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Abstract: Advancements in wind turbine condition monitoring systems over the last decade have
made it possible to optimise operational performance and reduce costs associated with component
failure and other unplanned maintenance activities. While much research focuses on providing more
automated and accurate fault diagnostics and prognostics in relation to predictive maintenance,
efforts to quantify the impact of such strategies have to date been comparatively limited. Through
time-based simulation of wind farm operation, this paper quantifies the cost benefits associated with
predictive and condition-based maintenance strategies, taking into consideration both direct O&M
costs and lost production. Predictive and condition-based strategies have been modelled by adjusting
known component failure and repair rates associated with a more reactive approach to maintenance.
Results indicate that up to 8% of direct O&M costs can be saved through early intervention along
with up to 11% reduction in lost production, assuming 25% of major failures of the generator and
gearbox can be diagnosed through advanced monitoring and repaired before major replacement is
required. Condition-based approaches can offer further savings compared to predictive strategies
by utilising more component life before replacement. However, if weighing up the risk between
component failure and replacing a component too early, results suggest that it is more cost effective
to intervene earlier if heavy lift vessels can be avoided, even if that means additional major repairs
are required over the lifetime of the site.

Keywords: predictive maintenance; condition monitoring; asset management; economics; offshore
wind energy

1. Introduction

Maintenance strategies have evolved over the last decade in line with increased
turbine size, changes in wind turbine technology and reduction in capital expenditure
relative to power output [1,2]. With sites now designed for higher average wind speeds in
more remote geographical locations (particularly offshore), it is imperative that O&M costs
are as low as possible to keep the overall LCOE down [3]. One way of achieving this is by
employing improved maintenance strategies, made possible with increased monitoring
capabilities, improved digitilisation and more in-depth analysis of data [4]. This allows
engineers and operators to assess asset performance, understand reliability and make
informed maintenance decisions that can drive down costs over the lifetime of the site,
maximising availability. With this in mind, machine learning has a large role to play in
automating both monitoring and analysis activities across a fleet, allowing engineers to
focus their efforts on more complex decisions regarding faults and under-performance.
The majority of literature in this area focuses on applications of machine learning on various
operational data, aiming to more autonomously and accurately diagnose faults and predict
failure of key drivetrain components without quantifying the potential costs savings of
implementing such approaches [5]. Focusing on offshore wind farms (where the biggest
costs savings can be made), this paper aims to quantify the operational cost savings of
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predictive maintenance strategies over the lifetime of a wind farm with respect to gearbox
and generator failures, which are commonly associated with the largest wind turbine
downtime per failure [6]. Without a true understanding of operational economic benefits,
any prospective maintenance strategy based on turbine condition cannot be understood.
Additionally, the initial outlay for the CM system and associated costs cannot be justified [7].
A basis to form such justifications is what this paper aims to provide.

Potential cost savings are assessed by firstly calculating a range of predicted failure
and repair rates associated with maintenance strategies enabled by different levels of
condition monitoring (CM) capabilities. These predicted intervention rates are supplied as
inputs into a cost model that simulates wind farm O&M costs over its lifetime. Costs are
compared to a benchmarked O&M cost of known failure rates connected to a more reactive
approach to maintenance. Results presented aim to provide clarity into how different
fault detection and repair rates translate into direct O&M costs savings for offshore wind
farms, assuming major components can be repaired before failure, and relating these cost
savings back to different maintenance strategies. It is expected that maximum savings will
be made by avoiding as many major component failures as possible while maximising
component life before each repair. This scenario would occur through a condition-based
maintenance strategy.

2. Literature Review

In an effort to optimise CMS activities, machine learning techniques are increasingly
being used to enhance wind turbine diagnostics and prognostics, with extensive publica-
tions and multiple review papers having been published in recent years which can be found
in [8–10]. In one such comprehensive review by Stecto et.al in 2018 [11], models were clas-
sified by typical ML steps, including data sources, feature selection and extraction, model
selection (classification, regression), validation and decision making. Findings showed
that most models use SCADA or simulated data, with almost two-thirds of methods using
classification and the rest relying on regression. Neural networks, support vector machines
and decision trees are most commonly used, with more recent papers now combining
techniques and data sources to optimise performance such as [12,13].

With regards to reliability, there have been several studies to date investigating the
failure rates of wind turbines and their subassemblies, which is a crucial aspect to correctly
analyse costs related to wind farm OPEX. One such study in 2007, which shows failure
rates and associated downtime, was obtained from analysing 1500 German turbines over a
15 year period [14]. It should be noted that while this is a large population, the majority of
turbines are rated under 1 MW, which is relatively small when compared to the 10–12 MW
machines being installed offshore today. Another study worth mentioning by Spinato in
2009 [15], consists of a dataset of more than 6000 wind turbines in Denmark and Germany
over an 11 year period. In 2010, a similar study by Reliawind [16], uses larger, more
modern wind turbines and calculates failure rates that are remarkably consistent with the
top end of the scale found in [15]. In 2015, Carroll [6], considers a dataset of 2222 wind
turbines, each of the same power rating of between 1.5 and 2.5 MW. They differ only by
their generator and drivetrain configuration and have been categorised into two groups
for the study. The first configuration in the analysis is a doubly fed induction generator
(DFIG), with the second being a permanent magnet generator (PMG) with fully rated
converter (FRC). All turbine generators and converters are in their first 5 years of operation
and located in wind farms throughout Europe. Key findings when comparing DFIG
and PMG configurations showed that PMG had a failure rate 40% lower to that of the
DFIG, which actually could be lowered further if minor failures related to its cooling and
lubrication system were not included in [6]. Spinato’s study [15], also suggests that direct-
drive machines (DD) are not necessarily more reliable when compared to their geared
counterpart. In fact, if you take into consideration the aggregated failure intensity of the
generator and converter in the DD machine, it is greater than that of the gearbox, generator
and converter in geared-drive wind turbines. Finally, in a more recent study in 2018 [17],
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Artigao identified thirteen reliability studies in scientific literature to review. This work
made an effort to unify the various studies to obtain comparable results. Failure rates are
normalised and reveals that the control system, gearbox, electric system, generator and
hub and blades are the most critical assemblies with regards to wind turbine condition
monitoring. Taking into account the top-three contributors to failure rates for each study,
the most recurrent ones across all studies are the electric, control and yaw systems, and hub
and blades categories; for downtim,e these are the gearbox, generator, and braking and
electric system. Mechanical and electrical/control components show similar failure rates.
However, mechanical components cause higher amount of downtime when compared to
electrical/control ones, reaching more than 75% of the total downtime.

Not much literature exists when it comes to quantifying the impact of predictive
maintenance strategies on wind farm OPEX. A review on reliability and its impact on cost
of energy for wind is given in [18]. One attempt of quantifying the impact of costs and
revenue can be found in [2]. The influence of extending potential-to-functional failure
intervals has on offshore wind turbine availability is explored in [19].

3. Methodology and Model Overview

To ensure a robust analysis of O&M costs for different maintenance strategies, a
number of hypothetical offshore sites were analysed of varying size (number of turbines)
and distance from shore. This allowed changes in downtime, vessel costs, total repair costs
and times to be analysed and compared with different component failure rates. Data used
for both wind and sea state was assumed to be the same for all hypothetical sites.

3.1. Methodology

Figure 1 shows the step by step approach taken to perform the analysis. As the quality
of results obtained was highly dependent on setting the correct inputs for each case, time
was first taken to become familiar with the model and adjustable parameters (the cost
model utilised is described in more detail in the next section). From here, the baseline
model parameters were chosen for each hypothetical site, as described in Section 3.3. Test
cases were then defined that could synthesise each of the maintenance strategies. These
are detailed in Section 3.4. Finally, the models could be run, outputs analysed for each
maintenance strategy across different sites and conclusions formed.

1. Set up baseline model parameters for 
hypothetical sites to perform analysis

2. Define maintenance strategy test cases for 
analysis and adjust model input parameters to 

synthesise test cases

3. Run cost model Monte Carlo simulation

4. Analyse and compare results for each test 
case

5. Draw conclusions

Figure 1. Overall approach to analysis.

3.2. O&M Cost Model Description

The benchmarked O&M cost model used throughout this analysis was developed by
the University of Strathclyde and is a time-based simulation of operations of an offshore
wind farm over its lifetime. To provide an overview, a Monte Carlo Markov Chain is
used to model failure behaviour, with maintenance operations simulated based on both
site conditions and available resources. Model input parameters are used to determine
these constraints over the lifetime of the asset operations. The model has the capability to
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calculate availability, turbine downtime, power production and maintenance resource allo-
cation of the simulated wind farm, along with associated costs. Lost revenue is determined
from the power produced at each simulated wind speed time step. Losses associated with
electrical transmission and wind farm arrays are represented by efficiency coefficients,
with the value of power produced determined by a combination of the market price of
electricity and the value of UK support mechanisms. It should be noted that these costs
may not reflect current prices. However, they are still valid to give a good indication of
changes in price with differing strategies. The lost revenue cost due to maintenance is cal-
culated using availability of the wind farm, which is defined as the number of operational
turbines divided by the total number of turbines. Wind distribution is characterised by
a two-parameter Weibull curve. However, climate data more broadly consisted of wind
speed, wave height and wave period, each of which had its own seasonal variability which
influenced both generation capacity and accessibility over the year. The expected repair
cost of each intervention category was provided by the industrial partner for the 3 stage
PMG FRC wind turbine configuration.

This paper will focus on analysing costs for both operations and maintenance of theo-
retical sites. However, we will discuss results in relation to overall availability, downtime
and power production. A diagram describing model inputs and outputs, as well as the key
features of the simulation loop can be found in Figure 2. Full details of the model with all
interdependencies can be found in [20,21].

Climate 
parameters

Turbine and 
wind farm 
description

Failure and 
repair details

Resources and 
strategy choices

Inputs

Failure rate adjustment 
calculation

Lifetime variable pre-processing

Main simulation process

Climate time series

Ideal turbine 
power production

Failure likelihood 
at each time step

Simulation 
loop

Failure simulation and 
updating of turbine state

Resource and 
strategy analysis

Maintenance actions 
simulation

Update and record system state 
and resource use in shift

Post Processing

Availability Cost
inputs

Resource usage 
and repairs

Lost revenue Direct costs

Outputs

Wind farm 
performance

OPEX
cost

Resource 
utilisation

Figure 2. Simplified cost model structural overview, adapted from [20].
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3.3. Theoretical Site Characteristics

Four different offshore wind farms were simulated of different sizes and distances from
shore. Three distances of 25, 50 and 100 km were chosen to represent “near”, “mid” and
“far” offshore sites. To then understand the effect of wind farm size on costs, two different
sizes of 50 and 100 turbines were also chosen to represent “medium” and “large” sites.
A 3 stage PMG FRC turbine was utilised throughout the analysis, for which representative
failure rates were gathered and used based on [22]. The assumed cut-in speed was 3 m/s,
with a rated wind speed of 15.5 m/s and cut-out speed of 25 m/s. Although this technology
is not representative of some of the larger turbines currently being installed offshore, it does
offer an opportunity for more trusted reliability rates to be used over a larger population of
operational turbines. Water depth was not considered with all turbines assumed to have
the same fixed bottom foundations. For all sites modelled, it was assumed that each had
the same weather and climate characteristics as per FINO climate data from an offshore
research platform. The site chosen to represent the climate of all cases was located 45 km
offshore in the North Sea, and corresponds to both existing and future wind farms currently
being developed. Although different sea state data may improve analysis authenticity
by avoiding this assumption, having the same sea states allows for a direct comparison
between distances and sizes to be made. The same wind speed is also used across each site,
which as found in [22], is a valid assumption based on the observed mean wind speeds
across 60 offshore wind farms in operation ranging from 1 km to just over 200 km from
shore, which showed less than 2% deviation. Each wind farm simulated utilised a modern
multi-MW offshore wind turbine with rated power between 2 and 4 MW. However, the
exact power rating cannot be provided for confidentiality reasons.

3.4. Types of Maintenance Strategies

There are several terms observed in literature to describe the different maintenance
strategies, which are not always exactly the same. For clarity, Table 1 defines each strategy
terminology as used in this paper with respect to component replacement. Four strategies
are described including preventative, reactive, predictive and condition-based. However, it
will be the latter two that will form much of the analysis.

Table 1. Maintenance strategy definitions.

Maintenance Strategy Description

Preventative Routine maintenance to minimise the risk of faults
developing.

Reactive Maintenance performed retrospectively after compo-
nent failure.

Predictive Prognosis is performed after fault is detected with
replacement scheduled accordingly based on avail-
ability of resources and site conditions.

Condition based Ongoing assessment performed once a fault has been
detected and maintenance is performed when condi-
tion has worsened to a set threshold.

Preventative maintenance is the act of performing routine maintenance that will min-
imise the risk of faults developing in the first place. This type of strategy is inefficient, does
not utilise a components full design life and is wasteful of both materials and technician
time performing the work. It allows for a less hands on approach to condition monitoring.

Reactive maintenance allows components to run to failure, making use of their entire
design life, but risking other components health at failure. This type of strategy reduces cost
of routine O&M while providing a hands-off approach to condition monitoring. However,
this means more expensive replacements and more downtime while waiting for spare parts.

Predictive maintenance and condition-based maintenance are similar in nature and
can often be used interchangeably in literature. They both require condition monitoring to
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detect faults and engineers to assess component condition and make a prognosis to some
extent. Predictive maintenance involves acting on that prognosis, and perhaps reassessing
if condition does worsen. The goal of this is to perform maintenance activity at as low a
cost as possible within a suitable time frame once a fault is confirmed. Some design life
will naturally be compromised for minimising risk of extended periods of downtime.

Condition-based maintenance aims to get extra life out of the component by con-
tinuously monitoring component health and setting hard upper limits for maintenance.
Damage progression is not always predictable and therefore there is added risk here of
further damage to additional components or even assemblies within the drivetrain. This
can increase the cost of maintenance activities further down the line.

3.5. Analysis Cases

Analysis cases will attempt to synthesise scenarios to represent the maintenance
strategies described above. Before describing how this is achieved, Table 2 details how
intervention types are categorised for a generator and gearbox within the cost model. Each
intervention type has distinctive constraints and resource requirements which must be met
when looking for suitable windows to perform the work. It should be noted that a major
replacement requires a heavy lift vessel (HLV) in either case, while both major and minor
repairs only require a crew transfer vessel (CTV). This is key, as by intervening earlier HLV
costs can be avoided by performing a major repair rather than a major replacement.

Table 2. Intervention categories.

System Intervention Intervention Vessel
Category Example Type

Generator Major Replacement Full generator replacement HLV
Generator Major Repair Slip-ring replacement CTV
Generator Minor Repair Re-alignment CTV
Gearbox Major Replacement Full gearbox replacement HLV
Gearbox Major Repair Highspeed assembly replacement CTV
Gearbox Minor Repair Oil system flush CTV

The premise of this analysis is the underlying assumption that as certain faults are left
unaddressed, through time damage has the potential to worsen and spread throughout
a component or assembly. This can eventually lead to failure, more expensive repairs
or replacements along with additional inspections over the life of the fault progression.
There may also be higher refurbishment costs if the component is to be re-used. Inversely,
leaving the component running fundamentally extends the life of the component, reduces
the risk of premature replacement or repair with little to no observed damage or change
after intervention. This will ultimately increase the mean time between failures for a site.
In other words, each strategy has its own unique opportunity cost that must be considered.
It should be noted that this analysis does not attempt to take into consideration O&M and
asset management contracts (such as warranty periods) that may affect decision making.

To summarise, moving from reactive maintenance to predictive or condition-based
maintenance should cause a decrease in major replacements and an increase in major
repairs. Distinguishing between predictive and condition based will depend on how much
the failure rates are adjusted, which will be explained in detail in Section 3.5.2.

3.5.1. Baseline Failure Rates

The baseline failure rates used for the model can be found in Table 3, taken from [23].
The assemblies used were “Generator”, “Gearbox”, “Converter” and “Rest of Turbine”,
each broken down into intervention categories “Major Replacement”, “Major Repair” and
“Minor Repair”. Although these were the categories used when setting up the model
parameters, only gearbox and generator failures were considered and adjusted for the
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purposes of this analysis. Rates were adjusted for both major replacements and major
repairs as described in the below section, with minor repairs remaining constant for every
component/assembly category. This baseline represented a reactive maintenance strategy,
whereby some components were ran to failure before being replaced.

Table 3. Baseline failure rates [23].

Failure Category Gearbox Generator Converter Rest of Turbine

Major Replacement 0.154 0.095 0.005 0.11
Major Repair 0.038 0.321 0.081 0.622
Minor Repair 0.395 0.485 0.076 5.222

3.5.2. Adjusted Failure Rates

Predictive and condition-based maintenance strategies will be represented by altering
the failure rate of each intervention category. The failure rates per turbine per year for both
the generator and gearbox were adjusted from the baseline as per the following equations :

Major Replacement : λadjusted = (1 − Pf )λbaseline (1)

Major Repair : λadjusted = (1 + Pf )
λbaseline

PRUL
(2)

where λ is the failure rate, Pf is the percentage of additional failures per turbine per year
that are diagnosed and are repairable in line with the explanation of repair categories
above, and PRUL is the percentage of component remaining useful life that is utilised prior
to repair (but before failure when a major replacement is required). It is difficult to set a
definitive number for Pf as it is impossible to understand the root cause of every major
replacement and determine if the failure could have been avoided with better condition
monitoring practices and earlier intervention. A range of Pf values between 10% and
40% are therefor used to account for this uncertainty. With regards to PRUL, the baseline
assumes a value of 100% as the component was run to failure for all major replacements as
per the reactive maintenance strategy. For a predictive maintenance strategy, the lower the
percentage of PRUL, the earlier the repair took place, ultimately leading to a higher rate of
major repairs over a wind farm life. Values of 30%, 50%, 70% and 90% were used for each
scenario to understand the effects of earlier repair on the cost of maintenance activities,
as described for each analysis case in Table 4. This gave a total of 16 different hypothetical
wind farms to be simulated per scenario along with the scenario baseline simulation.

Table 4. Analysis cases.

Scenario No. Distance Percentage Percentage
No. Turbines Offshore Failures RUL

1 100 25 km 10–40% 30–90%
2 50 25 km 10–40% 30–90%
3 50 50 km 10–40% 30–90%
4 50 100 km 10–40% 30–90%

Figure 3 shows the adjusted failure rate in relation to PRUL and the baseline failure rate
(for which the λadjusted/λbaseline = 1). For the range of Pf values described above, the major
replacement rate is reduced as per Equation (1), and does not have any dependency on
PRUL. Conversely, the major repair rate increases as per Equation (2), with lower PRUL
values causing a larger increase in repair rate.
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Figure 3. Adjusted failure rates.

4. Results
4.1. Baseline O&M Costs

First of all, the baseline costs are considered, which for this analysis will form the
reactive maintenance strategy described previously in Table 1 to compare against. Presented
in Table 5 are the calculated costs, in £/MWhr, of the total O&M costs broken down into
lost revenue, transport, staff and repair costs. Total direct O&M costs are also given, which
is the combination of transport, staff and repair costs. In other words, all costs associated
with O&M minus any lost production revenue. The uncertainty provided in the table
is determined through running 4 identical Monte Carlo simulations, each made up of
25 random simulations and converging with approximately 0.15% accuracy.

Table 5. Baseline costs overview.

Costs Category £/MWhr

Lost Revenue 13.14
Transport Costs 13.93

Staff and Repair Costs 3.80

Total O&M Costs 30.87 ± 0.15
Total Direct O&M Costs 17.73 ± 0.098

4.2. Effects of Predictive and Condition-Based Maintenance Strategies

The direct O&M costs with the failure rate adjustments can be found in Figure 4,
which shows the costs in relation to the percentage RUL utilised as a percentage change
from the baseline costs. Disregarding percentage RUL utilised for a moment, overall it can
be seen that by taking a proactive approach to maintenance between 2% and 12.5% can
be saved by repairing a component early before major replacement is required depending
on the percentage of faults detected and acted upon. Compared to the baseline case this
equates to a saving of approximately £0.355–2.128 per MWhr over the lifetime of the wind
farm. With regards to changes in lost production, also found in Figure 4, between 3.6% and
15.75% less energy is lost across the range of simulations.
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Figure 4. Percentage cost reduction in predictive maintenance strategies.

Comparing predictive and condition-based strategies in more detail, results suggest
that with a condition-based approach that utilises as much component life as possible
before repair, an extra 1–2% can be saved on average in direct O&M costs. This equates
to approximately £0.177–0.355 per MWhr over the lifetime of the wind farm. There also
appears to be a closer correlation between lost production and utilised life of the component,
suggesting that a higher energy yield can be obtained by running components for longer
before replacement (assuming a HLV is not required). This is likely due to a reduction in
downtime made possible by less repairs over the lifetime of the site.

4.3. Analysis of Wind Farm Size and Location

To consider the effect wind farm size and distance from shore has on O&M cost
reduction Scenarios 2–4 (see Table 4) were simulated. For each scenario a baseline cost was
again calculated by running 4 Monte Carlo simulations with identical input parameters.
As with scenario 1, baseline failure rates were used with each simulated site made up of
25 random simulations. Figure 5 shows the baseline direct O&M costs for wind farms
located 25, 50 and 100 km (Scenarios 2, 3 and 4 respectively), along with the expected
lost revenue. Each Monte Carlo simulation had a convergence of below 0.1%. For each
baseline, we see a modest rise in direct O&M costs from approximately 28.6 at 25 km to
31.1 £/MWh at 100 km. The lost production, however, increases more substantially as the
wind farm is located further offshore increasing on average from 10.7 to 17.7 £/MWh when
moved from 50 km to 100 km offshore. This phenomenon was also found in [23], and can
be explained through a restriction of resources applied in the cost model. This constraint
meant that as the site was moved further offshore, not enough technicians and CTVs were
available to complete all repairs, increasing overall downtime. The number of resources
can be optimised to reduce this. However, a relative comparison of strategies is then not
possible due to higher base O&M costs.

Concentrating on direct O&M costs for each scenario, the cost reduction in relation
to the percentage RUL utilised was plotted in Figure 6, with (a), (b) and (c) representing
scenarios 2, 3 and 4 respectively. As a whole, the calculated reduction in direct O&M costs
is remarkably consistent across the different sites, suggesting that distance from shore has
little impact on direct O&M costs savings for a medium-sized wind farm. As a percentage
of the baseline, results also suggest that similar savings can be made per MWh when
compared to larger sites.
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Figure 5. Baselinedirect O&M costs and lost production, Scenarios 2–4.

Figure 6. Percentage change in direct O&M costs for predictive maintenance strategies. Subfigures (a–c) present results for
scenario 2 (50 WT, 25 km from shore), 3 (50 WT, 50 km from shore) and 4 (50 WT, 100 km from shore) respectively.

Looking at lost production in Figure 7, results show more deviation in potential sav-
ings with respect to distance from shore when compared to direct O&M costs, with values
ranging from approximately 1.5% to 12% depending on PRUL and Pf . It should be noted
that the percentage drop at 100 km can attributed to the substantial increase in absolute
lost production shown in Figure 5. There is also stronger correlation between PRUL and lost
production, with greater values of PRUL on average producing less lost production over
the wind farm’s 20 years operation. This trend is more obvious with lost production due
to the direct link between turbine downtime and increased major repair rate. For direct
O&M costs, any additional CSV time due to increased major repair rate may not show as
strongly due to the dominant effect of offsetting the cost of a HLV with a CSV.
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Figure 7. Percentage change in lost production costs for predictive maintenance strategies. Subfigures (a–c) present results
for scenario 2 (50 WT, 25 km from shore), 3 (50 WT, 50 km from shore) and 4 (50 WT, 100 km from shore) respectively.

5. Discussion

The choice facing operators and owners with regards to O&M strategies is complex,
and is often a reflection of the technology, monitoring capabilities and contracts in place at
a particular wind farm. Regardless, this analysis aims to provide insight into how OPEX
can be reduced over a wind farm life with alternative maintenance strategies assuming
that advanced monitoring is possible to gain the required insight.

Two key parameters were analysed for a variety of sites—Pf to simulate a range of
additional failures per turbine per year that are diagnosed early and are repairable without
using a HLV, and PRUL to simulate how early the component was repaired in relation to
the expected remaining useful life before failure, at which time a HLV would be required.
Considering direct O&M costs (transport, staff and repair costs), results indicate that
identifying more faults and repairing them earlier is more important than utilising more
of the component life, for which comparatively lower gains can be made. This highlights
the importance of making informed maintenance decisions, as analysis shows that the risk
of failure and requiring a HLV is much greater than repairing a component too early and
compromising some design life. Due to the much higher cost of HLVs over CTVs, this is
true even if statistically it means the same component needs repaired several times over
the wind farm life. In relation to maintenance strategies, results suggests that predictive
maintenance may be the optimal solution for offshore wind farms under the conditions
that an optimal weather window can be chosen to limit lost revenue and a HLV can be
avoided by the early repair. Having said this, results also show that lost production can be
further reduced over the wind farm operation lifetime by increasing PRUL through a more
condition-based approach. However, gains are limited and therefore a trade-off between
further cost savings and the risk of failure will have to be considered carefully. This decision
will ultimately be fault case specific and require prudent diagnostics and prognostics.

Results presented in this paper have introduced a methodology to provide a link
between potential reduction in O&M costs due to reduced failure rates enabled by improved
maintenance strategies. By considering these costs across the entire life of a wind farm,
the initial outlay for advanced CMS hardware, network infrastructure and subsequent
monitoring costs can be better justified and adopted by developers, providing a business
case for prospective service providers further down the supply chain.
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6. Conclusions

To summarise, this research has presented analysis in an attempt to bring much
needed clarity on the impact that advanced monitoring strategies can have on lifetime
O&M costs. The key findings are as follows:

• With input parameters described throughout the methodology, results showed a po-
tential cost reduction of up to 8% in direct O&M costs (transport, staff and repair costs)
and up to 11% reduction in lost production by utilising advanced monitoring strate-
gies, assuming 25% of major failures of the generator and gearbox can be diagnosed
through advanced monitoring and repaired before major replacement is required.
This increases to 12.5% and 15.75% respectively, with Pf of 40%.

• Results showed that the major driving factor of realising these savings is through early
intervention to avoid failure and major component replacement, and hence avert the
need to use a HLV and instead use a CTV for a simpler repair.

• Findings indicate that opting for predictive or condition-based maintenance strategies
can generate substantial savings over the lifetime of a wind farm when compared to a
more reactive approach. Furthermore, using a more condition-based approach and
pushing components closer to the end of their RUL can further reduce costs due to
increased overall availability and reduced lost revenue.

• If weighing up the risk of component failure and replacing a component too early,
results suggest that it is more cost effective to intervene earlier if HLVs can be avoided,
even if that means more major repairs over the lifetime of the site.

6.1. Result Limitations

As with all results presented, it is important to reflect on limitations and the major
causes of uncertainties within the analysis. To reduce uncertainty, failure and repair rates
for the baseline reactive maintenance strategy have been taken from [23], for which rates
were obtained with a population of offshore wind turbines over a number of years. Other
studies do, however, exist with varying observed rates across different wind turbine models
which would effect calculated costs. Vessel, staff and component repair costs were taken
from the original cost model, and reflect costs at the time the model was created in 2016,
which may not reflect current rates. The final key source of uncertainty when trying to
understand costs is Pf , which as stated previously used values of between 10% and 40%.
This range has been chosen to reflect the uncertainty, as it will ultimately be specific to each
site and turbine with various impact factors such as differing loading patterns, ambient
conditions, manufacturing and installation tolerances and levels of routine maintenance.
Results also do not take into consideration the reliability and extra cost associated with
the CMS system and network infrastructure, which may have some impact on failure rates
and overall costs of implementing predictive and condition-based strategies.

6.2. Future Work

There are three key areas that could be improved in future research to build on
the results presented. First of all, there should an attempt to better define the failure
rate adjustments, more specifically in relation to Pf , which could be tailored to each
component and fault type. This could only be achieved through industry engagement to
better understand the link between calculated failure rates and potential fault detection
rates with the capacity for repair. Secondly, future research should aim to understand
the true benefit of these savings by offsetting any potential gains with additional costs
of condition monitoring hardware and services. Finally, future research should address
limitations in the applied cost model by updating electricity prices and market mechanisms
to better reflect current and future offshore developments.
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