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Abstract: This paper focuses on the development of a multi agent control system (MACS), combined
with a stochastic based approach for occupancy estimation. The control framework aims to maintain
the comfort levels of a building in high levels and reduce the overall energy consumption. Three
independent agents, each dedicated to the thermal comfort, the visual comfort, and the indoor air
quality, are deployed. A stochastic model describing the CO2 concentration has been studied, focused
on the occupancy estimation problem. A probabilistic approach, as well as an evolutionary algorithm,
are used to provide insights on the stochastic model. Moreover, in order to induce uncertainty,
parameters are treated in a fuzzy modelling framework and the results on the occupancy estimation
are investigated. In the control framework, to cope with the continuous state-action space, the
three agents utilise Fuzzy Q-learning. Simulation results highlight the precision of parameter and
occupancy estimation, as well as the high capabilities of the control framework, when taking into
account the occupancy state, as energy consumption is reduced by 55.9%, while the overall comfort
index is kept in high levels, with values close to one.

Keywords: stochastic processes; fuzzy reinforcement learning; multi agent control systems; occu-
pancy estimation; evolutionary algorithms; buildings; fuzzy modelling; comfort control

1. Introduction

The problem of occupancy estimation and prediction, in the context of comfort control
in buildings, is of crucial importance and has been studied by many authors [1]. Our
motivation for this work is to combine an algorithm that estimates the number of occupants
inside a room, given the CO2 state concentration, with a multi agent control system that
utilises the available information and controls the comfort indexes: thermal comfort, visual
comfort, and indoor air quality. Most heating, ventilation, and air conditioning systems
(HVAC) function on the assumption of maximum occupancy, not taking into account the
variations of the occupancy level. There are various factors to be studied, in order for an
estimation algorithm to be developed, that computes the actual number of occupants that
entered a room during a time period.

In [2], Dong et al. study the control of HVAC systems using three approaches for the
occupancy prediction: the expectation maximisation algorithm, a finite state automata
method and introduces a method based on uncertain basis functions. A method based on a
hybrid neural network is proposed in [3], where an extreme learning machine tuned with
differential evolution is proposed. Models of occupancy in a single person office are studied
in [4] using a non-homogeneous Poisson process to simulate the occupancy sequence.
In [5] Feng et al. study the simulation of occupancy in buildings in four levels: the number
of occupants in a building, the occupancy status in a space, the number of occupants in
a space and the space location of an occupant. The correlation between occupancy and
energy performance of a building is presented in [6], together with the impact on the
quality of the indoor environment. A study that takes into account the stochastic nature
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of occupants behaviour can be found in [7], where a Markov chain is proposed. The
Markov process is also studied in the context of occupancy models in [8]. Occupancy
prediction based on the carbon dioxide concentration is studied in [9], where Jiang et al.
study a Bayesian filtering approach. In [10], authors study models for CO2 concentration
prediction: A deterministic mass balance differential equation is firstly used and, moreover,
a linear model is constructed using system identification techniques. The importance of
occupancy for building control is highlighted in [11], where a model predictive controller
utilises the occupancy information.

Occupancy estimation models can be classified into three categories. (a) statistical
(black-box) models, (b) physical/deterministic (white-box) models, and (c) grey-box models.
The first category includes hidden Markov models, machine learning methods, and artificial
neural networks [2–4]. The second category, the physical models, are most often based on
a CO2 mass balance equation [9,12,13]. The benefits of the first and second category, i.e.,
black and white box models, are incorporated in the category of grey-box models. The
latter models synthesise physical knowledge with statistical and data-driven parameter
estimation. A grey-box model can describe variations in a room’s carbon dioxide level and
estimate room occupancy [3,14–17].

Multi agent control systems are a group of agents which, in order to solve a prob-
lem, interact with the environment and with each other. MACS have been proposed for
achieving high levels of thermal comfort inside a building and reducing the consumption
of the heating/cooling system by efficiently controlling the indoor temperature. In [18], a
MACS for a building with two rooms is proposed in order to control the thermal comfort of
the two rooms through a central HVAC system. Intelligent control of HVAC systems [19]
is also studied in [20] using a fuzzy based approach for personal comfort satisfaction.
In [21] a MACS with multiple layers and a central agent for coordination is proposed.
The system aims to reduce the overall efficiency of the building and simultaneously to
satisfy the thermal needs of the occupants. Additionally, MACS have been proposed for
achieving air quality, and thermal and visual comfort in the interior of the buildings with
minimisation of energy consumption [22]. The MACS controls the actuators regarding the
CO2 concentration, the illumination, and the temperature in conjunction with reducing the
energy consumption. These approaches are based on multi-layer MACS with local agents
and supervisors which can lead to failure if the central agents fail. Moreover, they are based
on the expert knowledge or on offline optimisation algorithms for adjusting parameters
and they do not use any learning mechanism [23]. Only recently, few methods using
reinforcement learning have been proposed but these methods are only limited to achieve
thermal comfort [24]. The main drawback of this method is that it cannot be applied for
continuous state-action space. Fuzzy logic systems can be used in order to overcome this
drawback. Moreover, none of the above mentioned papers, combine occupancy estimation
models with a multi agent control system, in order to reduce energy waste.

In the proposed system, a grey-box model consists of stochastic differential equation
(SDE) and fuzzy sets is able to quantify uncertainties, which improves the occupancy
estimation. The contribution of this study is to:

• Provide a fully decentralised control architecture;
• Provide a control architecture based on reinforcement learning;
• Incorporate a fuzzy logic system with reinforcement learning;
• Combine a multi agent control system with a grey-box modelling;
• Combine a multi agent control system with occupancy estimation;
• Combine fuzzy modelling with occupancy estimation.

The paper is organised as follows: The problem under study is stated in Section 2, in
addition to a discussion on general notions of stochastic processes and the analysis of the
CO2 adopted stochastic model. Stochastic differential equations’ parameter estimation and
differential evolution are also analysed. The use of the occupancy estimation algorithm,
proposed in [14] is being studied for the estimated and the fuzzy parameters of the stochas-
tic model, using two different occupancy profiles. Furthermore, a thorough analysis of
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Fuzzy Q-learning and the MACS is presented, together with the mathematical modelling
of the building under study. Simulation results are demonstrated in Section 3 for each of
the methods used and conclusions are discussed.

2. Materials and Methods
2.1. Problem Statement

The problem studied in the present work focuses on the development of a multi agent
control system for the control of the artificial lighting, ventilation, and heating/cooling
subsystems, in order for the comfort indexes to be maintained in the desired levels. The
MACS should utilise the occupancy information, estimated using carbon dioxide concen-
tration data. The carbon dioxide generation is considered to be given by the solution of a
stochastic differential equation. By numerically solving the stochastic differential equation
the training data are generated, representing the CO2 levels in the room under study.
Following that, an occupancy estimation algorithm is implemented to give information on
the number of occupants. Two main assumptions have been made:

• The training set consists of 1440 state measurements, corresponding to one working
day, 24 h, times 60 min per hour;

• The state, i.e., the CO2 concentration level, is fully observable.

The work flow of the proposed method, graphically illustrated in Figure 1, is the
following: Extending the CO2 mass balance equation to a stochastic differential equation.
The stochastic mass balance equation is numerically solved, to generate data of CO2
concentration. Assuming that the solution time-series represents a stochastic process with
unknown parameters, the parameters are estimated by maximising the likelihood function
of the data with a differential evolution algorithm. Given the data and the estimated
parameters, the occupancy estimation algorithm is implemented to compute the unknown
number of occupants, that generated the data. Since the method of maximum likelihood
provides only point estimates of the unknown parameters, fuzzy modelling is employed
to study the impact of the parameters’ uncertainty on the occupancy estimation. The
estimated profile of the building occupancy is going to be used as input in the MACS
system. The MACS system consists of three decentralised local agents and controls the
actuators, each responsible for the indoor temperature, the indoor horizontal illuminance,
and the carbon dioxide concentration. Occupancy estimation defines whether the building
is unoccupied and whether the actuators need not to operate, in order to reduce energy
waste in time periods where there are no occupants.

2.2. Stochastic Processes and CO2

The generation and decay of CO2 is governed by the mass balance ordinary differential
equation [25,26] given by:

V
dxCO2(t)

dt
= q

(
xCO2

out − xCO2(t)
)
+ GCO2 (1)

where V denotes the volume of the room, xCO2(t) the carbon dioxide concentration, xCO2
out

is the outdoor carbon dioxide concentration, q is a term associated with the ventilation
and infiltration and window air exchange. GCO2 is a term associated with the generation
of carbon dioxide in the room. The latter contains two terms: the carbon dioxide genera-
tion per occupant cCO2

occ multiplied by a positive integer valued number nocc(t), denoting
the number of persons, coming from the fact that the more the persons the higher the
concentration in the room. If a closed window and mechanical ventilation free room are
considered, the q term in Equation (1) is characterised only by the infiltration rate qin f .
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Figure 1. Proposed methodology in a graphical representation.

In order to adopt a more realistic model for the carbon dioxide concentration in the
room we must treat the CO2 time series as a stochastic process. By adopting a stochastic
model, e.g., considering the CO2 concentration data as a stochastic process, uncertain fac-
tors and other random unmodelled phenomena are taken into account [26]. The stochastic
nature emerges not only from known factors, e.g., varying exhalation rates of the occupants
in the room, the air exchange through doors, the non-homogeneous nature of the room’s
air, as well as unknown factors that cannot be described in mathematical terms. As referred
to in [26], the CO2 differential equation contains difficult to exact modelling factors, even in
the deterministic case, such as surface area on which indoor pollutants are deposited and
the deposition velocity of the pollutant, among others. Such terms can be considered as
unmodelled, since their exact mathematical expression in the equation may lack accuracy.
The Brownian motion, which will be introduced to the mass balance differential equation,
can model both known but uncertain, and unknown or unmodelled phenomena, that
govern the indoor carbon dioxide concentration.

A formal definition of a stochastic process is given below:

Definition 1 ([27]). Let the probability space (Ω,F ,P), the ordered set T and the measurable space
(E,G). A stochastic process is a collection of random variables X = {Xt; t ∈ T}, where for each
fixed t ∈ T, Xt is a random variable in (Ω,F ,P) to (E,G). Ω denotes the sample space, and E
denotes the state space of the stochastic process Xt.

Stochastic processes can be viewed as a function of both t ∈ T and ω ∈ Ω, e.g., for
fixed t we have a random variable, Xt, and for fixed ω in the sample space Ω we find the
function Xt(ω) : T → E, which is the realisation of the process. One of the most important
stochastic processes is the Brownian motion [28].

Therefore, considering the CO2 generation as a stochastic process the concentration is
associated to a random variable, due to the unknown influencing random effects. Since a
deterministic differential equation model has been used, Equation (1), the randomness must
be encapsulated in the model. By adding a noise term, the ordinary differential equation
can be extended to a stochastic differential equation. Stochastic differential equations are
used to model dynamics which exhibit random behaviour. It is now important to state the
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connection of stochastic differential equations and stochastic processes, in order to justify
why adopting such an approach makes perfect sense.

Our purpose is to solve the following stochastic differential equation of the general form

dX(t) = µ(t, X(t); θ)dt︸ ︷︷ ︸
drift

+ g(t, X(t); θ)dBt︸ ︷︷ ︸
diffusion

(2)

where X(t) ∈ R, µ : [0, ∞)×R×Θ → R is the drift term and g : [0, ∞)×R×Θ → R is
the diffusion term. Bt is a 1-dimensional standard Brownian motion. An initial condition is
given X(t) = x, where t = 0.

Let the filtration Ft generated by the Brownian motion Bt, i.e., Ft := σ({Bs : s ∈ [0, t]}),
for every t ≥ 0. Under mild conditions (Similarly to Lipschitz continuity and linear growth) on
the functions µ(t, X(t); θ) and g(t, X(t); θ) the solution of the stochastic differential equation
exists and it is a unique process, X(t), t ≥ 0 satisfying:

• It has continuous paths;
• It is Ft-adapted;
• Almost surely, it holds that

X(t) = x0 +
∫ t

0
µ(s, X(s); θ)ds +

∫ t

0
g(s, X(s); θ)dBs (3)

The solutions of stochastic differential equations are stochastic processes called dif-
fusion processes. The mathematical treatment of stochastic differential equations is quite
technical, however in the case of linear one-dimensional equations, closed form solutions
could be derived. Moreover, as discussed in the next section, the solutions of stochastic
differential equations are Markov processes [29], a property that turns out to be crucial in
practical implementations.

2.3. The Hull–White Model as Mass Balance Equation

Since, we wish to treat the unknown process of carbon dioxide indoor generation
and decay as a stochastic process, it is useful to model the mass balance equation with a
stochastic differential equation. A model which originates from the financial mathematics
literature, called the Hull–White Model (HWM) [29,30], has the suitable mathematical form
in order for Equation (1) to be extended into a stochastic framework. This model has been
introduced by John Hull and Alan White in 1994, as an extension to the Vasicek model for
interest rates modelling. The Hull–White model is given by the following equation:

dR(t) =
[
Φ(t)− αR(t)

]
dt + σdBt (4)

where R(t) denotes the interest rate, Φ(t) denotes a time varying function, and α is the rate
at which the rate is pushed towards the long term level.

Borrowing the mathematical structure of the HWM, a stochastic differential equation
that is a generalisation of the Ornstein–Uhlenbeck model, can be written:

dXCO2(t) =
[

qin f XCO2
out + cCO2

occ nocc(t)︸ ︷︷ ︸
Φ(t)

−qin f XCO2(t)
]
dt + σdBt (5)

where XCO2(t) is the carbon dioxide concentration in ppm (Appendix A), qin f denotes
the infiltration rate in the room, i.e., the air change per hour, σ denotes the constant
volatility of changes in CO2, due to the Gaussian white noise (Brownian motion’s incre-
ments are N distributed.) dBt, XCO2

out is the outdoor CO2 concentration in ppm and cCO2
occ

is the CO2 generation per person in ppm/h. Equation (5) is the stochastic mass balance
differential equation.

We are dealing with a first order linear non autonomous stochastic differential equa-
tion, thus an analytical solution can be derived. The solution of Equation (5) can be found
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by applying Itô’s lemma on the function e−qin f XCO2(t) and then integrating to get:

XCO2(t) = XCO2(s)e−qin f (t−s) +
∫ t

s
e−qin f (t−τ)Φ(τ)dτ + σ

∫ t

s
e−qin f (t−τ)dBτ (6)

therefore, the expectation, mean solution, conditioned on the σ-algebra Fs is given by:

E
[
XCO2(t)|Fs

]
= XCO2(s)e−qin f (t−s) +

∫ t

s
e−qin f (t−τ)Φ(τ)dτ (7)

since, E
[
σ
∫ t

s e−qin f (t−τ)dBτ |Fs
]
= 0. Fs is the filtration generated by the process up to time

s. Moreover, the variance of the process is

Var
[
XCO2(t)|Fs

]
= E

[(
XCO2(t)−E

[
XCO2(t)|Fs

])2|Fs
]

= E
[(

σ
∫ t

s
e−qin f (t−τ)dBτ

)2]
= E

[
σ2
∫ t

s
e−2qin f (t−τ)dτ

]
, due to Itô’s Isometry

=
σ2

2qin f

(
1− e−2qin f (t−s)

)
(8)

The mean solution of the stochastic differential equation, describing XCO2(t), is com-
posed by an exponential term which forces the state to decay and an integral term which
is due to the non autonomous nature of the differential equation: this term reflects the
presence of occupants in the room at each time t, i.e., a piecewise constant function, such
that nocc : [0, ∞) → Z+. The integral is fully tractable, thus a closed form solution is
derived. The presence of occupants inside the room should, from a physics perspective,
increase the levels of the carbon dioxide concentration, a fact that is reflected naturally by
the above mathematical modelling.

The computation of the mean and variance describing the behaviour of the stochastic
process XCO2 = {XCO2(t); t ≥ 0} allows to write analytical expressions of the Likelihood
function as the product of the transition densities from a state at time s to the state at time t,
with t ≥ s.

The original linear stochastic differential equation is equivalent [31] to the following
discrete time system:

XCO2
tk+1

= fkXCO2
tk

+ uk + qk, where qk ∼ N (0, Σk) (9)

where the coefficients fk, uk and Σk reads as:

fk = ψ(tk+1, tk) (10)

uk =
∫ tk+1

tk

ψ(tk+1, τ)Φ(τ)dτ (11)

Σk = σ2
∫ tk+1

tk

ψ2(tk+1, τ)dτ (12)

where ψk(tk+1, tk) = e−qin f ∆t, and ∆t = tk+1 − tk These expressions can be analytically
evaluated, to give the mean and variance of the original stochastic differential equation.

As discussed earlier, our purpose is to model the carbon dioxide concentration by
a stochastic process. This is performed through the assumption that the generation and
decay of carbon dioxide is governed by a linear non autonomous stochastic differential
equation. The solution of the latter is a stochastic process and can be obtained either
by using the discrete representation Equation (9), or by solving the original stochastic
differential Equation (5) using a numerical integration scheme. To generate the training
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data, on which the parameters and occupancy estimation algorithm is based, the differential
equation is solved using the method of Euler–Maruyama (EM), see Algorithm 1 [31].

Algorithm 1 Euler Maruyama

1: Given a stochastic differential equation of the form
dX(t) = µ(t, X(t); θ)dt + g(t, X(t); θ)dBt, with known parameters θ, an initial
condition X(t0) and a time interval [t0, t].

2: Divide the time interval [t0, t] into N steps of ∆t length.
3: for Every time step k do
4: Draw a random variable such as ∆Bk ∼ (0, ∆t)
5: Compute the approximation: X̂(tk+1) = X̂(tk) + µ(tk, X(tk); θ)∆t + g(tk, X(tk); θ)∆Bk
6: end for
7: return The approximation X̂(tk) of the solution.

In this paper, CO2 data are generated by simulating Equation (5), using the EM
method. In order to be able to perform this, the parameters θ, are considered to be known.
In Figure 2, the evolution of the stochastic differential equation’s solution, with a single
occupant, is depicted: Ten solution paths, each associated with a realisation of the Brownian
motion, the mean solution and the 95% quantiles.

370

785

1200

(a)

0

2

(b)
Figure 2. (a) The stochastic nature of the CO2 model. Mean solution is illustrated in red. Grey band
depicts the 95% quantiles. (b) The occupancy vector.

In the following section, the method for the estimation of true parameters will be
analysed, if an assumption of unknown parameters lies.

2.4. Estimation of the Stochastic Process Parameters

Since in real world applications the data of the carbon dioxide concentration may
come in a time series, i.e., a set of available data, one might ask what the parameters of
the process would be. Thus, an algorithm must be implemented in order to be able to
estimate the true parameters of the problem. Henceforth, it is assumed that the solution
time series of the carbon dioxide concentration is given, and the unknown parameters θ of
the stochastic process are to be estimated.

We, therefore, have a problem of parameter estimation on stochastic differential equa-
tions: Given the stochastic differential Equation (5), the task is to estimate the parameters vec-
tor θ from a finite sample of available observations of the stochastic process
XCO2(t) = {XCO2(t), where t = t0, . . . , tN}. The model is parametrised by the follow-
ing quantities: the infiltration rate qin f , the outdoor carbon dioxide concentration XCO2

out , the

generation rate of carbon dioxide cCO2
occ by a single occupant and the volatility of the noise σ.

Parameter estimation problem in probabilistic models has been investigated by many
authors and several methods have been proposed. For our task, the well established method
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of maximum likelihood in the context of stochastic differential equations, is adopted. The
likelihood function must be maximised, with respect to the unknown parameter vector θ.

In light of the Markov property of the stochastic differential equation’s solution, an an-
alytical expression of the likelihood of the observed data given the parameters is written by:

p(XCO2(t0) . . . XCO2(tN)|θ) =
N−1

∏
k=0

p(XCO2(tk+1)|XCO2(tk), θ) (13)

where, in general, p(X(t)|X(s), θ) is the transition density, describing the probability of the
stochastic process to be from X(s), to the state X(t) in time t− s. Since the solution of the
stochastic differential equation is a linear transformation of the Brownian motion, which is
a Gaussian Process, it follows that the solution will also be Gaussian, thus, the transition
densities are given by:

p(XCO2(t)|XCO2(s), θ) = N
(
E(XCO2(t)|XCO2(s)), Var(XCO2(t)|XCO2(s))

)
(14)

where the Markov property is explicitly used, and the expressions for the distribution’s
mean and variance are given by Equations (7) and (8), respectively.

The parameter vector θ̂ =
(
θ̂1, θ̂2, θ̂3, θ̂4

)
=
(
q̂in f , X̂CO2

out , ĉCO2
occ , σ̂

)
must be computed,

such that the likelihood to be maximised. In simple terms, the parameter space Θ, is
searched, for those parameters that generate the actual data, which in our case are the
data from the numerical solution of the stochastic mass balance differential equation. For
practical reasons, the parameters are determined in order for the negative log-likelihood
function to be minimised, i.e.,

θ̂ = arg min
θi∈[lθi

,uθi
]

i=1...4

L
(
XCO2(t0) . . . XCO2(tN), θ

)
(15)

where lθi , uθi denote the lower and upper bounds of the feasible domain for each of the
four parameters. L(.) denotes the negative log-likelihood function given by:

L(XCO2(t0) . . . XCO2(tN), θ) = −
N−1

∑
k=0

log p(XCO2(tk+1)|XCO2(tk), θ) (16)

In this paper a differential evolution algorithm is proposed, in order to numerically
minimise the negative log-likelihood, without the need of derivative information.

Differential Evolution (DE) [32], belongs to the class of evolutionary algorithms (EAs),
that stochastically explore the space of the optimisation problem’s decision variables. DE
uses a structure of a population of candidate solutions and guides the search procedure
through a number of generations, until termination criteria have been met. The algorithm
is parametrised by a minimum number of hyper-parameters: the mutation scaling F, the
crossover probability pcr and the population size np.

The mutation of each individual comes in terms of perturbation of a target vector from
the population with two weighted differential, described by:

θ
g+1
i,Mutant = θ

g
r1 + F(θg

r2 − θ
g
r3) + F(θg

r4 − θ
g
r5) (17)

for i = 1, . . . , np, where r1 to r5 ∈ {1, 2, . . . , np} and i 6= r1 6= r2 6= r3 6= r4 6= r5. The
mutation operator produces a population of perturbed model parameter vectors, called
mutant vectors. Crossover is described by:

θ
g+1
ji,Trial =

{
θ

g+1
ji,Mutant if U(0, 1) ≤ pcr or j = Ui

θ
g
ji otherwise

(18)
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where Ui denotes the uniform distribution in integers {1, . . . , 4} and U the uniform distri-
bution in (0, 1). The candidate solutions will be represented by a population of individuals.
For every generation g the population of the parameters is described:

P g = {Pi}i=1...M =


P g

1 P g
2 . . . P g

np

θ1
1 θ2

1 . . . θ
np
1

...
...

...
...

θ1
4 θ2

4 . . . θ
np
4

 (19)

The proposed method is summarised in Algorithm 2.

Algorithm 2 Parameter estimation using likelihood function and differential evolution

1: Generate Data by numerically integrating the stochastic mass balance differential
Equation (6) using Euler–Maruyama method.

2: Compute The mean and variance solutions of the SDE analytically
3: Compute The transition densities and the negative log-likelihood function.
4: Given Data from EM solution of the Stochastic Differential Equation:
D = {(tk, XCO2(tk))}k=1,...,N .

5: Initialise Differential evolution variant DE/Rand/2/Bin, where Rand describes the
mutation operator, 2 indicates the number of differentials, and Bin the crossover
scheme.

6: Set Mutation parameter F, crossover probability pcr, population size np and a maxi-
mum number of generations: MaxGen.

7: Generate Initial population of candidate solutions
8: P0 ← Uni f orm(lθi , uθi , np)
9: for Every Generation g do

10: for all individuals in P g do
11: Mutate
12: P g+1

mutation ←Mutation(P g, F)
13: if Bound constraints [lθi , uθi ] are violated then

14: P g+1
mutation ← Resampling(P g+1

mutation, lθi , uθi )
15: end if
16: Crossover
17: P g+1

trial ← Crossover(P g,P g+1
mutation, pcr)

18: Selection
19: if L(P g) < L(P g+1

trial ) then P g+1 ← P g

20: else P g+1 ← P g+1
trial

21: end if
22: end for
23: g← g + 1
24: end for
25: Return The Estimated Parameter vector θ̂ =

(
q̂in f , X̂CO2

out , ĈCO2
occ , σ̂

)
In the latter algorithm, it is assumed that the data are available to us. To achieve this,

we synthetically generate them, by solving the stochastic differential equation using the
Euler–Maruyama method. The function Resampling implements the resampling of the DE
solutions into the feasible domain, since the mutation operation may produce solutions that
are outside of the parameter’s bound constraints. The maximum number of generations,
MaxGen is set to 100, the population size np = 80, the crossover probability pcr = 0.2 and a
mutation scaling F sampled uniformly in [0.2, 2], in every generation.

The justification for the choice of the hyper parameters is based on [32]: Empirical studies
on the simulations performed, show that the convergence of the algorithm occurs at around
70th generation, hence a maximum number of 100 generations would suffice. The probability
of crossover, pcr is chosen to be small in order to avoid premature convergence and moreover,
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to increase the search robustness. The mutation scaling is chosen to be given by a uniform
distribution in the range [0.2, 2], in order to achieve a trade-off between exploring tight valleys
and search diversity. As far as the population size is concerned, the choice of 80 achieves a
reasonably fast convergence, and it is chosen on a trial and error basis.

2.5. Fuzzy Occupancy Estimation

It should be clearly stated, that up to this point the unknown (to be estimated) pa-
rameters were considered to be: the infiltration rate qin f , the outdoor carbon dioxide

concentration XCO2
out , the carbon dioxide generation per occupant cCO2

occ and the volatility of
the noise term σ. Since the number of occupants in Equation (5), can be considered as a
parameter too, the problem is addressed by likewise asking the same question as in the
parameter estimation context: which occupancy vector generates the observed data.

Hence, if the model is re-parametrised with a single unknown parameter nocc(t) and
the estimated parameters θ̂ are considered to generate the true data in high accuracy,
then a likelihood approach can be used to determine the occupancy vector. We followed
and implemented the occupancy estimation algorithm proposed in [14] and estimated
the occupancy vector at every time instance. The occupancy vector nocc is very high
dimensional, thus an optimisation based approach even in terms of evolutionary algorithms
has, to our knowledge, not been studied. Wolf et al. propose a greedy algorithm, based
on maximum likelihood’s principle, which initially considers the occupancy vector as a
zero vector, representing an empty room, and iteratively adds integers values to the vector
points, i.e., adds an occupant in each time step, where the likelihood function is maximised.
For completeness, an implementation of the algorithm is given in Algorithm 3.

The reason that the estimated parameters θ̂ serve as inputs in the algorithm, is that in a real
world setting the data observation will be given as a time-series, where the model’s parameters
will be unknown. In the case when the estimated parameters are close to the ground truth, then
the estimated model will generate very similar data and the only parameter that will be to be
determined is the occupancy vector. The performance of the algorithm has been tested under
two different occupancy profiles, with very accurate results. It is crucial to note that the method
of parameter estimation, in our case the differential evolution algorithm, must result in close
values of the true parameters θ otherwise, as explored next, the occupancy estimation algorithm
will not output the correct estimation vector.

Algorithm 3 [14] Occupancy estimation algorithm

1: Inputs:
Observed Data XCO2(t), Estimated Parameters θ̂, Likelihood Function L(nocc(t))

2: Initialise
n̂occ ← 01×Number of Observations
A ← INumber of Observations×Number of Observations
Compute the value of the negative log-likelihood function:
Ln̂occ ← L(XCO2(t0) . . . XCO2(tN), θ̂, n̂occ)

3: for a number of iterations do
4: for every time step, i = 1 . . . N do
5: ni

occ ← n̂occ +A(i, :)
6: Lni

occ
← L(XCO2(t0) . . . XCO2(t), θ̂, ni

occ)

7: end for
8: nmin

occ ← arg minni
occ

Lni
occ

9: Greedy Selection
10: if Lnmin

occ
< Ln̂occ then n̂occ ← nmin

occ
11: else n̂occ ← n̂occ
12: end if
13: end for
14: Output: Estimation of the occupancy vector n̂occ
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The methodology of parameter θ estimation, via the maximum likelihood approach,
results in point estimates. Since the true parameters that generated the data of carbon
dioxide concentration are unknown, a question of how certain about these values we
could be, emerges. As earlier discussed there are two kinds of uncertainty: the uncertainty
that stems from random effects and unmodelled dynamics and the structural uncertainty,
which corresponds to possible fluctuations of the model parameters. Stochastic differential
equations can be considered to model the first case. Pertaining to the second type of
uncertainty, a solution can be the use of fuzzy modelling [33]. The subject of stochastic
differential equations with fuzzy parameters, leading to Fuzzy stochastic differential
equations, have been studied, from a solution point of view, in [34,35].

In this paper, the effect of this structural parametric uncertainty onto the occupancy
estimation algorithm, is investigated. The estimated parameters are mapped onto the
fuzzy space using triangular fuzzy numbers, thus an uncertainty is induced on the model’s
parametric space. Fuzzy numbers of the following form have been used:

µ(x; xL, xC, xR) = max
(

0, min
( x− xL

xC − xL
,

xR − x
xR − xC

))
(20)

where x denotes a point in the domain X of the parameter to be fuzzified, [xL, xR] denotes
the support of the fuzzy number and xC denotes the core of the fuzzy number. Note that µ
here symbolises the membership function of the fuzzy set, not to be confused with the drift
term in Equation (2).

The assumption of structural uncertainty has been made for two of the estimated
parameters: the infiltration rate qin f and the carbon dioxide generation per occupants cCO2

occ .
This reflects the fact that in a real scenario the infiltration may have small deviations from
the true value [36]. Similarly, the CO2 generation per occupant in the room, cCO2

occ , in any
case cannot be a crisp value, since it strongly depends on factors, such as the type of work
that an occupant performs during its presence in the room, the age of the occupant, the
gender of the occupant, and various physical characteristics [37,38]: a young child’s carbon
dioxide generation differs from an adult heavy worker’s.

Smaller uncertainty bounds are induced on the infiltration parameter, and larger on the
CO2 generation per occupant. The fuzzification of the latter parameters is implemented by a
symmetric triangular fuzzy number, given by Equation (20), where the supports have been
calculated by θ̂1 ± 10% and θ̂3 ± 30% for the infiltration parameter and the carbon dioxide
generation, respectively. The estimated parameters θ̂1 and θ̂3 are the cores of the fuzzy sets that
describe the uncertainty of the infiltration and CO2 generation. Figure 3 depicts the fuzzy sets,
their support and the crisp uncertainty set, corresponding to the 0.5-level.

0.1 0.105 0.11 0.115 0.12 0.125 0.13 0.135
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0.5
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(a)

100 150 200 250
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(b)
Figure 3. Fuzzy numbers representation of the parameters (a) θ̂1 = q̂in f and (b) θ̂3 = ĉCO2

occ and their
corresponding 0.5-cuts.
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To study the result of the fuzzy parameters in the occupancy estimation algorithm, the
a-cuts Aa have been computed using the definition: Aa = {x ∈ X , m(x) ≥ a}. A 0.5-level
is considered, meaning that a trust region is given, in the values of the fuzzified parameters
with membership µ ≥ 0.5.

The limit points of the a− cuts are given by:

θ̂1 = a
(
θ̂1 − l̃θ̂1

)
+ l̃θ̂1

(21)
¯̂θ1 = r̃θ̂1

− a
(
r̃θ̂1
− θ̂1) (22)

θ̂3 = a
(
θ̂3 − l̃θ̂3

)
+ l̃θ̂3

(23)
¯̂θ3 = r̃θ̂3

− a
(
r̃θ̂3
− θ̂3) (24)

where l̃θ̂3
, r̃θ̂3

are the left and right limits of the support for the parameter ĉCO2
occ and l̃θ̂1

, r̃θ̂1
are the left and right limits of the support for the parameter q̂in f . It should be clear that the
sets Aa are uncountable and we are focusing on investigating the boundary case, i.e., the
model with parameters chosen firstly as θ̂1, θ̂3 and secondly ¯̂θ1, ¯̂θ3.

The implementation of the occupancy estimation algorithm, results in different occupancy
vectors nocc(t), reflecting the fact that when fuzzy parameters are considered, the estimation
gives an upper and lower estimation of the number of occupants in the room at each time.

2.6. Fuzzy Q-Learning and Multi Agent Control System

Reinforcement learning refers to a group of algorithms that have been inspired from
the learning mechanism of humans or other leaving beings. Reinforcement learning
algorithms aim to extract a policy via exploring the possible state-action pairs. The term
policy refers to the mapping between states and actions. All reinforcement learning
algorithms need to utilise a signal called reward, which defines a measure of how well an
agent performs at a given state.

A tabular form of reinforcement learning, is Q-learning [39]. In the Q-learning frame-
work, a Q-function, that tries to estimate the future discounted rewards for actions in
given states, is gradually built by the agent. The Q-function output for a given state x and
an action a is defined as Q(x, a) and the values of the Q-function are stored in a Q-table.
Q-learning’s main drawback is that it cannot be applied for continuous state-action space.
Fuzzy Q-learning [40] can be used to overcome this difficulty and it is summarised in the
following steps:

1. State x observation;
2. Output selection, for each fired fuzzy rule, based on the exploration/exploitation algorithm;
3. Global output’s α(x) and corresponding value’s of Q(x, α) computation by:

α(x) =
∑M

i=1 αi(x) αi

∑M
i=1 αi(x)

(25)

Q
(

x, α
)
=

∑M
i=1 αi(x) αi q[i, i†]

∑M
i=1 αi(x)

(26)

where M is the number of the fired fuzzy rules, αi(x) is the fired degree for each fuzzy rule,
αi is the action that is selected for each fuzzy rule and q[i, i†] is the corresponding Q value
for the pair of the fuzzy rule i and the action i†. The action corresponds to the action that the
exploration/exploitation algorithm selects.

4. The global action α(x) is applied and the next state x′ is observed;
5. Reward R computation;
6. Q-values are updated according to the formula:

∆q[i, i∗] = η∆Q αi(x)

∑M
i=1 αi(x)

(27)
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where ∆Q = R + γV(x′)−Q(x, α) and

V
(
x′
)
=

∑M
i=1 αi(x′) αi q[i, i∗]

∑M
i=1 αi(x′)

(28)

and q[i, i∗] is the corresponding Q value for the pair of the fuzzy rule i and the action i∗.
γ denotes the discount factor and η the learning rate. The action i∗ corresponds to the action
that has the maximum corresponding Q value for the fuzzy rule i.

For solving complex or physically distributed problems, a multi agent control system
can be used. Q-learning and consequently fuzzy Q-learning can be applied to MACS with
the most common approach being independent learners [41], where each agent ignores the
existence of other agents and interacts independently with the environment.

2.7. System Modelling and Description
2.7.1. Heating and Cooling System

The space is a building office with a surface of 50 m2 and volume 150 m3

(5 m × 10 m × 3 m) and a 3 m2 (3 m × 1 m) window which is located in the north side of
the office. The heating/cooling system of the building introduce either hot or cold air into
the space [42,43]. The heat flow into the space can be computed by the next equation:

dQ(t)
dt

= ±
(

Theat
cool
− Troom

)
Ṁ c + HGonocc(t) + HGEnocc(t) + HGL + HGS (29)

where the left hand side denotes the heat flow rate into the space. Theat
cool

denotes the temperature
of the hot and the cold air 40 ◦C or 16 ◦C, respectively. Troom is the temperature of the room’s
air, Ṁ is the mass air flow of the air from the heating/cooling system (2600 kg/h) and c is the
air heat capacity at constant pressure 1005.4 J/kg ◦C. HGo denotes the heating gain from the
occupants (115 W/occupant) [44], nocc(t) is the number of occupants and HGE is the heating
gain from the electrical loads (5.38 W/m2 × 50 m2 = 269 W) [36], HGL is the heating gain
from the artificial lighting (0.5× 800 = 400 W) and HGS is the heating gain from the solar
irradiance through the window [45] which is computed as:

HGS = Aw × rw × D× Iw − gw × Aw × (Troom − Tout) (30)

where Aw denotes the area of window, rw denotes the transparency of the window, D = 1
denotes the window shadowing factor, Iw is the diffused solar irradiance that reaches
the window, gw is the glass conductance (2 W/m2 ◦C) and Tout is the temperature of the
outdoor air. The thermal model of the building does not take into consideration the effect
of the solar irradiance through the building opaque surfaces. The derivative of the space
temperature over time, is expressed as:

dTroom

dt
= ± 1

Ma · c

(dQ(t)
dt
− dQl(t)

dt

)
(31)

where Ma is the air mass inside the building (183.75 kg) and:

dQl(t)
dt

=
Troom − Tout

Req
(32)

where Req is the equivalent thermal resistance of the building envelope (1.0306× 10−6 ◦C/W).
The equivalent thermal resistance is computed by the following set of equations [42].

Req =
RwαRwi

Rwα + Rwi
, Rwα =

Thwα

kwα Awα
, Rwi =

Thwi
kwi Aw

(33)

where Aw is the area of the windows as given in Equation (30), Thwi is the thickness of the
windows (0.01 m), kwi is the thermal conductivity of the windows (0.78 W/m ◦C), Awα is
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the area of the walls (187 m2), Thwα is the thickness of the walls (0.2 m), kwα is the thermal
conductivity of the walls (0.038 W/m ◦C).

The heat loss/gain through the building envelope (walls area, windows area, and
type of insulation) is embedded inside the equivalent thermal resistance [42]. The posi-
tive or negative sign on Equations (29) and (31), refers to the process of heating or cool-
ing, respectively.

2.7.2. Lighting System

In order to compute the diffused illuminance provided by the sky inside the building
the following equation is used. The horizontal illuminance in a point p [46] which is located
in the interior of the building is computed as:

Ep,d =
rwLs

2
z√

h2
p + z2

(
tan−1 xw + ww − xp√

h2
p + z2

+ tan−1 xw + xp√
h2

p + z2

)

− z√
(hp + hw)2 + z2

(
tan−1 xw + ww − xp√

(hp + hw)2 + z2

+tan−1 xp + xw√
(hp + hw)2 + z2

)
(34)

where Ep,d is the horizontal diffused illuminance of the point p, Ls is the illuminance from
the sky, z is the horizontal distance between the point p and the window (10 m close to the
south wall of the building which is amongst the most shading points inside the building).
hp denotes the height between the lower edge of the window and the point p (0.5 m), hw is
the height of the window (1 m), ww is the width of the window (3 m), xw is the distance
between the left wall and the left edge of the window (3.5 m) and xp is the distance between
the point p and the left wall (2.5 m).

It is assumed that the horizontal diffused illuminance, provided by the sky, is dis-
tributed uniformly and equals to the value of the point p, and consequently the control
decisions are taken according to this value. Fluorescence lamps are used for the artifi-
cial lighting and the ratio between the horizontal luminance and the consumed power is
100 lm/W [47]. The electro-chromic window [48], can change its transparency by providing
a small amount of voltage. The nominal power of the artificial lighting is 400 W which can
provide a maximum illuminance of 800 lux in a surface of 50 m2. The relation between
the lux and the consumption is assumed to be linear. Moreover, it is assumed that the
horizontal illuminance provided by the lamps is distributed uniformly all over the surface
of the office.

2.7.3. Ventilation System

The CO2 mass balance with no noise consideration and with a given ventilation rate
is given by:

dxCO2(t)
dt

=
(qvent + qin f )(xCO2

out − xCO2(t)) + cCO2
occ nocc(t)

V
(35)

where V is the volume of the space (150 × 103 L), and qvent is the ventilation rate, which is
now introduced by the MACS. According to [36,44] for a building office, the air change rate
must be between 2 and 8. For a space of 150× 103 L the ventilation rate of the ventilation
system can be 600× 103 L/h. The installed power for such a system is approximately
165 W by assuming a relationship of 0.5 W per flow rate (L/s). As we will discuss in
the simulation section, the generation rate per person has been estimated to 26.9427 L/h,
the outdoor carbon dioxide concentration has been estimated to 359.4813 ppm and the
infiltration rate has been estimated to 0.1167 air change rate which equals to 17.535 L/h. At
this point, it should be noted that mechanical ventilation affects the indoor temperature,
however nowadays mechanical ventilation systems incorporate heat recovery that can
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reach efficiency of almost 90%. Based on that fact, the effect of the ventilation flow rate to
the indoor temperature is neglected from the building’s thermal model.

2.8. Multi Agent Control System

The MACS consists of a group of three agents: A = {AGT , AGL, AGCD}, where
AGT is the temperature agent, AGL is the illuminance agent, and AGGD the CO2 agent.
The states of the agents are defined by a total number of six fuzzy state variables Xi, i.e.,
two variables for each agent. For each positive values input, five triangular membership
functions (MFs) have been used. In addition to that, for each both positive and negative
values input, seven triangular MFs have been used (Figure 4). Membership functions
are denoted as linguistic variables: PVB, PB, PM, PS, Z, NS, NM, and NB, e.g., positive
very big, positive big, positive medium, positive small, zero, negative small, and negative
medium, respectively.
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0.5

1

(a)
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0
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(b)
Figure 4. Membership functions of the agents’ inputs. (a) MFs for positive valued inputs. (b) MFs
for positive and negative valued inputs.

AGT has two variable inputs: the outdoor temperature which is in the range [0, 1],
and the error eT between the set point and the indoor temperature, normalised in the
range [−1, 1]. The total states are 35, which are represented by an equal number of
fuzzy rules. The output vector of the temperature agent has five fuzzy singleton sets
AT = { 1

−0.05 + 1
−0.1 + 1

0 + 1
0.01 + 1

0.05}.
The global action is the control signal, that defines the percentage of the air flow rate

by the heating/cooling system, according to its maximum capacity. Positive signal actuate
the heating system while negative signal actuate the cooling system. The reward RAT of
this agent is defined as follows:

RAT (x, α, x′) = −|eT | − 0.1· PHC (36)

where PHC is the power consumption of the heating/cooling system.
AGL has two variable inputs, the indoor horizontal illuminance, normalised in the range

[0, 1] and the error eL between the set point and the indoor illuminance normalised in the
range [−1, 1]. The total states are 35, which are represented by an equal number of rules. The
output vector of the AGL has five fuzzy singleton sets, AL = { 1

−0.3 +
1
−0.02 +

1
0 +

1
0.02 +

1
0.3}.

The global action defines the percentage of the power change to be consumed by the artificial
lighting system according to its nominal operating power for positive signal, while negative
signal change the transparency of the electro-chromic window. The reward RAL of this agent
is defined as follows:

RAL(x, α, x′) = −|eL| − 0.1· PAL (37)

where PAL is the power consumption of the artificial lighting system.
AGCD has two variable inputs, the number of the occupants normalised in the range

[0, 1] and the error eCO between the set point and the indoor CO2 concentration, normalised
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in the range [0, 1]. The total states (Five membership functions for each input. See plot
(a) on Figure 4) are 25, which are represented by an equal number of rules. The output
vector of the agent has five fuzzy singleton sets, ACD = { 1

−0.4 + 1
−0.02 + 1

0 + 1
0.02 + 1

0.04}.
The global action is the control signal which represents the percentage of the power, change
to be consumed by the ventilation system according to its maximum power. The reward
RACD of this agent is defined as follows:

RACD (x, α, x′) = −|eco| − 0.1· PV (38)

where PV is the power consumption of the ventilation system.
All three agents use the same exploration/exploitation algorithm. When a new state is

visited, the agent performs exploration for 500 rounds. Following the 500 rounds, the agent
checks and performs the actions that has not been performed at all. By this way it is assured
that all possible actions are explored. Consequently, the agent performs exploitation for
99% and exploration for 1% for a given state.

Additionally, AGT and AGL operate only when occupancy is detected inside the
building space. For periods, where the occupancy vector is zero, i.e., n̂occ(t) = 0, the
agent’s control signal is set to zero and the learning mechanism stops functioning. Thus,
when the building is empty a waste of energy is avoided.

3. Results
3.1. Parameters and Occupancy Estimation

The proposed methodology has been implemented to estimate the parameters θ, as well
as the occupancy vector for a set of given data, that stem from the EM solution of the stochastic
differential Equation (5). All mentioned algorithms have been programmed in MATLAB.
Figure 5 illustrates ten solution paths of the stochastic differential equation, where the param-
eters are chosen as: qin f = 0.12 h−1 [36], XCO2

out = 400 (ppm) [10], cCO2
occ = 180 (ppm/h), [14],

and σ = 2 [14]. A profile nocc(t) materialises a simple scenario of presence in a room.

08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 00 01 02 03 04 05 06 07 08

400

800

1200

1600

2000

2400

0

1

2

3

4

Figure 5. Ten realisations of the stochastic mass balance differential equation solution. The CO2

concentration is depicted in grey and the profile nocc(t) in blue.

In order to replicate a realistic problem, a single realisation of the solution is considered,
and the time series is used to estimate the parameters using the method of evolutionary
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maximisation of the likelihood function. In the last figure, it is clear that the solution of the
stochastic mass balance equation reflects the fact that when occupants are present in the
room, e.g., approximately at 13:40 to almost 21:00, the CO2 increases as expected. When
nocc(t) vanishes, then the solution has a mean reverting behaviour (Ornstein–Uhlenbeck
Process.), analogous to the infiltration rate.

The estimation algorithm has been implemented using a maximum number of gen-
erations MaxGen = 100, a population of np = 80, a crossover probability pcr = 0.2 and
a mutation scaling F sampled uniformly from [0.2, 2]. The estimated parameters of the
proposed method are given in Table 1.

Table 1. True and Estimated model parameters.

Parameters True Values θ Estimated Values θ̂

Infiltration rate 0.12 h−1 0.1166 h−1

Outdoor CO2 concentration 400 ppm 391.4339 ppm
CO2 generation per occupant 180 ppm/h 179.1345 ppm/h
σ 2 3.8800

Figure 6, illustrates the solution of the stochastic model, i.e., the training data, and the
model’s solution corresponding to the estimated parameters. The solution of the differential
equation using the estimated parameters θ̂ is in very close vicinity to the true solution.

The occupancy estimation algorithm, has been implemented in the latter case and the
estimation n̂occ(t) is identical to the ground truth, nocc(t). The result is illustrated in Figure 7.

The performance of both the parameter estimation method, as well as the occupancy
estimation algorithm is excellent. For the implementation of the occupancy algorithm,
1440 points of CO2 concentration are used, after having generated them from the numerical
solution of the mass balance equation; using the method of Euler–Maruyama. Further-
more, the estimated parameter θ̂ has been used, as described in the section of occupancy
estimation algorithm. The number of iterations for the algorithm has been set to 1000.
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Figure 6. Solution of the True model and the Estimated model, i.e., the solution of the differential
equation using the estimated parameters.

To study the result of parametric uncertainty on the occupancy estimation algorithm,
the estimated infiltration rate and the estimated CO2 generation per occupant, are modelled
using fuzzy numbers. The parameters of the fuzzy case are computed using the a-cut
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method, as previously described, and are illustrated in Figure 3. The stochastic differential
equation solutions using the estimated parameters, as well as the fuzzy estimated parame-
ters (Table 2) are illustrated in Figure 8. It is clear that a parametric uncertainty bound is
introduced in the model, since fuzzy parameters are considered.
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Figure 7. Estimation of the number of occupants in the room as a function of time t: n̂occ(t).
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Figure 8. Solutions of the stochastic differential equation when using θ̂ and ¯̂θ. The uncertainty bound
induced by the fuzzification of the parameters is the band between the red and blue solution.
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Table 2. Estimated and Fuzzy parameters.

Estimated Parameters θ̂ Fuzzy Parameters θ̂ Fuzzy Parameters ¯̂θ

θ̂1 = 0.1166 h−1 0.1107 h−1 0.1224 h−1

θ̂2 = 391.4339 ppm 391.4339 ppm 391.4339 ppm
θ̂3 = 179.1345 ppm/h 152.2644 ppm/h 206.0047 ppm/h
θ̂4 = 3.8800 3.8800 3.8800

The occupancy estimation algorithm is implemented in the case of both θ̂ and ¯̂θ
parameters. The results are depicted in Figure 9. The estimation result produced by the
algorithm differs from the real number of occupants, that generate the CO2 data. By
considering the infiltration and the carbon dioxide generation by the occupants as fuzzy, a
further uncertainty in the model other than the noise, is induced. The occupancy vector
in the case of θ̂ is, in some time points, overestimated. This reflects the fact that since
CO2 generation is much lower than the estimated value, then the algorithm, based on the
maximum likelihood principle, tries to determine what nocc(t) should be in order for the
training data to be generated. Therefore, it computes an estimation vector n̂occ(t), so that
the solution, if considered parameters θ̂, would match the true data. In the case of ¯̂θ the
estimated occupancy vector is, in some time points, underestimated reflecting the fact that
in some time points the number of occupants should be smaller than 4, in order for the true
data to be produced.
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Figure 9. (a) Occupancy estimation when fuzzy parameters θ̂ are considered. (b) Occupancy
estimation when fuzzy parameters ¯̂θ are considered.

For the MACS development, the proposed methodology is used, for the estimation of
an occupancy profile that resembles a working office: an increasing number of occupants
are present in the room’s interior until late afternoon. Following to that, a single occupant
is present for two hours, until midnight. The occupancy profile and the associated CO2
concentration, are illustrated in Figure 10.

The true parameters used in the simulation, as well as their estimation, using differen-
tial evolution, are given in Table 3.

Table 3. True and Estimated Model parameters.

Parameters True Values θ Estimated Values θ̂

Infiltration rate 0.12 h−1 0.1167 h−1

Outdoor CO2 concentration 420 ppm 359.4813 ppm
CO2 generation per occupant 180 ppm/h 179.6181 ppm/h
σ 2 2.8917
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Figure 10. Solution of the true model and the estimated model, i.e., the solution of the differential
equation using the estimated parameters.

The algorithm of occupancy estimation, performs very accurately and the true occupant
vector nocc(t) is identical to the estimated, n̂occ(t). The results are given in Figure 11.
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Figure 11. Estimation of the number of occupants in the room as a function of time t: n̂occ(t).

Similarly to the previous case, the parametric uncertainty on the parameters is ad-
dressed, by assuming that the infiltration and the CO2 generation per occupant are mod-
elled by triangular fuzzy numbers, with core given by θ̂1 for qin f and θ̂3 for cCO2

occ . Applying
the a-cut methodology the left and right parameters were computed to be (Table 4).
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Table 4. Estimated and Fuzzy parameters.

Estimated Parameters θ̂ Fuzzy Parameters θ̂ Fuzzy Parameters ¯̂θ

θ̂1 = 0.1167 h−1 0.1108 h−1 0.1225 h−1

θ̂2 = 359.4813 ppm 359.4813 ppm 359.4813 ppm
θ̂3 = 179.6181 ppm/h 152.6754 ppm/h 206.5608 ppm/h
θ̂4 = 2.8917 2.8917 2.8917

The application of the occupancy algorithm in the case of fuzzy parameters is shown
in Figure 12. The analysis follows the same philosophy as previously described. It is quite
interesting, that fuzzy parameters increase the uncertainty in the model, and the occupancy
estimation algorithm results in overestimated or underestimated vectors. However, it
should be clearly stated that this is not a weak point of the algorithm, but a direct result
from the maximum likelihood nature of it.
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(b)
Figure 12. (a) Occupancy estimation when fuzzy parameters θ̂ are considered. (b) Occupancy
estimation when fuzzy parameters ¯̂θ are considered.

3.2. Multi Agent Control Framework

As far as the MACS is concerned, the simulation time has been set to one year with a
simulation step time of 0.001 h. The data, regarding the ambient temperature, the horizontal
diffused illuminance, and the solar irradiance are acquired from the database of the Institute
for Environmental Research and Sustainable Development (IERSD), National Observatory
of Athens, and they are associated with the year 2019, for Athens, Greece with a sample
time of 1 h. For the outdoor CO2 concentration, the constant value of 359.4813 ppm that
has been estimated, is used. The set point for the heating/cooling system has been set
to 23 ◦C, when the outdoor temperature falls under 21 ◦C, and 26 ◦C when the outdoor
temperature exceeds 29 ◦C. The set point for the indoor illuminance has been set to 700 lux
and the set point for the CO2 concentration has been set to 380 ppm.

All the sub-models lighting, thermal, CO2 concentration models and the algorithms
of the MACS have been implemented in MATLAB/Simulink, each sub-model and each
agent is an embedded MATLAB function with multiple inputs and outputs. The relation
between inputs and outputs are described by the corresponding algorithms and equations.
For example, the CO2 concentration sub-model is a two input (number of occupants and
ventilation rate) and one output system (CO2 concentration).

The following figures illustrate the outdoor temperature, the indoor temperature, the
control signal of the heating/cooling system and the occupancy of the building. After the
extensive exploration, the indoor temperature remains almost constant at 23 ◦C for the
winter and at 26 ◦C for the summer, during the hours when occupants are present inside
the building. Figures 13 and 14 are associated with one random day of winter and one
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random day of summer, respectively. When the occupancy level of the building is zero,
the control signal of the agent is zero and consequently the indoor temperature is lower
from the set point for the winter and above the set point for the summer. When occupants
are entering the building the agent starts to operate again and the indoor temperature is
reaching the set point with small oscillations.

Figure 13. (a) Outdoor temperature. (b) Indoor temperature. (c) Control signal and (d) Occupancy
level. The plots are associated with a random day of winter.

Figure 14. (a) Outdoor temperature. (b) Indoor temperature. (c) Control signal and (d) Occupancy
level. The plots are associated with a random day of summer.

A similar philosophy follows AGL. At first, the corresponding agent visits new states
and mainly explores the state-action space. Following the exploration, the indoor illumi-
nance remains almost constant at 700 lux, at the hours of existing occupancy. Figure 15
depicts the outdoor horizontal diffused illuminance, the total indoor illuminance, the
control signal, the transparency of the electro-chromic window, the provided illuminance
by the artificial lighting system and the number of people inside the building, for a random
day. When the occupancy of the building is zero, the control signal of the agent is zero, and
consequently the indoor illuminance is proportional to the outdoor horizontal illuminance.
When occupants enter the building, the agent starts to operate again and the indoor hori-
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zontal illuminance is reaching the set point with small oscillations, by either changing the
transparency of the window or by changing the illuminance of the artificial lighting.

Figure 16 illustrate the occupancy of the building, the control signal of the agent and
the indoor CO2 concentration, for one random day. The agent explores in the beginning
and after the exploration, the indoor concentration of the CO2 remains lower than the value
of 800 ppm. The ventilation system operates when there are people inside the building, and
either reduces or stop its operation, when the occupancy level vanishes, and consequently
the concentration of the CO2 is reduced.

The overall energy consumption of the three systems: heating/cooling (H/C) system,
artificial lighting (A/L) system and ventilation (V) system for one year period is computed
as 1663 kWh in relation to the much larger value 3770 kWh, which is the overall consump-
tion of these systems for the same year without taking into account the occupancy of the
building: the heating/cooling system, as well as the lighting system, operate only for hours
where n̂occ 6= 0. This concludes an overall reduction of 55.9%.

Figure 15. (a) Outdoor horizontal diffused illuminance. (b) Total indoor illuminance. (c) Control
signal. (d) Transparency of the electro-chromic window. (e) Provided illuminance by the artificial
lighting system and (f) Occupancy level. The plots are associated with a random day.

Figure 16. (a) Number of occupants. (b) Control signal. (c) CO2 concentration. The plots are
associated with a period of one day.
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The consumptions of each system, with and without regarding the occupancy of the
building, are presented in Table 5 and graphically illustrated in Figure 17.

Table 5. Energy consumption of the three sub systems in numbers.

MACS Taking into
Account Occupancy

MACS without Taking
into Account Occupancy

Heating / Cooling System 747 kWh 1478 kWh
Artificial Lighting System 414 kWh 1780 kWh
Ventilation System 502 kWh 502 kWh

Total 1663 kWh 3770 kWh

Figure 17. Energy consumption for each subsystems and their sum.

The overall comfort index Ci arises from three indexes; the thermal comfort index Ti,
the visual comfort index Li, and the indoor air quality index Ai. The trapezoidal member-
ship functions, that calculate the respecting indexes according to the indoor temperature,
the indoor horizontal illuminance and the CO2 concentration, are depicted in Figure 18.

The overall comfort index is computed by the following equation:

Ci(x) =

{
0.4Ti + 0.4Li + 0.2Ai, n̂occ(t) > 0
0, otherwise

(39)

Figure 19 illustrates Ci and the number of occupants for a random day. Ci is zero
when no occupants are inside the building and equals, for most of the time, to one when
there are occupants inside the building.

The MACS performance, pertaining to the case of fuzzy parameters, is presented in the
following figures. Figures 20 and 21, illustrate the outdoor temperature, the indoor temperature,
the control signal, and the occupancy level estimated when using θ̂ and ¯̂θ, respectively.

Figure 22 depicts the MACS results, associated with the occupancy estimation, per-
taining to θ̂. The outdoor illuminance, the total indoor illuminance, the control signal, the
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transparency of the window, the artificial lighting and the occupancy level, are illustrated.
The results when using the ¯̂θ-based estimated occupancy vector, are given in Figure 23.

Figures 24 and 25, illustrate the occupancy of the building, the control signal of the agent
and the indoor CO2 concentration, for one random day for the different occupancy vectors.

The total consumption, as well as the consumptions of the heating/cooling system,
the artificial lighting system and the ventilation system for two different occupancy profiles,
are presented in Table 6. In the first profile, the overall consumption is 1533 kWh, meaning
a reduction of 130 kWh (Comparison with the first column of Table 5). This reduction is a
result of the ventilation system. The agent of the ventilation system learns a policy that
reduces the consumption of the actuator but, as it is illustrated in Figure 24, the indoor air
of the building, is of lower quality, as the CO2 concentration reaches values up to 900 ppm.
Small reduction is also observed to the heating/cooling system (Figure 20), but it is justified
by the increased number of the occupants: More occupants are heating the thermal space,
due to the occupant’s heating gains.

Table 6. Energy consumption of the three sub systems in numbers, for the MACS using the occupancy
profiles estimated using the fuzzy parameter.

MACS Taking into Account
Occupancy, Estimated Using θ̂

MACS Taking into Account
Occupancy, Estimated Using ¯̂θ

Heating / Cooling
System 740 kWh 614 kWh

Artificial Lighting
System 414 kWh 414 kWh

Ventilation System 379 kWh 500 kWh

Total 1533 kWh 1528 kWh
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400 1100 1800
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Figure 18. (Top right) Membership functions of the thermal comfort index Ti. (Bottom left) Mem-
bership function of the visual comfort index Li. (Bottom right) Membership function of the indoor
air quality index Ai.
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Figure 19. (a) Comfort index and (b) Number of occupant for a random day.
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In the second profile, the overall consumptions is 1528 kWh, meaning a reduction
of 135 kWh (Comparison with the first column of Table 5). In this case, the reduction is
a result from the heating/cooling system (Figure 21). The agent of this system learns a
better policy that reduces the consumption of the system, without particularly reducing
the thermal comfort. A small reduction of 2 kWh is observed to the ventilation system
(Figure 25), which is justified by the lower number of the occupants. The consumption of
the lighting system, as it is illustrated in Figures 22 and 23, remains the same, since the
lighting system is not affected by the occupant number.

Figure 22. (a) Outdoor horizontal diffused illuminance. (b) Total indoor illuminance. (c) Control
signal. (d) Transparency of the electro-chromic window. (e) Provided illuminance by the artificial
lighting system and (f) Occupancy level.

Figure 23. (a) Outdoor horizontal diffused illuminance. (b) Total indoor illuminance. (c) Control
signal. (d) Transparency of the electro-chromic window. (e) Provided illuminance by the artificial
lighting system and (f) Occupancy level.
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Figure 24. (a) Number of occupants. (b) Control signal. (c) CO2 concentration.

Figure 25. (a) Number of occupants. (b) Control signal. (c) CO2 concentration.

4. Conclusions

A MACS with a parameter and occupancy estimation algorithm has been studied,
with respect to the control performance and maintenance of the building’s comfort levels.
A stochastic process models the CO2 generation and decay, by including the unmodelled
dynamics. Given CO2 concentration data, the parameters of the model, as well as the
occupancy level, are estimated. Maximum likelihood methodology follows the estimation.
In order to induce further uncertainty in the assumed model, the infiltration and carbon
dioxide concentration are treated using fuzzy numbers, and the effect of the occupancy
estimation algorithm in the new model is studied. By using two boundary cases of the
α-cut method, for the fuzzy parameters, two occupancy estimations are produced. These
occupancy estimated profiles can be interpreted to describe an uncertainty bound on the
occupancy level which stems from the parametric uncertainty on the infiltration rate and
the carbon dioxide generation rate per occupant.

The simulation results highlight the successful application of the independent learners
approach of the MACS. This control framework succeeds stability over the desired set
points for all the control parameters, in a fully decentralised framework. Each agent acts
independently, thus a possible failure in one agent will not lead to a failure of the total
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control system. The enhanced approach, which takes into account the occupancy of the
building, leads to even better performance because not only the set points of the parameters
are achieved, but also an energy reduction of about 55.9% is observed. This reduction is
a result of the integration of the estimated occupancy vector, which dictates which time
periods the thermal and lighting agents will function. Therefore, a waste of energy is
avoided for the time periods where there are no present occupants in the building. This
approach is also tested for different occupancy profiles arising by the fuzzy parameters
with similar successful results.

In conventional building control techniques the control algorithm receives immediate
feedback and generates a control action. In the proposed MACS for building control, the
control algorithm receives a delayed feedback, which results each agent to incorporate
previous knowledge. Thus, an agent applies the optimum policy depending on the long
term reward.

The over/under estimated occupancy level, when considering fuzzy parameters,
indicate that further research should focus on the field of parametric uncertainty and
on fuzzy stochastic differential equations. The incorporation of uncertainty bounds on
occupancy estimation, could be included in the MACS control design to further reduce
the energy consumption. Future research directions will also focus on the occupancy
prediction problem, as well as the development of evolutionary based algorithms for
occupancy estimation based on CO2 concentration data.

A quiet interesting topic that we surely plan to investigate involves more complex
approaches of cooperative MAS, which combine the indoor environmental quality parame-
ters which, in combination with artificial general intelligence (Deep AI), may lead to further
improvement of the proposed system. Furthermore, the impact of the ventilation system
to the indoor temperature will be introduced into the thermal model of the building for
providing more accurate results. Finally, the effect of ventilation systems, with and without
heat recovery, on thermal comfort and energy consumption, will be studied and compared.
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Nomenclature

α(x) Global action
αi(x) Fired degree of fuzzy rules
θ̂ Fuzzy right estimated parameters
θ̂ Estimated parameters
θ True parameters
θ̂ Fuzzy left estimated parameters
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.
M Mass air flow of the heating/cooling system
η Learning rate
γ Discount factor
n̂occ(t) Estimated number of occupants as a function of time
P g Population of individuals at generation g
Q(x, α) Q values of state x and action α

σ Volatility of the noise
ai Consequent of fuzzy rule
Aw Area of window
Bt Brownian Motion at time t
c Air heat capacity
cCO2

occ CO2 generation per occupant
D Window shadowing factor
eco CO2 Concentration error
eL Illuminance error
Ep,d Horizontal diffused illuminance of the point p
eT Temperature error
F Mutation scaling
GCO2 Term associated with CO2 generation
gw Glass conductance
hp Height between p and the lower edge of the window
hw Height of the window
HGE Electrical loads heating gain
HGL Artificial lighting heating gain
HGo Occupants heating gain
HGS Solar irradiance heating gain
Iw Diffused solar irradiance
L(θ) Negative Log Likelihood function
Ls Illuminance from the sky
Mα Air mass inside the building
nocc(t) Number of occupants as a function of time
PAL Artificial lighting system power consumption
pcr Crossover probability
PHC Heating/Cooling system power consumption
PV Ventilation system power consumption
q Term associated with air exchange
qin f Infiltration rate
qvent Ventilation rate
R Reward
Req Equivalent thermal resistance of the building envelope
rw Transparency of window
Tout Temperature of the outdoor air
Troom Temperature of the room
V Volume of the room
ww Width of the window
XCO2 (t) Random variable associated with CO2 concentration at time t
xCO2 (t) Solution of the deterministic mass balance equation at time t
xp Distance between p and left wall
xw Distance between left wall and left edge of the window
z Horizontal distance between p and window

Appendix A

The conversion of pollutant concentration (in m3) in ppm, is provided for the readers.

xppm =
106 × C

S
(A1)
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where xppm denotes a value in ppm, C denotes the pollutant component in m3 and S
denotes the solvent in m3.
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