effective solution [9]. Because air cooling is less thermally efficient
than liquid cooling, in current automotive applications the inverter air cooling is only
possible for low power levels. Liquid cooling of EVs is usually provided using a low-
temperature cooling loop (65 ◦C) for the power inverter [10,11], a high-temperature loop
for the electric machine [12], and a separate battery-cooling loop (20–40 ◦C) [13–15]. This
research focuses on the cooling design issues of automotive inverters with new wide-
bandgap (WBG) semiconductors. Recent contributions regarding the advanced cooling of
automotive inverters show two main approaches. The first approach is to eliminate the
low temperature loop through high thermal performance cooling circuits, such as direct
liquid cooling and dual-sided cooling. [13,16–19]. The second approach is to use air cooling
for the inverter and machine, instead of separate cooling loops for each. An example is
the integrated motor drive (IMD) [20]. The air-cooling loop for the IMDs requires the
inverter to operate at high temperatures. Because the inverter operating temperatures are
limited with silicon (Si) semiconductors, using new semiconductor materials may lead to
wider applications of air cooling. WBG semiconductors are a possible substitution for Si
semiconductors in automotive applications.

The thermal performance of a device can be evaluated using different parameters. The
thermal resistance, Rth, is a parameter of power modules that indicates the heat transfer
capability and determines the temperature difference between a heat source and a case or a
heat sink, if specified. Therefore, the junction to heat sink thermal resistance value, Rthj-h, is
a crucial parameter for heat dissipation efficiency. In addition, the design of power modules
or cooling systems favors devices with a low Rth to maintain the junction temperature,
Tj, within the acceptable range. The thermal resistance value is directly proportional to
the material thickness (t) and inversely proportional to the thermal conductivity (σ) and
dissipation area (A) [21–28].

High thermal performance of a power converter can be achieved in different ways,
for example, using new materials with interesting thermal properties for power module
manufacturing. Some of these materials can only be applied at manufacture, for example,
new materials for substrates and semiconductors. Other thermal interface materials (TIMs)
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can be chosen at the time of device development [29]. Due to their commercial availability,
power modules can be used as inverter switches [8]. Another approach is to change the
basic concepts of cooling. Examples of this approach are the design of new power module
packages with reduced thermal impedance, and new hybrid (air–liquid) or integrated (at
the power module or inverter level) cooling techniques [30]. Thus, cooling circuit design
tends to apply new materials with the lowest thermal resistance and, at the same time,
implement an optimal cooling architecture. Combining these approaches provides the
highest power density and the most efficient cooling of the device.

WBG semiconductors have striking intrinsic properties and are currently widely
available commercially [31,32]. The power electronic industry has adopted this type of
semiconductor during the past decade. As a result, numerous studies about WBG inverter
cooling have been conducted. This paper presents a review of different WBG inverter
cooling approaches to examine the changes in cooling associated with WBG devices. The
paper describes cooling techniques for automotive inverters as a part of EVs, and explores
how the use of WBG semiconductors may result in more compact and effective cooling
systems.

The paper is divided into eight sections. Section 2 describes new WBG semiconductors
with a focus on their thermal properties. Section 3 details the classification of cooling
approaches for automotive inverters. Sections 4 and 5 include examples of recent inverter
air- and liquid-cooling implementations, respectively. Section 6 focuses on promising
cooling techniques, which may soon attract more attention, related to WBG semiconductors.
Section 7 is dedicated to summarizing the main research findings and highlighting trends
in automotive inverter cooling systems. Section 8 presents the main conclusions.

2. Wide-Bandgap Semiconductors

WBG semiconductors are a promising alternative to Si semiconductors [32–37]. Be-
cause the WBG switches are commercially available in wide ranges of current and voltage
ratings, this technology is mature enough to be used in industry [26,27,33,38,39]. Compared
to Si devices, WBG devices have a number of superior physical properties, such as high
thermal flux of up to 120 W/cm2 (Si—10 W/cm2); high junction temperature, Tjmax, of
175 to 200 ◦C (Si—Tjmax = 150 ◦C); high limit of blocking voltage (Si—maximum 6.5 kV);
higher switching frequency (about 20-fold compared to Si); and lower switching losses (up
to 73% lower) with a lower conduction voltage drop [40–42]. Spider diagrams comparing
the parameters of Si with those of SiC and GaN are shown in Figure 2 [43]. Despite the
advantages of WBG devices and their decreasing cost, it should be noted that they are still
more expensive than conventional semiconductors [44].
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The most developed and widespread WBG devices are those using gallium nitride
(GaN) [45–48] and silicon carbide (SiC) [32,44,49–52] semiconductors. These two types of
WBG devices are becoming increasingly popular in the field of EVs due to their higher
blocking voltage, frequency, and operation temperature [53,54]. The growth in the market
revenue of WBG devices can be seen from the Yole reports’ road maps (see Figure 3) [55,56].
Despite the fact that the GaN semiconductors are considered to be suitable for use in auto-
motive inverters, GaN technology does not currently have many commercially available
high voltage modules compared to SiC [57–60]. Therefore, most of the examples in this
paper are based on SiC inverters.
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A previous study [61] using a WBG switch in a special high-temperature package
with integrated microchannel liquid cooling showed results for peak power dissipation
capability up to 5 kW/cm2, i.e., significantly higher than that of a Si die. Theoretically,
these advantages could lead to positive changes in the cooling of a power converter, for
instance, by reducing the volume and production costs of the cooling system, combined
with an increase in power density [44]. However, WBG technology is still constrained by
limitations in its thermal packaging technology because of low thermal conductivity [62,63].
To increase operation temperatures up to the device’s physical limitations (175–200 ◦C),
high-temperature packaging should be designed. Examples can be found in the literature;
for instance, Lu et al. presented a high-temperature packaged GaN High Electron Mobility
Transistor (HEMT), which showed sufficient performance operating at 250 ◦C [64]. In addi-
tion, in 2020 Suganuma considered new highly conductive materials for interconnections
inside a package to provide optimal thermal resistance at operating temperatures greater
than 200 ◦C [65].

Due to their advantages, WBG devices have good thermal performance properties
that can justify optimization or downgrading of an application’s existing cooling system,
for instance, using cheaper air cooling instead of liquid cooling. Overall, this can lower
the volume and cost of EV powertrains, which is the main trend in the EV industry. As
an example, in 2011 Zhang H. et al. [53] performed an extensive comparison of Si and SiC
inverters. As a result, the fuel-to-wheel efficiency of hybrid electric vehicles (HEVs) was
increased by 4.8% due to better regenerative braking. Fuel usage decreased from 3.94 to
3.36 L/100 km, which is consistent with an equivalent fuel economy improvement of about
13.8%. The efficiency of plug-in hybrid electric vehicles (PHEVs) increased by 13.8%, and
the average electricity consumption during the Urban Dynamometer Driving Schedule
(UDDS) drive cycle was reduced from 425.1 to 308.1 J/m, representing a decrease of 27.5%,
due to the use of SiC switches. In addition, trends in EV inverters, as suggested by Zeng
et al. in 2020, show that WBG inverters have had a higher peak power and power density
compared to Si devices during the past decade [18].
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3. Classification of Existing Cooling Techniques

The cooling of the inverter aims to provide an acceptable junction temperature of the
power semiconductors during operation. Operating at acceptable temperatures increases
the reliability and efficiency of the device. The cooling systems for automotive inverters
have adopted numerous different architectures and solutions (Figure 4). Research on
gas-cooled inverters, for example, can be found in Chintamani’s paper [66]. Nevertheless,
two fundamentally different approaches can be considered in inverter cooling: air and
liquid cooling.
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Air cooling can be divided into forced and non-forced. The main advantages of air
cooling are the implementation simplicity and low cost. Until recently, there has been little
interest in air cooling for automotive inverters because the overall efficacy of this form of
cooling is lower than that of liquid cooling. Thus, liquid cooling is a more popular and
widespread solution. However, the emergence of WBG semiconductors with the ability to
operate at higher temperatures has increased the interest in air cooling. Forced air cooling
provides the principal operation efficiency with cheaper and easier cooling (see Section 4).
Non-forced air cooling is not used in automotive applications because of the low heat
dissipation capability.

Liquid cooling can be classified on basis of water-based or non-water-based coolant
liquids. Water cooling is the simplest and most popular approach for automotive in-
verters, and non-water cooling usually implies that the driving motor in EVs uses oil
cooling [67–70]. With regard to automotive inverter cooling, non-water cooling involves
the use of water composites and has a special application in liquid cooling. The most
popular water composite coolant is 50% water and 50% ethylene glycol [71] (see Section 5).

Regarding the type of contact with the coolant, liquid cooling can be categorized into
direct and indirect cooling. Indirect cooling is an approach in which the power module
has no direct contact with the liquid. As can be seen from Figure 5a, a conventional
packaging scheme for indirect cooling includes a power device mounted through the
solder over a ceramic substrate. A commonly used substrate is direct bonded copper
(DBC). The substrate, in turn, is placed through DBC solder on the base plate (Cu, AlSiC,
etc.). Electrical interconnections are provided via wire bonds. The entire construction is
located on the heat sink or cold plate through TIMs to ensure heat dissipation [8]. All of
these material and layer configurations affect the final thermal resistance. The difference
between the direct and indirect liquid cooling is show in Figure 5. In direct liquid cooling,
the base plate, TIM, and heat sink are replaced with only a base plate, thus reducing the
number of layers inside the module (Figure 5b); as a result, the thermal resistance decreases.
For instance, Mcpherson et al. (2017) compared the thermal resistance of three module
configurations: (a) indirect cooling with a conventional flat cold plate; (b) direct cooling
with a soldered pin-fin cold plate; and (c) direct cooling with a silver sintered pin-fin cold
plate. The latter configuration almost halved the thermal resistance compared with indirect
cooling [72]. In the case of indirect cooling, the thermal conductivity of the base plate, TIM,
and heat sink play a key role in the overall heat dissipation capability [8,21,35,73]. The
direct cooling approach involves eliminating the cold plate or heat sink, in addition to the
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TIMs, and placing the power module in direct contact with water through the base plate
only [72,74].
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From the construction perspective, there are single-sided (Figure 6a) and double-sided
(Figure 6d) liquid cooling systems [54]. In single-sided cooling, the power module is cooled
only from one side. The standard single-sided cooling method uses a power module
with a cold plate attached to the base plate trough the thermal interface materials [75,76].
Double-sided cooling involves changing the module construction in such a manner that
two substrates are assembled one above the other with the power devices embedded
between them [77]. The double-sided design allows the cooling efficiency to be increased
because twice as much heat can be dissipated [28,78]. In addition, the bonding wires
inside the module can be eliminated, which improves reliability [76]. The double-sided
technique can be an efficient solution because the dissipation of power from both of the
semiconductor’s surfaces leads to a reduction in thermal impedance of up to 30% [79].
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The cold plate configuration, when applicable, can affect the heat dissipation capability
of a power module. The dissipation capacity is related to the heat dissipation surface,
which is usually determined by the cold plate surface area. The more common structures of
cold plates are flat, multiple channel, microchannel, and pin fin (Figure 6). Regarding direct
liquid cooling, when the cold plate is eliminated, the base plate can fulfill the functions of
the cold plate and can also be implemented in different configurations.
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In addition to standard air and liquid cooling, several other cooling techniques can
be used for WBG inverters (see Section 6). These inverters have a smaller chip size but
operate at higher temperatures. From the cooling system design perspective, this implies
the use of hot and small areas to dissipate heat. Hoque et al. (2020) presented a modular
heat sink for enhanced thermal performance of GaN switches [80]. Another approach to
increasing the thermal performance of a small chip is to use an electric field technology;
an example for GaN transistors can be found in [81]. Heat pipes may be a solution when
some area require a higher heat dissipation capability. A jet impingement technique is also
considered to be an effective cooling approach for automotive inverter applications [82].
Moreover, immersion cooling allows high heat transfer coefficients (h > 2 kW/(m2·K)) to
be achieved for the entire cooling system [83]. The basic principle of an immersion cooling
technique is the submergence of the power modules in a thermally and not electrically
conductive liquid [84]. In addition, integrated motor drive (IMD) topologies are currently
gaining attention. Because of its proximity to the motor, the integrated inverter should
work at higher temperatures. Therefore, WBG inverters, which have higher operating
temperatures, are suitable for integration with the electrical machine. However, the proper
cooling design of the integrated system remains important, as shown in recent studies [85].

4. Air Cooling

Air cooling is the simplest and cheapest cooling approach. The main problem with
air cooling is a low heat flux. As a result, this technique is only suitable for low power
applications. However, the high rated temperature and thermal flux dissipation capability
of WBG semiconductors can compensate for the low flux of air cooling. Although the
power density of the liquid-cooled SiC inverters is higher than that of the Si inverters,
a liquid-cooling system implies additional components, which increase the volume and
reduce the overall power density. Thus, the air-cooling system, which is the simplest
implementation, can increase the power density of the inverter [18]. Hensler et al. (2017)
proposed an unusual air-cooled inverter configuration, in which the heat sink has the shape
of a hexagon, and the inner volume of the heat sink is separated by a plastic tube as an
air path, resulting in a very compact solution. The principle of the hexagon heat sink is
depicted in Figure 7a [86]. Another example was developed by Liu et al. using 3D air-
cooled SiC packaging for a 20 kW inverter (see the concept in Figure 7b) [87]. The research
of Li et al. (2020) showed an air-cooled 500 kW modular inverter with a conventional heat
sink, in which the efficiency of the inverter was about 98.74% [88].
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Zeng et al. proposed a design of a light and compact EV inverter without a liquid
cooling system. The highest temperature reached by the SiC MOSFET was 110 ◦C, which
is the rated temperature of WBG semiconductors. It was also proved that the forced air-
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cooling technique provides a thermal flux of 200 W/cm2, and the SiC MOSFET module
has its own heat flux of 120 W/cm2, which is 10-fold higher than that of the Si alternative.
The high heat flux of the WBG module means that heat can be more easily dissipated from
the chip surface. Thus, the smaller heat flux of air cooling, compared to liquid cooling, is
sufficient for WBG power converters. Moreover, the optimized design of the Al heat sink
reduces the thermal resistance of the heatsink from 0.44 to 0.35 K/W [18].

Another air-cooled SiC inverter was introduced by Wang et al. (2019), in which the
power module was cooled with a thermally optimized heat sink (the principle is shown
Figure 8). The optimized heat sink was generated using a MATLAB Genetic Algorithm
(GA) and manufactured using 3D printing technology. This comprehensive heat sink
allows sufficient heat to be dissipated from the semiconductors to enable the use of air
cooling rather than liquid cooling. Moreover, two modules in one phase were split into two
submodules, i.e., a top-side module and a bottom-side module, attached to two separate
heat sinks, which were placed one above the other for better heat dissipation. Thermal
optimization resulted in a reduction in the volume of the heat sink of 27% and reduced the
junction temperature from 108.3 to 102.1 ◦C [89].
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5. Liquid Cooling

Liquid cooling is currently the best option for EVs because of higher thermal transfer
capability compared to air. Moreover, for power levels applied to automotive inverters,
liquid cooling has proven effectiveness, which justifies the cost and challenges in implemen-
tation [74]. Indirect liquid cooling with flat cold plate is a mature technology and can now
be found in the literature as a “conventional” or “standard” structure (with Rth ≥ 0.8 K/W).
Direct and indirect liquid cooling structures with complex cold plates are more advanced
topologies [73]. Nevertheless, the use of the direct liquid cooling approach has increased
because it shows the best thermal performance. By eliminating some layers of the power
module solution, such as the TIM layer and the cold plate, the direct cooling approach
allows the thermal resistance of the power module to be reduced by up to 30% [90]. Among
the wide range of direct liquid cooling approaches, jet impingement (0.44–0.48 K/W),
turbulator (0.2–0.55 K/W), and microchannel (0.13–0.24 K/W) technologies can be distin-
guished as major groups [91]. The direct liquid approach shows better thermal properties,
such as a halving in the thermal resistance compared to indirect liquid cooling [92]. How-
ever, direct liquid cooling has a more complex implementation process, which results
in higher costs. Thus, the application of direct liquid cooling is justified only to achieve
higher thermal performance. It is worth noting that there can be a power module scale for
power electronic devices, called integrated power module cooling, and a power converter
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scale to evaluate the efficiency and thermal performance. In the following subsections,
single-sided and double-sided cooling approaches are discussed for direct and indirect
cooling implementation.

5.1. Single-Sided Cooling

Single-sided liquid cooling is still the most widespread and cost-effective solution for
automotive inverters. At present, indirect liquid cooling development is represented by
new structures of cold plates and heat sinks, where applicable. For instance, Mademlis et al.
(2021) presented a heat sink with rectangular pin fins and optimized cooling channels [93].
The most common cold plate type for WBG inverters in recent contributions has a pin fin
structure [94].

Qi et al. (2019) investigated a 30 kVA three-phase SiC inverter with a liquid-cooled
cold plate for high-temperature operation. The inverter continuously operated for several
hours in a high-temperature thermal chamber, where an ambient temperature of 180 ◦C
was achieved. The maximum temperature of the commercial SiC modules, in the special
high-temperature packaging, reached 150 ◦C, whereas the temperature of the cold plate
and coolant were 85 and 50 ◦C, respectively [95]. In [96], a 100 kW SiC MOSFET three-phase
inverter (34 kW/L) with a flat cold plate was tested at 105 ◦C ambient and 65 ◦C coolant
temperatures. The thermal resistance from the junction to the coolant was 0.16 K/W, and
the maximum die temperature was 113 ◦C. A two-level optimized cold plate was presented
in Gurpinar et al. (2018) for a liquid-cooled 125 kW inverter, and the results showed a high
thermal performance at a maximum operating capability of SiC-MOSFETs [97]. The two-
level cold plate cools a power module and a DC link capacitor bank from different sides;
this concept is depicted in Figure 9. Another example of cold plate thermal optimization can
be found in Huber et al. (2018), in which six different SiC power modules were presented
with a minimal thermal resistance of 0.331 K/W [98].
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Becker et al. carried out thermal optimization of a three-phase SiC MOSFET 1200 V
150 A automotive inverter with indirect liquid 50/50% water–glycol cooling and a copper
heat sink with round pins. A cooling liquid circulates inside an aluminum case with a liquid
pressure drop of 25 kPa at the pin area. The SiC power module with high conductivity Si3N4
(90 W/(m·K)) substrate was pressure contacted with a pin fin heat sink. The experiment
included changing the number of parallel modules and the distance between them. It
was found that if the distance between the chips was reduced from 8 to 1 mm, only three
parallel SiC devices could be used rather than 4. The simulation of the complete assembled
inverter showed that the junction temperature of the hottest chip was reduced from 226
to 154 ◦C with small temperature differences of ∆T = 5.1 ◦C between the chips. Although
154 ◦C is still high, the maximum Tj of the SiC semiconductor used in this research was
around 170 ◦C. Moreover, the hot spot temperature can be optimized by changing the inlet
liquid temperature and flow. As a result, the design allowed the thermal resistance to be
reduced by 32.1% [99].
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5.2. Double-Sided Cooling

Double-sided liquid cooling is considered for motor driving applications. For instance,
in 2020 Liu et al. [100] presented double-sided cooling of the SiC power module, and
Möller et al. [92] suggested a double-sided cooling concept for an automotive application.
Moreover, a double-sided liquid cooling module with jet impingement was reported in
Tang et al. [101].

Catalano et al. [28] carried out an investigation of SiC-based power modules arranged
in a half-bridge to prove the efficiency of double-sided cooling (the concept of the double-
sided module is shown in Figure 10). To compare the thermal performance of single- and
double-sided cooling, the thermal resistance was calculated for a wide range of boundary
conditions. The heat transfer coefficient was used as a figure of merit for the boundary
conditions; thus, h = 101 W/(m2·K) means natural convection and h = 109 W/(m2·K)
indicates contact with an ideal heat sink. Moreover, two direct-bonded copper substrates
based on Si3N4 and AlN were compared. According to the research results, double-sided
cooling shows lower thermal resistance only when a high heat transfer coefficient is
achieved (h > 106 W/(m2·K)). In the case of the high heat transfer coefficient and the AlN
type of substrate, the reduction of thermal resistance was up to 70%. It should be noted
that the cost of the AlN substrate is high; thus, using this substrate is justified only if highly
efficient cooling is needed.
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In 2018, Hitachi’s Research & Development Group developed a full-bridge SiC auto-
motive inverter with an improved thermal design. According to the research result, the
double-sided liquid cooling application ensured a 35% reduction in thermal resistance with
a final value of about 0.175 K/W. Moreover, the double-sided structure enabled a solution
to be derived for the issue that occurs when the parallel connections of semiconductors
are required to share a large output current. In common structures, in which all intercon-
nections are implemented via Al wires, the imbalance in the current can be considerable,
especially when the switching frequency is high. A chip-connecting structure was built
to provide an isometric current pattern, leading to a reduction in the current deviation
between each chip from 10% to 2%. As a result, the overall design was able to reduce power
losses by 60% in comparison to the conventional single-side cooled silicon modules [76].

6. Other Promising Cooling Approaches

The tendency toward higher powers and smaller sizes requires more efficient cooling
with high heat flux. Although WBG devices differ from Si devices in terms of a large
number of parameters, the most significant in terms of cooling are the smaller chip size
and high heat flux due to the intrinsic material properties. When combined, these two
properties are challenging for a cooling system, because it should dissipate a greater amount
of heat from a smaller size. To ensure uniform temperature distribution, a cooling system
should have high dissipation capability. WBG semiconductors become “hot points” during
unbalanced temperature distribution, which lowers the reliability of the entire device. Thus,
the WBG inverters’ cooling requires a high cooling capacity and homogenous temperature
maintenance of the power modules’ chips. This section presents cooling techniques and
approaches that provide a high thermal performance and may be successfully applied to
emerging WBG power electronics systems.
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New materials could be used to enhance the heat dissipating ability and provide a
balanced temperature distribution. The use of metal foam for a heat sink, for instance, was
presented by Lee et al. with Samsung Electronics Co in 2020. The authors investigated
two heat sink structures: a metal foam (Type 1), and a metal foam with a pin fin baseplate
(Type 2) for high power IGBTs. The concept of a metal foam layout in a power module is
shown for Type 1 and Type 2 in Figure 11a and 11b, respectively. Porous heat sinks provide
better heat transfer with a low-pressure drop in comparison to a microchannel technology,
which usually requires pressure drops of 30–100 kPa [102]. The presented liquid cooling
design provides a low Rth = 0.185 K/W and a low inlet pressure Pin = 5–15 kPa. Although
the results were presented for IGBTs, the high thermal flux capability of porous heat sinks
makes this technology suitable for WBGs. For instance, Takai et al. (2017) suggested the
use of a porous heat sink for a GaN-based inverter [103].
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The optimal structure of a cold plate can also increase the heat transfer capability
of the device. Cold plates with direct single-sided liquid cooling have a higher thermal
performance and simpler implementation process compared, for example, to double-sided
modules. Thus, to design highly effective cooling for a WBG inverter, complex cold plate
structures can be used. The simplest approach to enhance the effectiveness of a cold plate
or base plate is to develop a structure with a larger surface for heat removal. In 2018, for
instance, Infineon Technologies presented the liquid direct cooled Hybrid-PACKTM with
different base plate structures. The thermal experiment included the measurement of three
cold plate types: ribbon-bonded (this concept is depicted in Figure 12), pin fin, and flat. At
the flow rate of 10 l/min, the result for the flat plate was Rth = 0.153 K/W, for the ribbon
bonded plate Rth = 0.132 K/W, and for the pin fin structure Rth = 0.125 K/W [73]. Despite
the fact that the thermal resistance of the pin fin cold plate was lower, the difference was
not large (about 5.6%), and the manufacture of a ribbon-bonded cold plate is simpler and
cheaper [90].
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Heat pipes are passive two-phase heat transfer devices. This cooling approach includes
an evaporator, a condenser, a vapor line, a liquid line, and a vapor-removal channel [61]. It
should be noted, however, that two-phase cooling systems, in general, are more effective
than single phase systems [104]. The operational principle of a heat pipe, as shown in
Figure 13, is to dissipate the heat from small hot sources to larger areas through evapo-
ration and condensation [105,106]. This circulation of liquid leads to an increased heat
transfer and, most importantly, provides higher thermal uniformity [107]. The heat transfer
capability of heat pipes is determined only by the cooling capacity of the refrigerant [79].
Moreover, adding heat pipes allows the same heat transfer level to be obtained from smaller
devices [108]. Therefore, heat pipes in cooling systems are particularly suitable for WBG
devices because they provide higher heat dissipation from small areas, leading to a better
temperature distribution among power devices. For instance, Gupta et al. (2018) presented
cold plates with embedded heat pipes that reduced the maximum temperature of the
device by 37 ◦C and improved temperature distribution [108]. In addition, Chang et al.
proposed a heat pipe integrated heat sink, which decreased the temperature of the heatsink
by 6 ◦C and the thermal resistance between the coolant and chip junction 10-fold [109].
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Immersion cooling is one of the promising alternatives to conventional liquid cooling.
This method consists of placing heat sources with direct contact in circulating liquid to
dissipate the generated heat (the principle is shown in Figure 14). The most important
requirement for immersion cooling systems is to use an electrically non-conductive working
fluid, which allows homogenous cooling. Equal thermal distribution is crucial in terms
of increasing the reliability for high power density power devices [104]. Potential types
of fluids suitable for immersion cooling are de-ionized water, mineral oil, fluorocarbon-
based fluids, and synthetic oil [83]. Immersion cooling, in general, is either single-phase
or two-phase. The former includes using coolants only in one state of aggregation, and
the latter implies physical state changes. This cooling approach has a higher heat transfer
coefficient, which is important for increasing electrical power requirements, and can be
implemented as one cooling loop for the inverter and motor in EVs, thus eliminating the
main motor 105 ◦C coolant loop [68]. Yuki et al. (2020) presented an on-board two-phase
immersion-cooled SiC inverter with a high heat flux of 500 W/cm2, and showed that such
a cooling technique can meet all of the requirements for automotive cooling because it is
simple, compact, and highly effective [110].

The integrated motor drive (IMD) has emerged on the automotive powertrain market,
and is rapidly evolving to become a key technology for compact and efficient motor
drives [111]. Cooling technologies are being developed with integrated motor drives [85].
The recent literature has shown interest in WBG inverters for integrated solutions [112–115],
in which air cooling can be applied for low-power motor drives. For instance, Dai et al.
shared an air-cooled IMD concept in which the operation procedure of the air-cooling
system is as follows: (1) inlet air is first drawn radially across the heat sink, which conducts
heat out of the power modules; (2) the air is then pulled axially through the motor’s airgap
to cool the machine. A thermal finite element analysis showed the predicted temperature
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distribution in the IMD with a current-source inverter (CSI) for steady-state operation at
a rated load (3 kW) with 25 ◦C ambient air and an assumed air flow of 1.03×10−2 m3/s.
The maximum efficiency of the inverter was 97.7% with a peak temperature of 107 ◦C for
the WBG devices, and 96% for the machine with an inductor’s peak temperature of 101 ◦C.
These results show the feasibility of using air cooling for low-power IMD WBG-based
solutions [13]. Another example of IMD cooling was presented in Lillo et al. in 2018. This
is a liquid-cooled IMD in which each motor winding is connected to one power module
through an innovative multilayer PCB structure, which is designed to minimize the space
required for the end windings. The coolant first passes through the power section, and
the stator windings are then immersed in the same coolant. This solution is based on a
direct substrate cooling method with targeted impingement cooling, which can provide an
extremely low specific thermal resistance. It can be concluded that some techniques, which
are not widely used and rarely applied alone, may improve the efficiency of matured liquid
cooling. In Lillo’s study, the combination of spray cooling and immersion cooling provides
effective liquid cooling in an IMD [14].
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7. Comparison of Cooling Techniques

WBG inverters operate at higher switching frequencies, power levels, and tempera-
tures. The properties of WBG devices comply with increasing power levels and switching
frequency requirements for power electronics devices. As shown by the literature review
in this paper, the main advantages of WBG devices in cooling design are:

• The higher operating temperature of WBG devices leads to the design and use of
simpler and cheaper cooling techniques;

• The higher switching frequencies and lower losses increase the overall efficiency of
the device;

• The smaller size and higher heat flux of the WBG die is suitable for compact devices,
although this is challenging for cooling system design because more heat should be
dissipated from a smaller area.

A summary of cooling techniques and their application to WBG converters is shown
in Table 1. Overall, both air- and liquid-cooled WBG inverters are presented with different
optimized configurations of cold plates or heat sinks, with the purpose of increasing the
heat dissipation capability of the device.
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Table 1. Summary of reviewed cooling systems for WBG inverters.

Ref.
No Cooling WBG Type Power, kW /fs,

kHz
Heat Sink orCold

Plate

Ambient T, ◦C
/In. Coolant T, ◦C
/In. Speed, l/min

Tjmax, ◦C Rth, KW Power Density,
kW/L Key Conclusions

[18] Forced-air 1.2 kV/50 A SiC 10/50 Finned heat sink 25/-/- 140 j-amb. 0.35 13 The forced air cooling is feasible for the low power
SiC inverter.

[86] Forced-air 1.2 kV/75 A SiC
MOSFET 2 × 27/100 Flat hexagonal

heat sink 23/-/- 105 j-h.s. 1.0 17.2
The air-cooled hexagonal construction with a fan
inside is a low inductivity, compact, and high-power
density solution.

[87] Forced-air 1.2 kV/120 A SiC 20/20
3D, 3-sided

heatsink with air
path pattern

25/-/- 106 - 18.6
The 3D SiC inverter with an integrated heat sink. The
heat sink optimized through distribution and
diameter of holes in an air path pattern.

[88] Forced-air 1.2 kV/300 A SiC 5 × 100/20 Finned heat sink 40/-/- 133 j-amb. 0.071 1.25 Five 100 kW inverters paralleled to achieve a high
efficiency 500 kW inverter.

[89] Forced-air 1.7 kV SiC
MOSFET 50/20 Finned heat sink -/75/- 103 - 1.8

The GA-optimized heat sink allows an increase in the
heat dissipation capability and decrease in the
junction temperature.

[93] Liquid 1.2 kV/450 A SiC 4/10 Cold plate,
rectangular pins

105/65/10
water/ethylene 117 j-case 0.026 -

Short time overloading with 55% heat increase allows
the heat sink temperature to be maintained beneath
the limits.

[97] Liquid - SiC MOSFET 125/30 Micro-channel
heat sink

105/65/10
water/ethylene 110 - -

The manifold microchannel (MMC) heat sink is made
of a high thermal conductivity material and exploited
in the dual-sided heat sink design. The second side
cools the capacitors.

[94] Liquid 1.2 kV/450 A SiC
MOSFET 30/20 Pin-fin cold plate 140/105/10

water/ethylene - - 17

The inverter is designed for operating at a high
ambient temperature. The coolant temperature is
considered to be 105 ◦C to use a single cooling loop
for the inverter and motor.

[95] Liquid 1200 V/300 A SiC
MOSFET 30/10 Commercial cold

plate
180/50/-

water/ethylene 150 j-case 0.2 -

The inverter showed satisfying operating
performance at the 180 ◦C ambient temperature
because the high-temperature SiC packaging was
used.

[96] Liquid - SiC MOSFET 100/40
62 mm wide,

007-MXQ-01 cold
plate

105/65/10 113 j-case 0.16 34 A high-power density liquid-cooled inverter is
presented.

[76] Liquid - SiC MOSFET -/12 Double-sided cold
plate - 150 j-cool. 0.17 -

The double-sided cold plate with the direct liquid
approach allows the thermal resistance from the
junction to coolant to be decreased by 35%.
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Air cooling is a cheaper and simpler solution compared to liquid cooling. Liquid
cooling requires additional auxiliaries (pumps, radiator, compressor, and chiller), which
increase the weight and volume of the system. Because of higher working temperatures and
heat flux of WBG devices, air cooling can be applied to a wider power range of inverters
compared to Si devices. As can be seen from recent studies, introducing WBG devices on
the market transformed the trend from liquid to forced air cooling for low-power (up to
50 kW) [89] and low power density (up to 18 kW/L) [87] applications. In addition, some
studies are devoted to volume hexagonal or cubic air-cooled inverters. Such construction
increases the power density of the inverter; for example, the standard construction with
a common flat and finned heat sink achieves 13 kW/L [18] and both of the presented
examples of volume inverters achieve 17.2 and 18.6 kW/L [86,87]. Another approach
of applying air cooling for the power inverter is a modular inverter structure. Modular
air-cooled inverters from [87,88] are solutions with high power levels. Due to the use of
separated modules, each module-inverter has a low power level and can be air cooled.

Nevertheless, liquid cooling is still the most widespread solution for power electronics
applications in EVs, and indirect liquid cooling is still feasible. Single-sided indirect cooling
is developing via improvement of the cold plate, as can be seen in [93,94]. Moreover, the
single-sided direct and indirect cooling for WBG inverters has been optimized in two
ways: by changing the distance between the chips and changing the number of power
switches [96–99]. Because WBGs have a smaller chip size, additional power switches can be
used without an increase in the volume of the device, to provide better current sharing in
one inverter leg as more parallel chips are used. From the thermal optimization perspective,
in contrast, the reduced number of chips enables a larger distance between them. When
chips have a larger distance between them, applied cooling has better heat dissipation
capability and temperature distribution. The main drawback of this optimization is the
increase in the operating current for each power switch. However, in the case of WBG
semiconductors, this problem can be compensated for by using higher rated currents of
WBGs. The double-sided cooling approach shows good thermal properties; for example,
reduced thermal resistance up to 35% [28]. Such cooling is suitable for high thermal
performance and high temperature solutions. Although the heat dissipation capability
of the cooling system is low, double-sided cooling does not justify the complexity of its
implementation. In addition, power modules with double-sided cooling have higher
reliability due to the replacement of the bonding wires by more reliable interconnectors.
Furthermore, the double-sided power module can be designed for an optimized current
path between parallel modules [76].

8. Conclusions

This paper provides a technical assessment and review analysis of the cooling tech-
nologies for automotive WBG inverters. The WBG semiconductors, classification of cooling
techniques, and details of each cooling technique are reviewed in detail. These semiconduc-
tors have different intrinsic properties that can affect the thermal properties of the overall
system.

WBG technology is a highly promising solution for the next generation of power
electronics and automotive powertrains due to their superior intrinsic characteristics, such
as high thermal flux, available junction temperature, limit of the blocking voltage, and
switching frequency, and low switching losses and conduction voltage drop.

The commercial availability of WBG devices enables the use of cheaper and simpler
air-cooling approaches for low-power motor drives up to 50 kW, rather than liquid cooling.
Two main approaches aimed at increasing the heat dissipation capability of air cooling can
be highlighted: the volume and the modular design of power inverter. Whereas the former
provides a compact inverter with a larger surface to dissipate heat, the latter modular
design provides all of the required power of the device divided between separate modules,
in which each module has lower power and can be cooled using the forced-air approach.
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Liquid cooling remains the most cost-effective solution for a wide range of power
levels. Numerous studies have been conducted on the different optimization approaches,
which include new shapes of cold plates or heat sinks, the use of new materials, and
the combination of two or more cooling techniques. Single-sided indirect liquid cooling
remains highly popular and shows good thermal performance, particularly when new
WBGs with better thermal properties are applied. Because WBGs have a smaller chip
size, smaller losses, and a higher rated current and voltage, some studies suggest thermal
optimization can be achieved by changing the number of semiconductors in one inverter leg
and by changing the distance between the power switches. Direct liquid cooling has better
thermal performance than indirect cooling, but adds complexity to the implementation.
Such a cooling approach can be useful for high performance and high temperature solutions.
Indirect and direct double-sided cooling are applicable for devices with a high heat transfer
coefficient, because only in this case is their implementation complexity justified.

According to the trend of increasing rated power levels of power inverters, high heat
flux systems, such as immersion cooling, may soon become widespread. Moreover, WBG
power modules, in the case of high power levels of the device, need to be cooled with
special cooling approaches, which are capable of effectively dissipating heat from a small
hot area. A porous heat sink, heat pipes, and special thermal packaging may be a solution.
In addition, high operating temperatures of WBGs also provide an opportunity for the use
of IMDs with a shared motor and inverter cooling.

Due to the growing demand for increasing power levels in motor drives, cooling
technology is an important part of the system. The results of this paper could be used for
many future studies on the topic.
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