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Abstract: Short-term electric load forecasting plays a significant role in the safe and stable operation
of the power system and power market transactions. In recent years, with the development of new
energy sources, more and more sources have been integrated into the grid. This has posed a serious
challenge to short-term electric load forecasting. Focusing on load series with non-linear and time-
varying characteristics, an approach to short-term electric load forecasting using a “decomposition
and ensemble” framework is proposed in this paper. The method is verified using hourly load
data from Oslo and the surrounding areas of Norway. First, the load series is decomposed into five
components by variational mode decomposition (VMD). Second, a support vector regression (SVR)
forecasting model is established for the five components to predict the electric load components, and
the grey wolf optimization (GWO) algorithm is used to optimize the cost and gamma parameters
of SVR. Finally, the predicted values of the five components are superimposed to obtain the final
electric load forecasting results. In this paper, the proposed method is compared with GWO-SVR
without modal decomposition and using empirical mode decomposition (EMD) to test the impact
of VMD on prediction. This paper also compares the proposed method with the SVR model using
VMD and other optimization algorithms. The four evaluation indexes of the proposed method are
optimal: MAE is 71.65 MW, MAPE is 1.41%, MSE is 10,461.32, and R2 is 0.9834. This indicates that
the proposed method has a good application prospect for short-term electric load forecasting.

Keywords: electric load forecasting; load series; variational mode decomposition; grey wolf opti-
mization; support vector regression

1. Introduction

As a result of increasing air pollution and the threat of global warming, there is a
growing demand for the development of new technology for energy generation [1]. With
the development of electrical energy conversion technology [2,3], a large number of new
energy sources are being integrated into the grid. Hybrid vehicles are also developing
rapidly [4]. These developments are leading to changes in the grid pattern and electricity
consumption structure. In next-generation smart cities, new energy technologies, IoT
technologies, and artificial intelligence technologies are combined to provide better energy
services for customers and ensure sustainability [5].

The electric energy generated by new energy sources is affected by many factors,
including light, wind speed, and so on. Power generation and power frequency are
uncertain, which brings great challenges to load balance, load management, and stable
operation [6] of the grid. Accurate prediction of load demand has important significance for
the stable operation of the power system and planning of the grid [7,8]. According to the
length of the prediction cycle, electric load forecasting can be divided into three categories:
long-term, medium-term, and short-term electric load forecasting. Short-term electric load
forecasting has a great impact on price determination, power dispatch, power system
economic operation, and reliability and thus is a crucial type of electric load forecasting.
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Electric load forecasting methods can be generally divided into traditional methods
and machine learning methods. At present, both methods have achieved good results,
but there are some problems, such as high requirements for the amount of historical data,
complex model input, and low prediction accuracy for atypical situations. To solve these
problems, this paper takes the load series as the input of the model. Because the load
series is non-linear and time-varying, the concepts of “decomposition and integration” are
applied to short-term electric load forecasting.

VMD [9–11] has the advantage of determining the number of modal decompositions
and thus is a popular modal decomposition method. SVR [12] has been widely used in the
field of energy prediction and has achieved good prediction results. Gamma parameters
and cost parameters are cumbersome and may not find the optimal solution through
manual parameter adjustment. The optimization of SVR parameters using a heuristic
group optimization algorithm helps to improve the prediction accuracy. The GWO [13]
algorithm has achieved better results in many fields, and using GWO to seek the parameters
of the prediction algorithm helps to improve the accuracy of the model. Therefore, this
paper proposes a VMD-GWO-SVR model to predict short-term electric load. First, the
original load series is decomposed into several high-frequency components and several
low-frequency components by variational modal decomposition. Then, the GWO-SVR
prediction model is constructed for these components. Finally, the prediction results
for each component are superimposed to obtain the final prediction results. The main
contributions and innovations of this paper are as follows:

1. The input of the VMD-GWO-SVR model is based on a load series, making it simple
and requiring less historical data.

2. By applying the idea of “decomposition and integration”, VMD is used to decom-
pose the load series and obtain the characteristics of load series at different scales.

3. The GWO algorithm is used to optimize the SVR model to improve the prediction
accuracy of the model.

Section 2 presents the related work of other researchers. Section 3 focuses on the
relevant methods involved in this paper. Section 4 introduces the data and experimental
conditions used for validation in this paper. Section 5 focuses on the details of the exper-
iments, and the results are analyzed and discussed. Finally, the paper is summarized in
Section 6.

2. Related Work

Traditional methods include the autoregressive integrated moving average model
(ARIMA) [14,15], linear regression model [16,17], multiple linear regression (MLR)
model [18,19], and exponential smoothing model [20,21]. The traditional methods work
well in typical cases, but the effect is poor on weekends, holidays, and other special time
nodes. On the other hand, the traditional methods need a large amount of historical data
and a long training time. It is difficult for traditional methods to accurately predict short-
term electric load when data is small or missing. A large number of studies have shown
that the load series is non-linear and time-varying. Traditional linear regression methods
have problems such as inaccuracy and the need for a large amount of historical data.

Machine learning methods have shown good performance in finding the potential
rules and complex characteristics of data, so they are considered by many researchers to
have promising application in the field of energy prediction. Manohar et al. [22] used the
back propagation (BP) neural network to predict short-term load and achieved high accu-
racy. Jigoria-Oprea et al. [23] obtained good results when using the artificial neural network
(ANN) to predict the load with information on working days, weekends, and holidays.
Hong [24] used SVR in combination with the chaotic artificial bee colony algorithm (CABC)
for electric load forecasting and achieved high prediction accuracy. Aly et al. [25] used
ANN, wavelet neural network (WNN), and the Kalman filter (KF) to build load models
to predict short-term load. In addition, deep learning algorithms have been widely used
in the field of electric load forecasting, including the deep neural network (DNN) [26,27],
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long- and short-term memory network (LSTM) [28,29], and convolution neural network
(CNN) [30,31]. Guo [32] transformed the load series into an image and extracted the
features of different scales through CNN, then used LSTM to predict the load. However,
these methods require a large amount of data, and the model input is more complex, which
requires a variety of influencing factor data.

As a hot research topic in recent years, the “decomposition and integration” method
involves decomposition of the original series into several components, the processing
of each component, and finally integration of the prediction results of each component
to obtain the final result. At present, this method has been widely used in wind speed
prediction [33,34], fault diagnosis [35,36], and biological signal processing [37,38]. It has
also been applied in the field of electric load forecasting, Li et al. [39] decomposed the load
series by wavelet transform and then used the improved artificial bee colony optimization
extreme learning machine (ELM) to predict the load. Li et al. [40] used wavelet transform
(WT) combined with extreme learning machine and partial least squares regression to
predict load series. Ding [41] used wavelet transform combined with feature selection
for data preprocessing and then used relevance vector machine (RVM) to predict the
load. Kassa et al. [42] used EMD to decompose the raw load data and then predicted
the individual components using a prediction model optimized by the particle swarm
optimization algorithm (PSO). By using the genetic optimization algorithm (GA) [43,44],
particle swarm optimization algorithm [45,46], artificial bee colony algorithm (ABC) [47,48],
and grey wolf optimization algorithm [49], the parameters of the prediction model can
be optimized to improve the accuracy of the model. However, the wavelet transform is
generally effective in decomposing nonlinear series, and EMD is prone to modal mixing
when performing the decomposition. Table 1 shows a comparison of related works.

Table 1. Comparison of related works.

Category Method Advantages Disadvantages

Traditional methods ARIMA, MLR More mature research and
wide application

Requires a large amount of historical data
and is less effective in predicting atypical

situations such as holidays

Machine Learning ELM, BP, WNN, RVM Good adaptability to
nonlinear series

Higher demand for data and more
complex model input

Deep Learning DNN, CNN, LSTM Better fault tolerance and
higher prediction accuracy Longer training time for the model

“Decomposition and
integration” combined
with machine learning

EMD, WT Low dependence on data
The wavelet transform is generally

effective in decomposing nonlinear series,
and the EMD is prone to modal blending

Through the above related work, we can conclude that using the idea of “decomposi-
tion and integration” for forecasting load series can help to reduce the complexity of the
model input and the dependence on historical data; on the other hand, using optimization
algorithms to optimize the parameters of the forecasting model can help to further improve
the forecasting accuracy. Therefore, we need to use an appropriate method to decompose
the series and then combine it with an optimization algorithm to predict each component.

3. Methods

In this part, the methods adopted in the VMD-GWO-SVR are explained.

3.1. Variational Mode Decomposition (VMD)

VMD [9] is a non-recursive adaptive decomposition method proposed by Dragomiret-
skiy et al. This method realizes the optimal mode decomposition by calculating the optimal
solution of the variational mode and finally decomposes the original signal into the sum of
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the intrinsic mode function (IMF) with different central frequencies. Therefore, VMD can
effectively avoid modal aliasing and the endpoint effect.

The goal of VMD is to decompose the input signal into a number of sub-signals,
namely, a number of intrinsic mode functions (IMFs). The intrinsic mode function can
be regarded as several AM-FM components uk(t), which have limited bandwidth and
central frequency.

uk(t) = Ak(t) cos(ωk(t)) (1)

where Ak(t) is the instantaneous amplitude of uk(t) and ωk(t) is the instantaneous power
of uk(t).

Equation (1) is the expression of intrinsic mode function. It can be seen from this
equation that the intrinsic mode function is a modulation function. At this time, the
Hilbert transform is used for uk(t) to obtain the unilateral spectrum after the intrinsic mode
function analysis:

(δ(t) +
j

πt
)uk(t) (2)

By estimating the exponential function e−jωk of the center frequency ωk, the spectrum
of each intrinsic mode function from Equation (1) can be modulated to the fundamental
frequency band, namely

[(δ(t) +
j

πt
)uk(t)]e−jωk (3)

In this case, the variational mode decomposition becomes the problem of constructing
and solving constraints, that is, decomposing the original signal into several intrinsic mode
function (IMF) components. This constraint condition can be expressed as

min
{uk}{ωk}

{∑
k
|| ∂t[(δ(t) +

j
πt

) ∗ uk(t)]e−jωkt||2} (4)

s.t.∑
k

uk = f (5)

where {uk} = {u1, u2, . . . , uk} is the decomposed eigenfunction component, {ωk} =
{ω1, ω2, . . . , ωk} is the center frequency of the corresponding component, f is the input
signal, and δ(t) is the unit pulse function.

The constrained problem is transformed into a non-constrained problem by introduc-
ing the quadratic penalty term and Lagrange multiplier operator, and the optimal solution
of the model is calculated. The results are as follows:

L({uk}, {ωk}, λ) = α∑
k
||∂t[((δ(t) +

j
πt

) ∗ uk(t))]e−jωkt||22 + || f (t)−∑
k

uk(t)||22 + 〈λ(t), f (t)−∑
k

uk(t)〉 (6)

where α is a quadratic penalty factor and λ(t) is the Lagrange factor.
By using the Alternate Direction Method of Multipliers (ADMM), the values of un+1

k ,
ωn+1

k and λn+1 are updated, and the extreme points of the augmented Lagrange function
are calculated to decompose the original signal into k intrinsic mode function.

The updated function of un+1
k is as follows:

un+1
k = argmin{α||∂t[((δ(t) +

j
πt

) ∗ uk(t))]e−jωkt||22 + || f (t)−∑
k

uk(t) +
λ(t)

2
||22} (7)

The equation is transformed from time domain to frequency domain by equidistant
Fourier transform. The frequency domain iterative equation is as follows:

ûn+1
k =

f̂ (ω)− ∑
i 6=k

ûn+1
i (ω) + λ̂(t)

2

1 + 2α(ω−ωk)
2 (8)
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Similarly, the central frequency ωn+1
k can be converted to the frequency domain, and

the iterative equation is

ωn+1
k =

∫ ∞
0 ω|ûk(ω)|2dω∫ ∞

0 |ûk(ω)|2dω
(9)

λ can be updated by Equation (10):

λ̂n+1(ω)← λ̂n(ω) + τ( f (ω)−∑
k

un+1
k (ω)) (10)

The termination condition of parameter iteration is set as the iteration accuracy ε > 0.
When the iteration satisfies Equation (11) below, the iteration is terminated, and K IMF
components are obtained.

∑
k
||ûn+1

k −ûn
k ||

2
2/||ûn

k ||
2
2 < ε (11)

3.2. GWO-SVR

GWO [41] is a swarm intelligence optimization algorithm proposed by Mirjalili et al. in
2014. It is derived mainly by imitating the predatory behavior of the grey wolf population.
The optimization is realized by tracking, enclosing, chasing, and attacking the prey. The
GWO algorithm has the advantages of a simple principle, fewer parameters to be adjusted,
easy implementation, strong global search ability, etc. SVR [41] is a branch of support
vector machine (SVM) learning and is a machine learning algorithm based on statistical
principles. In the process of training the model, the grey wolf optimization algorithm is
used to optimize the penalty coefficient cost and kernel function parameter gamma of
support vector regression, which can improve the prediction accuracy of the model. The
Figure 1 is the algorithm flow chart of GWO-SVR. The steps for GWO to optimize SVR
parameters are as follows:

Step 1: Set the parameters of the GWO optimization algorithm, including initial
population size M, the maximum number of iterations N, and the search range of cost
parameters and gamma parameters.

Step 2: Initialize the position of each wolf in the wolf group; the position of the grey
wolf is determined by the values of the cost parameter and gamma parameter. Set synergy
parameters a, A, and C, where |A| > 1 forces wolf and prey separation, 0 < |C| <2, and a
are linearly decreased from 2 to 0 over the course of iterations.

Step 3: Calculate the fitness of the corresponding parameters of each wolf. According
to the numerical order of fitness, the grey wolf is divided into four classes: α, β, δ, andω.

Step 4: According to Equations (12)–(17), update the position of each grey wolf in the
wolf group. Compare the fitness of the corresponding parameters in the new position of

the grey wolf with that before the update to determine whether to replace the fitness.
→
D

represents the distance between grey wolf and prey,
→
Xα,

→
Xβ, and

→
X

δ
represent the position

of the grey wolf of different classes,
→
X represents the position of prey.

→
Dα = |

→
C1.
→
Xα −

→
X| (12)

→
Dβ = |

→
C2.
→
X

β
−
→
X| (13)

→
Dδ = |

→
C3.
→
X

δ
−
→
X| (14)

→
X1 =

→
Xα −

→
A1.(

→
Dα) (15)

→
X2 =

→
Xβ −

→
A2.(

→
Dβ) (16)

→
X3 =

→
Xδ −

→
A3.(

→
Dδ) (17)
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→
X(t + 1) =

→
X1 +

→
X2 +

→
X3

3
(18)

Step 5: Update a, A, and C values.
Step 6: Calculate the fitness of the current parameters for each wolf.
Step 7: Determine whether the current iteration number is n < N; if not, output the

global optimal value. If so, return to Step 4.
Step 8: Output the position of α wolf. The corresponding position of α wolf is the

optimal cost parameter and gamma parameter.
Step 9: Establish the SVR regression model using the optimal cost parameters and

gamma parameters.

Figure 1. Flow chart of GWO-SVR algorithm.
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3.3. VMD-GWO-SVR

Figure 2 is the framework of the proposed method. First, the load series is decomposed
into several high-frequency components and low-frequency components by VMD, and then
each component is input into the GWO-SVR model for prediction. Finally, the predicted
value of each component is superimposed to obtain the final prediction result.

Figure 2. Framework of VMD-GWO-SVR algorithm.

3.4. Model Evaluation Indicators

In this study, the evaluation index is used to evaluate the performance of the prediction
model. These indicators are mean absolute error (MAE), mean absolute percentage error
(MAPE), mean square error (MSE), and determination coefficient (R2).

MAE =
∑M

t=1 (Lt − L̂t)
2

M
(19)

MAPE =
∑M

t=1
|(Lt−L̂t)|

Lt

M
× 100% (20)

MSE =
∑M

i=1
(

Lt − L̂t
)2

M
(21)

R2 = 1− ∑M
t=1
(

Lt − L̂t
)2

∑M
t=1
(

Lt − Lt
)2 (22)

Adjusted R2 = 1−

(
1− R2

)
(M− 1)

M− p− 1
(23)

where Lt and L̂t are the actual and forecasting values of the load at time t, M is the total
number of data used, and p is the number of features.
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4. Data Sets

To verify the accuracy of the proposed model, we use the hourly load data of the grid
in Oslo and its surrounding areas in 2019 [50] as the experimental data. It is found that 96
groups of load values are missing in February, and one group of load values is missing in
March. Therefore, this paper uses the expectation-maximization method to fill the missing
data. Through analysis of the filled data, it can be seen that the electricity consumption in
January, February, and December is larger, and the electricity consumption in June, July,
and August is smaller, as shown in Table 2.

Table 2. Statistical information table of load data after filling.

Month Max Median Min Mean Var Std

January 7624 5998 4126 5918.09 604,428.6 777.45
February 7250 5351.5 3980 5414.76 593,896.8 770.65

March 6717 4834 1636 4878.71 485,349.9 696.67
April 5569 3729 2295 3723.60 498,868.4 706.31
May 4944 3289.5 1985 3263.81 330,654.9 575.03
June 3808 2839 1880 2879.67 190,646.5 436.63
July 3311 2501 1701 2487.02 135,150.4 367.63

August 3606 2900.5 1693 2815.10 232,623 482.31
September 4396 3460.5 2055 3379.94 237,244.4 487.08

October 6543 4152 2879 4146.16 373,954.7 611.52
November 6607 5266 3803 5204.88 481,819.8 694.13
December 7131 5386.5 3921 5393.85 513,362.7 716.49

In this paper, the experimental data is divided into the training set and the prediction
set according to the ratio of 4:1. The first 7008 h of data are used as the training set, and the
rest of the data are used as the prediction set. We divide the load data into groups every
four hours and forecast the load value of the next hour through the load data of the first
three hours. Therefore, the number of features in this paper is three.

Combined with Figure 3, we can see that the load value shows a downward trend
from January to August, reaching the lowest electricity consumption in August, and the
load value shows an upward trend from August to December. Through the variance and
standard deviation, we find that the January, February, April, and December load value
fluctuations are larger, whereas the June, July, August, and September load fluctuations
are smaller.

Figure 3. Annual load for 2019.

Experiments were conducted on 64-bit Windows 10 using MATLAB R2018a with an
i7-7700hq CPU and a GTX-1050 graphics card.
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5. Results and Discussion
5.1. Variational Mode Decomposition

The VMD algorithm needs to set the number of decomposition modes K in advance.
In this paper, the K value is determined by observing the central frequency of each mode. If
the central frequency is similar to the modal component, it is considered that VMD has over-
decomposition. Figure 4 shows the decomposition results of three cases with K values of 5,
6, and 7. Table 3 shows the modal center frequencies of different modal decompositions.
The results of modal decomposition show that when the number of decomposed modes
is 6, the waveforms of IMF5 and IMF6 are similar and the center frequencies are 0.327434
and 0.424177, respectively. When K = 7, the waveforms of IMF4, IMF5, IMF6, and IMF7
are similar, and the central frequencies are 0.2042, 0.2602, 0.3380, and 0.4258, respectively.
Therefore, it can be determined that over-decomposition occurs when K > 5, so K = 5.

Figure 4. Results of variational mode decomposition for K = 5, 6, and 7. The results of time-varying
modal decomposition for (a) K = 5, (b) K = 6, and (c) K = 7.
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Table 3. IMF central frequencies at K = 2, 3, 4, 5, 6, and 7.

K IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7

2 2.17 × 10−5. 0.0917
3 2.14 × 10−5. 0.0806 0.2325
4 2.14 × 10−5. 0.0775 0.2022 0.3915
5 1.92 × 10−5. 0.0797 0.1158 0.2256 0.4209
6 1.76 × 10−5. 0.0816 0.0624 0.2070 0.3274 0.4242
7 1.67 × 10−5. 0.0432 0.0868 0.2042 0.2602 0.3380 0.4258

It can be seen from Figure 4 that the power consumption of IMF1 after decomposition
is the smallest in June, July, and August and the largest in January, February, and December,
which is in line with the law before the decomposition of load data. On the other hand,
the load data can be regarded as composed of several high-frequency components and
low-frequency components. The load has relatively complex data characteristics, and the
load characteristics at different scales can be better displayed by modal decomposition.

5.2. Influence of Each Modal Component on Electric Load Forecasting Results

In order to further explore the influence of the prediction results for each component,
we summarize the prediction effect of GWO and artificial bee colony algorithm optimized
SVR models for five components after VMD decomposition, as shown in Table 4. We can
see that the prediction effect of GWO on IMF1 and IMF2 is almost the same as that of ABC.
Among the five indicators predicted by IMF3, MSE and MAPE of ABC are better than those
of GWO; R2 and Adjusted R2 are the same as that of GWO; and MAE is slightly worse
than that of GWO. In the prediction of IMF4 by GWO, MAE, and MAPE were better than
ABC; MSE, R2, and Adjusted R2 were slightly worse than ABC. For the prediction results
of IMF5, the MSE and MAPE of GWO-SVR and ABC-SVR are the same, but the MAE, R2,
and Adjusted R2 of GWO-SVR are better than ABC-SVR. Thus, we can conclude that GWO-
SVR and ABC-SVR have similar prediction performance in low-frequency components,
but GWO-SVR has higher prediction accuracy in high-frequency components. Through
five indexes we can see that the difficulty of the prediction increases with the increase of
component frequency.

Table 4. Prediction results of the ABC-SVR model and GWO-SVR model for five components.

GWO-SVR ABC-SVR

MAE
(MW)

MAPE
(%) MSE R2 Adjusted

R2
MAE
(MW)

MAPE
(%) MSE R2 Adjusted

R2

IMF1 24.71 0.47 918.40 0.9970 0.9970 24.71 0.47 918.40 0.9970 0.9970
IMF2 10.32 41.91 188.90 0.9958 0.9958 10.33 41.91 188.92 0.9958 0.9958
IMF3 25.97 38.17 1067.90 0.9949 0.9949 26.03 36.94 1067.85 0.9949 0.9949
IMF4 4.94 64.41 49.28 0.9764 0.9764 5.01 72.57 48.53 0.9767 0.9767
IMF5 1.39 81.94 9.16 0.9782 0.9782 1.40 81.94 9.16 0.9781 0.9781

To better compare the performance of the two models, we also compare the training
time and predicting time of the two models. As shown in Table 5, the training time and
predicting time of the GWO-SVR model for each component are shorter than those of
ABC-SVR. For IMF1, IMF2, and IMF3, the prediction accuracy of ABC-SVR and GWO-SVR
are the same, but the training times of the GWO-SVR model are shorter than that of the
ABC-SVR model. At this time, the values of the GWO-SVR model cost parameter and the
values of the gamma parameters of the GWO-SVR model are 64.37, 0.05; 38.60, 0.20; 66.20,
6.32. For IMF4 and IMF5, the prediction accuracy of the GWO-SVR model is higher than
that of the ABC-SVR, and the model training time is shorter than that of the ABC-SVR; the
values of the cost and gamma parameters of the GWO-SVR model are 35.59, 0.06; 91.23,
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0.78. Considering the prediction accuracy and computation time together, we can conclude
that the prediction performance of VMD-GWO-SVR is better than that of VMD-ABC-SVR.

Table 5. Model calculation time and parameter selection.

GWO-SVR ABC-SVR

Training
Time (s)

Predicting
Time (s) Cost Gamma Training

Time (s)
Predicting
Time (s) Cost Gamma

IMF1 9.71 0.043 64.37 0.05 89.54 0.049 70.56 0.05
IMF2 50.37 0.042 38.60 0.20 159.31 0.037 42.53 0.20
IMF3 46.67 0.005 66.20 6.32 140.46 0.005 82.97 6.40
IMF4 205.12 0.003 35.59 0.06 395.38 0.040 11.36 0.51
IMF5 97.05 0.003 91.23 0.78 143.00 0.004 72.50 0.78

As shown in Table 6, we can see that the low-frequency component often has a larger
value, which has a greater impact on the accuracy of electric load forecasting results.

Table 6. Statistical characteristics of each component.

MAX MEDIAN MIN MEAN

IMF1 6347.684 5121.461 3770.904 5138.844
IMF2 561.3764 −2.66641 −538.527 −0.04058
IMF3 842.0584 −2.02205 −781.989 −0.2385
IMF4 350.044 0.603477 −266.968 0.002172
IMF5 365.1115 −0.02622 −311.027 −0.00084

5.3. Comparison of GWO-SVR Combined with Different Modal Decomposition Methods

In order to compare the influence of different modal decomposition methods and to
determine whether to use the modal decomposition method for electric load forecasting,
the data processed by EMD and the data without modal decomposition are compared
with the data processed by variational mode decomposition. The regression algorithm
adopts the GWO-SVR algorithm. The initial population number for GWO optimization is
set to 30, and the optimization range of the cost parameter and gamma parameter is set
to [0.01, 100]. The Table 7 shows the GWO-SVR prediction results under different modal
decompositions. The training time in the table is the sum of the training time of the model
for the five components, and the predicting time is the sum of the predicting times for the
five components.

Table 7. Prediction results of different modal decomposition methods combined under the GWO-SVR model.

Algorithm Training
Time (s)

Predicting
Time (s)

MAE
(MW)

MAPE
(%) MSE R2

GWO-SVR 2703.05 0.072 101.16 1.96 22,534.11 0.9643
EMD-GWO-SVR 2609.72 0.123 72.62 1.47 14,146.04 0.9776
VMD-GWO-SVR 408.92 0.096 71.65 1.41 10,461.32 0.9834

Through the analysis, we can see that the prediction results for the MAE, MAPE, and
MSE of GWO-SVR with mode decomposition are reduced compared with those without
mode decomposition, and the determination coefficient R2 is increased from 0.9643 to 0.9776
and 0.9834, which shows that the load series decomposition with mode decomposition
is helpful to improve the accuracy of electric load forecasting. Through the comparison
between VMD decomposition and EMD decomposition, it can be found that MAE decreases
by 0.9729, MAPE decreases by 0.57%, MSE decreases by 3684.72, and R2 increases by 0.0058.
It can be seen that VMD has a better effect than EMD in the field of electric load forecasting.
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On the other hand, we can see that the training time of the VMD-GWO-SVR model
is significantly shorter than the other two algorithms by comparing the predicting time
and testing time of the three models. The predicting time is 0.024 s longer than that of
GWO-SVR. Considering the prediction accuracy and computation time, we can determine
that the prediction performance of VMD-GWO-SVR is better than that of EMD-GWO-SVR
and GWO-SVR.

It can be seen from Figure 5 that VMD-GWO-SVR has a good prediction effect. The
trend of the predicted value and the actual value of this model is the same (R2 is 0.9834),
and the prediction error is small (MAE is 71.6453, MAPE is 0.1413, and MSE is 10461.32).
Therefore, this model has high prediction accuracy.

Figure 5. Experimental prediction results of the VMD-GWO-SVR model.

5.4. Comparison of Variational Modal Decomposition Combined with Different
Optimization Algorithms

In order to verify the accuracy of the proposed method in the field of short-term
electric load forecasting, this paper not only makes a longitudinal comparison with the
prediction results of the SVR without the optimization algorithm but also compares it
with the prediction results of the SVR algorithm using the GA, PSO and ABC. The initial
population of the genetic optimization algorithm, particle swarm optimization algorithm,
and artificial bee colony optimization algorithm is set to 30, the maximum number of
iterations is set to 100, the search range of cost parameters and gamma parameters is set to
[0.01, 100], and the load value is normalized to [−1, 1]. The above work ensures the unity
of initial conditions. It can be seen that the GWO-SVR and SVR prediction results have
been improved under the premise of using VMD for modal decomposition, which proves
that the use of the modal decomposition method is helpful to improve the accuracy of
electric load forecasting. By comparing the prediction results of GWO use for optimization
of SVR parameters, we find that the prediction accuracy of the SVR model optimized by
GWO under the premise of modal decomposition is significantly improved, and MAE is
reduced by 62.5705 compared with VMD-SVR, which is only 53.4% of VMD-SVR. MAPE
decreases by 0.01242 compared with VMD-SVR, which is only 53.2% of VMD-SVR. MSE
decreases by 17,347.3592 compared with VMD-SVR, which is only 37.7% of VMD-SVR. R2

increases by 0.027. Based on the above analysis, we can draw the conclusion that parameter
optimization of the SVR model using an optimization algorithm is helpful to improve the
prediction accuracy.

The training time in specified in Table 8 is the sum of the training times of the models
for the five components, and the predicting time is the sum of the predicting times for
the five components. By comparing the predicting time and training time of SVR and
VMD-SVR and comparing the predicting time and training time of GWO-SVR and VMD-
GWO-SVR, we can see that using VMD to decompose the original load series not only
improves the prediction accuracy of the model but also reduces the computation time of
the model. Among the four models mentioned above, VMD-GWO-SVR has the highest
prediction accuracy, and the model training time is longer than that of VMD-SVR, but
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the three indexes of MAE, MAPE, and MSE have more obvious advantages than VMD-
SVR. Considering the prediction time and accuracy, VMD-GWO-SVR is more suitable for
short-term electric load forecasting.

Table 8. SVR model combined with GWO optimization prediction results.

Algorithm Training
Time (s)

Predicting
Time (s)

MAE
(MW)

MAPE
(%) MSE R2

SVR 0.26 0.011 134.72 2.72 42,147.76 0.9333
VMD-SVR 0.08 0.018 134.22 2.66 27,808.68 0.9560
GWO-SVR 2703.05 0.072 101.16 1.96 22,534.11 0.9643

VMD-GWO-SVR 408.92 0.096 71.65 1.41 10,461.32 0.9834

Table 9 shows the prediction results of different optimization algorithms combined
with SVR after VMD modal decomposition. It can be seen that the prediction accuracies
of ABC-SVR and GWO-SVR are relatively close. The prediction accuracy of PSO-SVR is
lower than that of ABC-SVR and GWO-SVR, and the prediction accuracy of GA-SVR is
the worst. Further comparison of the four evaluation indexes of ABC-SVR and GWO-SVR
shows that MAE, MAPE, and MSE of GWO-SVR are smaller, indicating that the predicted
results are closer to the actual load value than ABC-SVR. The R2 of 0.9834 is greater than
0.9767 of ABC-SVR, indicating that the trend of GWO-SVR prediction results is closer to
the trend of actual load value than that of ABC-SVR. In summary, we can conclude that
GWO-SVR has higher accuracy in the field of electric load forecasting than SVR optimized
by other optimization algorithms, and it can also better predict the trend of actual load
value change.

Table 9. VMD combined with different optimized SVR model prediction results.

Algorithm MAE
(MW)

MAPE
(%) MSE R2

GA-SVR 202.51 3.90 60,543.58 0.9041
PSO-SVR 114.28 2.24 23,825.86 0.9623
ABC-SVR 85.73 1.66 14,699.52 0.9767
GWO-SVR 71.65 1.41 10,461.32 0.9834

6. Conclusions

In this paper, a prediction model based on the “decomposition and integration”
method combined with VMD and GWO-SVR is proposed. First, the load series is decom-
posed by VMD, and the optimal modal number K = 5 is selected by observing the central
frequency of the component combined with the component waveform. Then, the five
decomposed components are input into the GWO-SVR model for parameter optimization.
Finally, the five prediction results are superimposed to obtain the final prediction results.
In this paper, the proposed method is compared with other prediction methods. The 2019
hourly load data of the first landmark area of Norway, Oslo, and its surrounding areas are
used. The conclusions are as follows:

(1) Modal decomposition of the load series can effectively separate the complex infor-
mation contained in the original series and then predict each component separately, which
helps to improve the prediction accuracy of the model and the prediction ability of the load
value trend. Regarding the load data decomposition method, VMD decomposition can
better separate the feature information from the original series into different components.
In addition, the decomposition of the load series using VMD can also effectively reduce the
model computation time.

(2) Compared with other optimization algorithms after VMD processing, the GWO-
SVR algorithm is the best in all four indicators. Compared with ABC’s five component
prediction results, GWO’s prediction results in IMF1–IMF3 are almost the same, but it has
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better prediction effect on IMF4 and IMF5, indicating that GWO has better accuracy in
high-frequency component prediction. On the other hand, the computation time of VMD-
GWO-SVR for all five components is shorter than that of the corresponding components of
VMD-ABC-SVR.

(3) This method has high accuracy in electric load forecasting and can better predict
the trend of load change, which indicates that this method has good application prospect
for short-term electric load forecasting.

In future work, we will investigate the delay between time series and apply other
methods to deal with the high-frequency components of the modal decomposition in order
to further improve the accuracy of the model.

Author Contributions: Conceptualization, M.Z. and T.H.; methodology, M.Z., T.H. and K.B.; soft-
ware, T.H. and W.L.; validation, T.H. and F.H.; writing—original draft preparation, T.H.; data curation,
T.H., O.H. and Z.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program of
China, grant number 2018YFC0604503, the Energy Internet Joint Fund Project of Anhui province,
grant number 2008085UD06, the Major Science and Technology Program of Anhui Province, grant
number 201903a07020013, and the Ministry of Education New Generation of Information Technology
Innovation Project (No. 2019ITA01010).

Data Availability Statement: Restrictions apply to the availability of these data. Data was obtained
from ENTSO-E and is available at https://transparency.entsoe.eu/dashboard/show (accessed on
17 October 2020).

Acknowledgments: We would like to thank the ENTSO-E for making the data available.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Terminology (method and indices)
VMD Variational mode decomposition
SVR Support vector regression
GWO Grey wolf optimization
EMD Empirical mode decomposition
ARIMA Autoregressive integrated moving average
MLR Multiple linear regression
BP Back propagation
ANN Artificial neural network
CABC Chaotic artificial bee colony algorithm
WNN Wavelet neural network
KF Kalman filter
DNN Deep neural network
LSTM Long- and short-term memory network
CNN Convolution neural network
ELM Extreme learning machine
WT Wavelet transform
RVM Relevance vector machine
GWO-SVR SVR after GWO optimization algorithm
VMD-GWO-SVR SVR after GWO and VMD optimization
SVM Support vector machine
ABC Artificial bee colony algorithm
GA Genetic optimization algorithm
PSO Particle swarm optimization algorithm
VMD-SVR SVR after VMD optimization
GA-SVR SVR after GA optimization algorithm
PSO-SVR SVR after PSO optimization algorithm
ABC-SVR SVR after ABC optimization algorithm
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MAE Mean absolute error
MAPE Mean absolute percentage error
MSE Mean square error
R2 Determination coefficient
Adjusted R2 Adjusted determination coefficient
Terminology (parameters and variables)
uk(t) Modal function of VMD technology
Ak(t) Instantaneous amplitude of uk(t)
ωk(t) Instantaneous power of uk(t)
ωk Center frequency
IMF Intrinsic mode function
ƒ Input signal
δ(t) Unit pulse function
λ(t) Lagrange factor
M Initial population size
N Maximum number of iterations
A, C Synergy parameters
α, β, δ,ω Classes of wolves
→
D Distance between grey wolf and prey
→
Xα Position of grey wolf
→
Xβ Position of grey wolf
→
Xδ Position of grey wolf
→
X Position of prey
p Number of features
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