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Abstract: The computation of self and mutual inductances of coils is a classic problem of electrical
engineering. The accurate modeling of coupled coils has received renewed interest with the spread
of wireless power transfer systems. This problem has been quite well addressed for coplanar or
perfectly coaxial coils but it is known that the misalignment conditions easily lead to a sharp decrease
in the efficiency. Hence, it is crucial to take misalignment into account in order to properly design
the overall wireless power transfer system. This work presents a study to compute analytically the
mutual inductance of non-coaxial pancake coils with parallel axes. The accuracy of the proposed
methodology is tested by comparison with the numerical results obtained using the tool Fast-Henry.
Then, a wireless power transfer system, comprising a full bridge inverter is considered, showing
the impact of the misalignment on the coupling between two pancake coils and, thus, between the
source and the load.

Keywords: pancake coils; mutual inductance; wireless power transfer; planar coils

1. Introduction

The computation of mutual inductance between coaxial circular coils has been thor-
oughly addressed by many authors since the time of Maxwell who gave a formula for two
circles whose axes intersect [1]. In [2,3] formulas for circular loops with parallel axes have
been derived but, unfortunately, all these results can be applied only within a restricted
range of parameters since they converge slowly in general [4].

Nowadays, numerical methods such as the finite element method (FEM) and bound-
ary element method (BEM), allow calculation of the mutual inductance of realistic 3-D
geometric arrangement of conductors in an accurate and fast way. However, analytic and
semi-analytic methods are still of interest to address this problem as they considerably sim-
plify the mathematical procedures, leading to a significant reduction in the computational
effort [4]. General techniques have been developed over the years [5–10] which have been
found to be useful in many different fields including eddy-current tomography [11], planar
PCB inductors [12], coreless printed circuit board transformers [13], force and torque calcu-
lation [14,15], electromagnetic launchers [16], plasma science [17], and superconducting
magnetic levitation [18]. Still, the methods presented in these works are finally based on a
numerical computation [19–21].

The calculation of the mutual coupling between two coils with the spread of wireless
power transfer (WPT) systems has received new interest. This problem has been quite
well addressed for coplanar or perfectly coaxial coils [22,23] but it is known that the
misalignment conditions easily lead to a sharp decrease in the efficiency. Misalignment
can be either lateral or angular. In electrical vehicle charging systems, the most relevant is
lateral misalignment. Hence, it becomes crucial to take this misalignment into account in
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order to properly design the overall WPT system [24–26]. In [27] the numerical solution
proposed in [27] is applied to WPT system with many non-coaxial coils. While it is clear
that the mutual inductance between non-coaxial coils can be computed by resorting to
numerical integration [28], to authors’ knowledge no analytical solution has been found to
this problem. An accurate expression of mutual inductance of Archimedean spiral coils
was presented and verified experimentally in [21] but, again, a numerical integration is
required. By avoiding numerical integration, the mutual inductance can be calculated
faster which can be used for the system optimization, i.e., evaluate faster the impact of
misalignment on the WPT system performance e.g., [29]. This work presents a study to
compute analytically the mutual inductance of non-coaxial pancake coils with parallel axes.
The proposed formula in a series form is verified against numerical results obtained by
means of the inductance extraction program Fast–Henry [30]. Finally, the case-study of a
WPT system comprising two non-coaxial coils and a converter is presented, pointing out
the effect of the misalignment on the performance.

2. Theory

Consider the two air-cored parallel flat coils shown in Figure 1. The turns of the coils
have radii ai (i = 1, . . . , N) and bj (j = 1, . . . , M), while the radial displacement between
the coil axes and the vertical spacing between the coil planes are indicated with ρ and h,
respectively. The overall mutual inductance of the coils is given by

Mab =
N

∑
i=1

M

∑
j=1

Φ(ai, bj, ρ), (1)

where Φ(a, b, ρ) is the flux linkage per unit current between two generic turns with radii a
and b.

 

a1

aN 

b1

bM 

h 

I
a1 

b1 

ρ 

Figure 1. Sketch of two parallel pancake coils.

The goal of this section is to develop a rigorous procedure that allows analytical
evaluation of the integral expression of Φ(a, b, ρ), that is [22]

Φ(a, b, ρ) = πµ0ab
∫ ∞

0
e−λh J1(λa) J1(λb) J0(λρ)dλ, (2)

where Jm(·) is the mth-order Bessel function, and µ0 is the magnetic permeability of free
space. To this end, we first replace J0(λρ) with its ascending power series expansion ([31]
Eq. 9.1.12)

J0(λρ) =
∞

∑
n=0

(−1)n (λρ)2n

[(2n)!!]2
, (3)
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with (2n)!! being the double factorial 2 · 4 · 6 · 8 · . . . · (2n), and obtain

Φ(a, b, ρ) =πµ0a b
∞

∑
n=0

(−1)n ρ2n

[(2n)!!]2

∫ ∞

0
e−λh J1(λa) J1(λb) λ2ndλ. (4)

Next, applying the identity

λ2ne−λh =
∂2ne−λh

∂h2n , (5)

makes it possible to express the flux linkage between two arbitrary turns as

Φ(a, b, ρ) =
∞

∑
n=0

(−1)n ρ2n

[(2n)!!]2
∂2n

∂h2n Φ(a, b, 0), (6)

where Φ(a, b, 0) is the flux corresponding to perfect alignment. An explicit representation
for Φ(a, b, 0) may be found starting from replacing the product of first-order Bessel func-
tions with its finite integral representation according to Gegenbauer’s addition theorem,
namely [32] (Eq. 11.41.17)

J1(λa) J1(λb) =
1
π

∫ π

0
J0(λc) cos φ dφ, (7)

where φ is the variable of integration, and

c=
√

a2 + b2 − 2ab cos φ. (8)

This allows writing of the expression

Φ(a, b, 0) = µ0ab
∫ π

0
cos φ dφ

∫ ∞

0
e−λh J0(λc)dλ, (9)

whose integral on the right-hand side is known and given by [33]∫ ∞

0
e−λd J0(λc)dλ =

1√
d2 + ε

, (10)

being d2 = a2 + b2 + h2, and ε = − 2ab cos φ. Expanding (10) into a power series of ε,
as follows

1√
d2 + ε

=
1
d

∞

∑
m=0

(−1)m (2m− 1)!!
(2m)!!

( ε

d2

)m
(11)

allows transformation of (9) into

Φ(a, b, 0) =
µ0ab

d

∞

∑
m=1

(−1)m (2m− 1)!!
(2m)!!

(
−2ab

d2

)m ∫ π

0
cosm+1 φ dφ, (12)

where it has been taken into account that the finite integral over φ is non-null only for
m 6= 0. Finally, since it holds [34]

∫ π

0
cosm+1 φ=


π m!! /(m + 1)!!, odd m

0, even m
(13)
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after setting m= 2l + 1, it is found that

Φ(a, b, 0) =
πµ0ab

d

∞

∑
l = 0

(4l + 1)!!
(2l + 2)!!(2l)!!

(
ab
d2

)2l+1
. (14)

Combining (14) with (6) provides an explicit expression for the mutual inductance of
two misaligned turns with radii a and b, that is

Φ(a, b, ρ) =
πµ0ab

d

∞

∑
n=0

(−1)n ρ2n

[(2n)!!]2
∞

∑
l = 0

(4l + 1)!!
(2l + 2)!!(2l)!!

(ab)2l+1 ∂2n

∂h2n

[
1

(a2 + b2 + h2)2l+1

]
, (15)

which, since it yields

∂2n

∂h2n

[
1

(a2 + b2 + h2)2l+1

]
=

(2n)!
(2l)!

n

∑
m=0

(−1)m+n 22m(2l + m + n)!
(n−m)!(2m)!

· h2m

d2(2l+m+n+1)
(16)

becomes

Φ(a, b, ρ) =
πµ0ab

d

∞

∑
n=0

(2n− 1)!!
(2n)!!

(ρ

d

)2n ∞

∑
l = 0

(4l + 1)!!
l!(l + 1)!(2l)!

(
ab

2d2

)2l+1
fln

(
2h
d

)
, (17)

where

fln(x) =
n

∑
m=0

(−1)m (2l + m + n)!
(n−m)!(2m)!

x2m. (18)

Use of (17) and (18) in conjunction with (1) provides the mutual inductance of two
parallel non-coaxial pancake coils. Moreover, expression (14) alone may be also applied to
the computation of the overall self-inductance of each coil. For instance, for the coil at the
bottom of Figure 1, it yields [22]

La =
N

∑
i=1

Lt(ai) + 2
N

∑
i=1

N

∑
j=i+1

Φ(ai, aj, 0), (19)

with Lt(a) being the self-inductance of a thin-wire circular loop with radius a, given
by [22,35]

Lt(a) = µ0a
[

log
(

8a
rw

)
− 2
]

, (20)

where rw is the wire radius. It should be observed that both the integral expression of
Φ(a, b, ρ) and formula (20) are valid subject to the thin-wire assumption, which holds when
rw is negligible if compared to the radii of the turns.

3. Results and Discussion

To test the developed theory, the derived Formula (17) is first applied to the com-
putation of the flux linkage between two identical coils made up of 10 turns. For each
coil, the radius of the inner turn is taken to be equal to 3 cm, while the spacing between
the edges of two adjacent turns is 2 cm. The mutual inductance is calculated against the
radial distance ρ, and the obtained results, illustrated in Figures 2 and 3, are compared
with the outcomes from the multipole-accelerated three-dimensional inductance extraction
program Fast-Henry. Figure 2 depicts ρ−profiles of the mutual inductance corresponding
to h= 10 cm, with the truncation index N of the outer sum in (17) taken as a parameter.
Thus, the figure illustrates the effect of adding a higher-order term to the truncated power
series expansion of the flux, seen as a function of ρ. To ensure highly accurate computation
of the nth term of the expansion, the inner sequence of partial sums in (17) is terminated
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when the relative difference between the two last partial sums is smaller than a specified
tolerance, which is assumed to be 10−12. As is evident from the analysis of the plotted
curves, the data arising from using the partial sum in (17) with N = 3 agree well with
those produced by the Fast-Henry solver. As a consequence, the sequence of partial sums
converges to the exact solution as N is increased. Figure 2 also points out that, for a given
value of the truncation index N, the accuracy of the outcomes from (17) is affected by the
misalignment between the coils, and that, in particular, it worsens as the misalignment
increases. However, further increasing N makes it possible to achieve a high degree of
accuracy of the results of the computation regardless of the value of the misalignment. For
instance, in the 0< ρ< 15 cm range, the choice of N = 8 ensures that the relative difference
between the last two elements of the outer sequence of partial sums in (17) is always smaller
than 10−8. This means that setting the desired tolerance of 10−8 for stopping the outer
sequence of partial sums always leads to truncate the series at N = 8.
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Figure 2. Mutual inductance of two 10-turn coils spaced 10 cm apart, as a function of ρ.

Convergence of (17) is also confirmed by the ρ−profiles plotted in Figure 3. Here, the
same coils as in the previous example are considered, while their planes are now separated
by the distance h= 20 cm. As can be seen, even if the distance has been doubled, perfect
matching is still observed between the outcomes of Fast-Henry solver and the trend arising
from the proposed series-form solution truncated at N = 3. This suggests that the rate of
convergence of (17) is not affected by a variation of h.
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Figure 3. Mutual inductance of two 10-turn coils spaced 20 cm apart, as a function of ρ.

4. WPT System with a Full Bridge Inverter

A possible application of the coupled coils system presented is in the Wireless Power
Transfer (WPT) area. The purpose of this paragraph is to provide an example where a
couple of coils are employed in order to transfer an amount of power from a source to a
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distant load. The WPT coupling between two pancake coils is studied performing several
simulations using the Plexim software “PLECS”; the target is to compute the load voltage
over a load resistance RL due to the exchange of power between two distant coupled
coils [36]. The schematic of the configuration under investigation is shown in Figure 4. The
central element of the circuit represents the coupling between a primary coil having a self
inductance L1 and the secondary coil with a self inductance L2; the effect of the mutual
coupling is described by the mutual inductance parameter Lm that, besides depending on
the geometry and the materials employed for each single coil, depends certainly on the
distance and the misalignment between the coils.

Figure 4. Circuit scheme of the inductive power transfer system which includes an inverter for the primary coil and a
rectifier for the secondary coil.

The primary coil and its series resonant capacitor C1 are connected to an ideal full-
bridge inverter. The secondary coil and its series resonant capacitor C2 are connected to
an ideal full-bridge rectifier which converts the induced AC voltage of the secondary coil
to DC voltage. The components R1 and R2 represent primary and secondary effective
series DC resistances, respectively, which in this case are equal because the geometry is the
same for both the coils. The load capacitor CL is a filter capacitor. The full bridge inverter
is supposed to be operated by a switching frequency fs = 20 kHz [36]; hence, a bipolar
voltage is generated by the inverter on the primary side. The global voltage applied to the
primary side is sketched in Figure 5. In order to guarantee the zero voltage switching (ZVS)
operation of the inverter, the primary side resonant frequency fr1, determined by C1 and
L1, is chosen slightly smaller than the switching frequency [36].

fs = 1.05 fr1 =
1.05

2π
√

L1C1
(21)

0 1 2 3 4 5

Time [s] 10
-4

-1

-0.5

0

0.5

1

N
o

rm
a

liz
e

d
 V

o
lt
a

g
e

Figure 5. Voltage applied to the WPT system.
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The secondary side resonant frequency fr2, determined by C2 and L2, is tuned exactly
to the switching frequency:

fr2 =
1

2π
√

L2C2
= fs (22)

It is clear that the capacitors values C1 and C2 can be easily determined by (21)
and (22) knowing only the self inductances values and the inverter switching frequency.
Twelve different configurations have been considered for the simulations, varying both
the distances and the misalignments between the coils under observation. All the set-up
parameters are reported in Table 1 and the different configurations are reported in Table 2.

Table 1. Circuit parameters.

Switching frequency fs = 20 kHz

Primary capacitor C1 = 4.1 µF

Primary resistance R1 = 1.66 mΩ

Secondary capacitor C2 = 3.73 µF

Secondary resistance R2 = 1.66 mΩ

Self inductances L1 = L2 = 17 µH

Load capacitor CL = 300 µF

Load resistance RL = 40 Ω

Conductors radius rw = 5 mm

Table 2. Test configurations.

Distance h [cm] Misalignment ρ [cm] Lm [µH]

10 0.5 6.18

10 3.5 5.97

10 6.5 5.47

10 9 4.88

15 0 3.87

15 3.5 3.76

15 6.25 3.52

15 8.5 3.24

20 0 2.52

20 3.25 2.47

20 6 2.34

20 8.5 2.18

The load voltage on the resistance RL, normalized to the DC source voltage, is com-
puted and illustrated, for each value of the misalignment, in Figures 6–8. It is clearly seen
that the misalignment has a significant impact on the rectified load voltage. Furthermore,
for the case h = 10 cm, ρ = 0.5 cm and Lm = 6.18 µH, the efficiency for increasing values
of the load resistance RL has been evaluated; the efficiency is defined as the average power
delivered to the load divided by the average power supplied by the full-bridge inverter. It
is easy to verify from Figure 9 that the optimal load resistance for this specific configuration
is around RL = 1.1 Ω.
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Figure 9. WPT efficiency varying the load resistance RL and assuming h = 10 cm, ρ = 0.5 cm.

As a last test, the load voltage was computed considering four different load condi-
tions: RL = [1, 10, 20, 40]Ω, when: h = 10 cm, ρ = 0.5 cm and Lm = 6.18 µH; the results
are shown in Figure 10.
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Figure 10. Load normalized voltages assuming h = 10 cm, ρ = 0.5 cm and varying the load
resistance RL.

5. Conclusions

This work has presented a study to compute analytically the mutual inductance of non-
coaxial pancake coils with parallel axes. The proposed formula was tested by comparison
with the numerical results obtained using the tool Fast-Henry. Then, the proposed formula
was used to compute the mutual inductance between two pancake coils in a wireless power
transfer system, comprising a full bridge inverter. The impact of the misalignment on the
coupling between the source and the load was verified and quantified.
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