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Abstract: Hydraulic spool valve, pilot operated with bi-state switching micro valves is a low-cost
alternative to the conventional proportional and high-response valves. However, high-frequency
switching causes variations in the control flow which limits achievable spool tracking error. This
paper presents the design of a robust µ-controller for the spool position reference tracking synthesized
with D-K iterative procedure. Furthermore, in order to reduce wind-up effects in the closed-loop, the
µ-controller is decomposed to a canonical observer and state feedback components which allows
explicit introduction of the saturated control signal in the controller equations. The uncertainty model
required for the µ-synthesis is inferred from the nonlinear hydraulic model by identification of a Box–
Jenkins model set characterized by its parameter covariance matrix. The regulator is implemented in
a 32-bit programmable logic controller (PLC) and its performance is experimentally verified on a
laboratory test bench of electro-hydraulic power steering system.

Keywords: electro-hydraulic spool valve; robust control; micro valves; uncertain system identification

1. Introduction

A well-recognized benefit of using fluid power actuators compared to electrical actua-
tors is the fast response time over large bandwidth, ability to produce extremely high forces
or torques, high power density, relatively small and compact dimensions, and high reliabil-
ity and durability. There are numerous applications fields for the hydraulic actuators such
as in automotive, aerospace and manufacturing. Work of the authors is mainly focused on
the electro-hydraulic steering units for low speed mobile machines. The steering unit is
essentially a hydraulic servo system which demands fast and precise reference tracking of
the machine operator commands.

The classical design of the hydraulic servo units is as a direct or pilot operated
proportional spool valve. The position of the spool valve is sensed by a linear transnational
differential transducer and manipulated with the help of a proportional solenoid [1].
However, this classical design is more expensive solution, due to the inherent nonlinearities
in the electrical and mechanical components. A modern alternative to the direct operated
spool valve are pilot operated valves with switching micro valves. There are well-known
examples of such practically applied digital hydraulic solutions in the steering of different
types of mobile machines [2].

The most obvious disadvantage of the digital valves is the excitation of small oscilla-
tions of the flow rate which limits the achievable accuracy of the spool valve positioning [3].
This is a fundamental limitation of every closed loop control system where the control
signal is executed by a switching device. Consequently, the primary task of the control
system design is to minimize the amplitude and the frequency of the oscillations around
the commanded spool position [4,5].

Figure 1 represents a hydraulic circuit diagram of the proportional spool valve, pilot
operated by four switching micro valves. The spool valve is designed with four flow
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channels and three positions [1,6]. The input signal from the controller is denoted as u(t).
The sign of the control signal determine the direction of the spool opening, thus, the motion
of the main steering cylinder piston as follows:

• if u(t) > 0—the micro valves in the left side of the valve bridge switch on, the spool
translate to the right,

• if u(t) > 0—the micro valves in the right side of the valve bridge switch on, the spool
translate to the left,

• if u(t) = 0—the micro valves are switched off, no flow is supplied to the cylinder
chambers.

The implemented digital controller is denoted as K(s) in Figure 1. It reads the calcu-
lated or operator supplied reference spool position denoted as r(t). The spool valve used in
our experiments includes two load-sensing ports, which are also presented in the Figure 1
with a dashed line [2]. Figure 2 shows the geometric model of the manufactured spool
valve block according to the presented hydraulic diagram. To investigate the dynamics of
the valve block, and its sensitivity to the various constructive parameters, we relied on the
SimscapeTM language and its numerical implementation in the Simulink® environment.
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Figure 1. Hydraulic schematic of the directional spool, logic valves, and the working cylinder.
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Figure 2. Geometric model of the directional spool valve block.

The hydraulic spool valve, pilot operated with switched micro valves should be
approached as a switched dynamical system [7] which is usually specified by—a set of
models, an event-based scheduler selecting a single model from this set and a continuous
transition between final state of the previous model to the initial state of the present model.
The control of switched systems is a wide topic with many acceptable strategies—switched
PID control [8], sliding-mode control [9], model-predictive control [10], etc. However,
the stability of the closed-loop switched system is analytically assessed mainly through
the Lyapunov method which may become difficult for the case of high order systems.
In mass produced industrial devices like the spool valves the uncertainty in the model
parameters should be also considered. Therefore, robust stability and robust performance
of the closed-loop control system become important as well.

The number of physical parameters in the nonlinear model is considerable, preventing
their direct measurement or estimation. Model uncertainty effects on the stability should
be evaluated with the structural singular value µ [11] measuring the smallest uncertainty
set which would lead closed-loop to instability or degraded performance. A well-known
disadvantage of the µ-synthesis is the relatively high order of the resultant controller. This
was a problem in the past due to limited computational capacity but with the modern
microcontrollers and digital signal processors it is not. Moreover, in many cases the high
order of the µ-controller can be reduced through examination of its balanced state-space
realization and Hankel singular values without degradation of closed-loop robustness.
The approach for H∞ norm minimization also happens to produce robust controller which
order is equal to the extended open-loop model and it is quite successful in the practical
experiments mainly because an analytical suboptimal solution can be obtained. The µ-
synthesis as a min-max optimization problem that leads to a local solution which is further
complicated by the numerical search for a D-scaling transfer matrix aiming to maximize
the upper µ bound. The first iteration in the µ-synthesis is actually an H∞-controller which
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is consequently optimized with respect to the uncertainty. Thus, essentially the µ-controller
can be taught as a more robust version of this H∞ controller.

The purpose of the article is to design a µ-controller for the spool position tracking of
a proportional spool valve, pilot operated by switching micro valves such that closed-loop
control system to ensure robust stability and robust performance in presence of uncertain
dynamic response of the spool model. After a short presentation of the physical spool valve
its “black-box” identification is presented in Section 2. Section 3 is about the µ-synthesis of
the controller where the closed-loop response is investigated in simulation too. In order
to further enhance the performance of the position tracking, the synthesized µ-controller
is modified with explicit introduction of saturated control signal into it which is detailed
in Section 4. The modified controller is embedded in a 32-bit PLC and experimentally
evaluated on a laboratory test bench of electro-hydraulic steering system in Section 5.

2. Uncertain Linear Time Invariant Model Identification

There are various identification approaches to electro-hydraulic systems [12,13]. How-
ever, the design of linear µ-regulators requires explicit specification of the uncertain param-
eters and their structure in the plant’s model [11,14]. Most physical systems are nonlinear
but if their states vary over a restricted neighborhood on a smooth manifold linearization
around operating point is possible. According to the works in [15,16], the output y(jω) of
a linear system with internal parameters θ is a linear combination of its past input values
and a residual signal e(jω)

y(jω) = G(jω, θ)u(jω) + H(jω, θ)e(jω) (1)

Here, the transfer functions G and H are of some parametrized set, and it is assumed
that for each experimentally measured pair of signals (data-set) (u, y), we can find the
corresponding triplet of (G, H, e) such that Equation (1) is valid for all ω ∈ [ωmin, ωmax].
Or here we assume the existence of a map π : R2N → C2N ×RN , where N is the length
of the measured data. Several classes of uncertain model sets arise from the estimation
of θ as θ̂ = Argminθ∈Dθ

J(θ), where J(θ) is loss function accounting for the prediction
error ε(t) in temporal domain as J(θ) = ∑N

t=0(y(t)− ŷ(t, θ))2. where t = kTS, with k ∈ N
and TS > 0 is the sampling time. The term ŷ(t) = E[y(t)|(u(τ), y(τ)), τ < t] is one-
step predicted estimate of the output in the instant t ≤ N as a linear function on the
values u(τ) and y(τ) which precede t. If we assume that residual error e(t) is as small
as prediction error ε(t) at least in a quadratic sense then the optimal prediction ŷ(jω) =
H(jω)−1G(jω)u(jω) + (1− H(jω)−1)y(jω).

The finite length N of an identification data set and the random choice of input signal
u ∈ L2 make parameter estimates θN to behave as a random vector with probability
density function fθ : Dθ → [0, 1] over parameter domain Dθ . Based on the covariance
matrix Cθ of the multivariate normal distribution of parameters θN one could determine
a high-probability subset Sθ ⊂ Dθ in terms of standard deviation σ such that the current
model parameters θ0 ∈ Sθ or

∫
Sθ

fθ(x)dx > 1− ε. Therefore, the identification result is a
model setMest = {(G(jω, θ), H(jω, θ))} parametrized by some transfer functions G(jω, θ)

and H(jω, θ) with condition
exp(− 1

2 (θ−θN)TC−1
θ (θ−θN)))√

(2π)n det Cθ

> δm(ε), such that output signal is a

linear combination of past input and noise values.
When the closed-loop control system is robust in stability and performance for the

whole set of possible models then the current model as being part of it will lead to stability
and performance. As G(jω, θ0) = G(jω, θN)+ G̃(jω, θ0− θN) and H(jω, θ0) = H(jω, θN)+
H̃(jω, θ0 − θN) the output signal y(jω) is y(jω) = (G + G̃)u(jω) + (H + H̃)e(jω), with
|G̃| ≤ c(δm)σ|G|, |H̃| ≤ c(δm)σ|H|, where σ|G|(jω, Cθ) and σ|H|(jω, Cθ) are standard devia-
tions in amplitude frequency responses determined from parameter covariance. Assuming
that e(t) = ε(t), e(t) is white noise with dispersion λ2

0.
The set Mest is related to several causes—the uncertainty G̃ in G, the uncertainty

H̃ in H, unmeasurable noise e(t). We can look for a covering of Mest with more sim-
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ple parametrization. There are possible two alternative representations—signal-based
uncertainty representation

Msig = {G(jω, θN)U(jω) + H(jω, θN)Z(jω)}, (2)

with Z(jω) ∈ Z or input multiplicative uncertainty representation

Mmul = {G(jω, θN)U(jω)(1 + Wm(jω)∆(jω))}, (3)

where |∆| ≤ 1.
Following theorem gives relationship between defined model setsMest,Msig, and

Mmul .

Theorem 1. LetMest,Msig, andMmul be defined as above. Then, the following relations are
satisfied:

1. There exists a frequency dependent bound on the external signal Z(jω) such thatMest ⊂
Msig

2. Mest ⊂Mmul
3. Msig ⊆Mmul

Proof. In Appendix A.

The choice of a structure for the model setMest in System Identification is a difficult
issue, but ultimately several classes of discrete-time linear time invariant model struc-
tures are commonly employed. The quality of parameter estimates is judged in terms of
confidence for them and by the various output and residual dynamics tests.

The structure of the data-set used in identification is determined by the type and
parameters of the input excitation signal during the experiment. A commonly used input
type when there is little or no a priori information about dynamic system is the frequency
sweep [17], which is a continuous sinusoidal signal with increasing with time frequency in
required band [ω0, ω1] defined as u(t) = sin(ω0t + 0.5(ω1 −ω0)t2/T) + η(t), where T is
the duration of the experiment. Models identified from frequency sweeps typically have
good prediction capability and they are often applied in identification of hydraulically
actuated aircraft during flight [18]. The application of such signal to the nonlinear model
of the electro-hydraulic transducer and the recorded output response is presented on the
Figure 3. Sample time for measuring the data and for the following models is TS = 0.01s and
the highest frequency from the sweep ω1 < 2π/TS. Furthermore, a Gaussian random signal
η(t) is additively inserted in the excitation signal in order to account for the frequencies in
the range [ω1, 2π/TS].

The data from the Figure 3 are used only to calculate the estimates of the model
parameters. A separate validation data-set is used to assess the quality of the estimated
model through various test. The excitation signal for the validation is defined by generating
another independent sample from the additive noise η(t). After comparison of data-set to
various possible model structures Box–Jenkins structure is selected as appropriate which
fully decouples G and H transfer functions according to

y(z) =
B(z−1)

F(z−1)
u(z) +

C(z−1)

D(z−1)
e(z), (4)

where z = ejωTS and the polynomial B(z−1) = ∑8
i=1 biz−1, F(z−1) = 1 − ∑8

i=1 fiz−1,
C(z−1) = 1 − ∑2

i=1 ciz−1and D(z−1) = 1 − ∑8
i=1 diz−1. The orders of the polynomi-

als are chosen to minimize the variance of the parameter estimates, to achieve maxi-
mal fit to the data-set and to minimize the correlation E[e(t)e(t− τ)]. Parameters θ =
(b1, . . . , b8, c1, c2, d1, . . . , d8, f1, . . . , f8)

T , are estimated with prediction error method with
initial conditions defined from previously estimated initial auto regressive model. The
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structure of the initial autoregressive model is selected from a set of other 1000 autore-
gressive models with various structure parameters according to the Akaike information
criterion. Therefore the initial Box–Jenkins model used in estimation is corresponding to
the initial auto regressive model in the following way

y(z) =
∑8

i=1 bi,initz−i

1 + ∑8
i=1 ai,initz−i

u(z) +
1 + ∑2

i=1 ci,initz−i

1 + ∑8
i=1 ai,initz−i

e(z), (5)

where bi,init and ai,init are the coefficients of the numerator and the denominator polynomi-
als from the initial autoregressive model. The prediction error method also calculates the co-
variance matrix Cθ = E(θθT) which in turn is used in estimation of confidence ranges of the
model frequency response. The estimated variance of the residual E

[
e(t)2] = 1.8739× 10−4.
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Figure 3. Identification data-set. Above is directional spool position. Below is duty of the pulse
width modulated signal applied to the switching valve bridge.

The comparison between the output of the linear Box–Jenkins model ym(t) and vali-
dation data-set y(t) is in Figure 4, and the achieved level of fit is J f it = 65.31%, where

J f it =
∑N

k=0(y(kTS)− ym(kTS))
2

∑N
k=0

(
y(kTS)−∑N

k=0 y(kTS)
)2 × 100 (6)

When the comparison is with identification data-set which is used for calculation of
parameter estimates the fit is higher J f it = 73.45% as expected. Residual correlation test
for validation data set is presented in Figure 5 and indicates that parameter estimates are
unbiased. Autocorrelation function of the signal e(t) and the cross-correlation function
between e(t) and u(t) are calculated with confidence level at 99%.
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Figure 4. Comparisonbetween the linear Box–Jenkins model of the spool valve and the validation
data-set.
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Figure 5. Residual test for validation data. Left is an estimate of autocorrelation of the residual e(kTS).
Right is an estimate of cross-correlation between residual e(kTS) and excitation signal u(kTS).

Covariance matrix of parameters Cθ contains the information about possible variations
in the model parameters which as a consequence affects the frequency response of the
model G(jω, θ) and H(jω, θ). As this dependence is explicit through the chosen model
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structure but nonlinear it can be simplified by employing Euler approximation formula in
complex domain and to calculate standard deviation and confidence range of the frequency
responses (Figure 6).
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Figure 6. Bode diagram of estimated G(jω, θ) of the Box–Jenkins model. Above is magnitude
response. Below is phase response.

In accordance with Theorem 1 the confidence intervals for the G(jω, θ) can define the
multiplicative uncertainty filter WM(jω) in the model

G(jω, θ) = (1 + WM(jω)∆(jω, θ))G(jω, E(θ)), (7)

where ‖∆(jω, θ)‖ ≤ 1. However, to use WM(jω) for controller design it has to be
parametrized as rational transfer function BM(jω)/AM(jω)

WM(z) =
∑7

i=0 bi,mz7−i

1 + ∑6
i=0 ai,mz6−i

(8)

Parametrization is calculated by fixing the order of numerator and denominator poly-
nomials in WM(jω) and forming a system of linear equations for the magnitude response.
This system has more equations than variable so the result is a solution in a least-squares
sense. Figure 7 shows the correspondence between non-parametric and parametrized
versions of WM(jω). The estimated noise variance for the initial auto regressive model
is E

[
e(t)2] = 2.1663 × 10−4. The parametrization of WM(jω) allows to formalize the

multiplicative uncertainty model in (7).
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Figure 7. Frequency domain approximation of confidence intervals in Box-Jenkins model with
rational transfer function.

3. µ-Synthesis of Position Controller

The aim of the µ-regulator is to ensure robust stability and robust performance of
spool position tracking in presence of unmodelled dynamics due to nonlinear part of
the physical model. The closed-loop system for spool position control that includes the
uncertain linear model, the controller and weighting functions reflecting the performance
requirements is presented in Figure 8. The transfer function G is the nominal linear model
of the electro-hydraulic transducer and ∆ is bounded uncertain transfer function. The
controller output u ∈ [−1, 1] is the duty cycle of the pulse width modulated signals applied
to the bridge of switching microvalves. The weighted closed-loop system outputs (ze
and zu) and the input to uncertain element (u∆) are related to the reference signal r and
disturbance y∆ as  u∆

ze
zu

 =

 KSWMG KS
−WSSWMG WeS
WuKSWMG WuKS

( y∆
r

)
(9)

where S = (I + GK)−1 is the output sensitivity function and KS is the input sensitivity
function.

The µ-synthesis is based on iterative H∞ optimization which is easy to solve in
continuous time when D12 6= 0 and D21 6= 0. As the resultant uncertain linear time
invariant model is represented in discrete time and the following developments of the
µ-controller is in continuous time the plant model is approximated by using the inverse
Tustin formula z 7→ 1+sTS/2

1−sTS/2 .
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K(s) G(s)

∆(s) WM (s)G(s)

r e
u

yG y

u∆ y∆

We(s) Wu(s)
ze zu

Figure 8. Closed-loop uncertain system with the weighting filters.

The control problem is to select a regulator K(s) such that transfer function from the
exogenous input signal r to the output signals ze and zu to be small in the sense of H-infinity
norm for all possible uncertain plant models represented with ∆. The transfer functions
We and Wu express the relative importance of the performance in the various frequency
ranges. The output sensitivity weighting We(s) = 1000

(40s+1)(0.1s+1) is selected such that low

frequency errors to be minimized and closed-loop bandwidth to be at 0.025s−1. Further,
after 10s−1 weight is further relaxed as such frequencies are beyond switching period of
the micro valves. The input sensitivity weighting Wu(s) = 1.1 0.02s+1

0.2s+1 is tuned to keep the
manipulated variable u in its predefined bounds and in its effective frequency range of
action. Too fast rates of u cannot be accepted by the physical model again due to switching
nature of actuation. The closed-loop system should remain stable for all ‖∆‖∞ < 1 and in
addition the performance criteria ∥∥∥∥( WeS

WuKS

)∥∥∥∥
∞
< 1 (10)

to be satisfied too. Let us define the uncertain matrix ∆per f =

(
∆ 0 0
0 ∆e 0

)
. The first

block of the matrix ∆per f corresponds to the input multiplicative uncertainty from the
physical model. The second and the third blocks—∆e is a fictitious uncertainty block used
to include the performance requirements into the µ-synthesis framework. The input to this
block is the weighted tracking error signal ze and the output is the reference signal r. The
aim of the µ-synthesis is to find a stabilizing controller K(s) such that at each frequency
[0, πTS] the structured singular value satisfies the condition

µ∆per f

 KSWMG KS
−WSSWMG WeS
WuKSWMG WuKS

 < 1 (11)

which guarantees that performance requirement (10) for the closed-loop too. The minimiza-
tion is achieved by an approximate procedure—so-called D-K Iteration based on the upper
bound µ∆(M) < ‖DL MDR‖∞, where DL and DR are minimum phase scaling matrices and
M is the lower fractional transform of the controlled plant [19]. Therefore, the following
suboptimal problem is solved for each ω

min
K

inf
DL ,DR∈H∞

‖DL MDR‖∞ (12)

The magnitude frequency response of the synthesized µ-controller (Figure 9) indicates
an integrating effect in the low frequency range which is necessary for reference trajectory
tracking. The achieved µ value of 0.974 means that the uncertain system can tolerate all of
the modeled uncertainty. The controller is from 28th order.
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Sensitivity functions of the closed-loop system with the controller and for various
randomly taken values for the uncertain element are presented in Figures 10 and 11. On the
figures are also shown the inverses of the weighting functions We and Wu, which specify
the performance requirements for the loop. As can be seen the disturbance attenuation at
low frequency is about 1000 times and the closed-loop keep its prescribed performance in
presence of uncertainty.
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Figure 9. Controller gain.
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Figure 10. Output sensitivity function compared with its inverse weighting filter.
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Figure 11. Sensitivity of the control action to the reference compared with its inverse weighting filter.

Figure 11 shows the influence of the references and disturbances on the control action.
In high frequency range the measurement noise is slightly amplified. Depending on
position sensor characteristics the noise influence on the control may be decreased at the
expense of smaller disturbance attenuation.

To further investigate the performance of the controller it is tested with the nonlinear
physical model of the electro-hydraulic actuator. There the model parameters are fixed
but the plant model is nonlinear and the control action is constrained u ∈ [−1, 1]. These
results are presented in Figure 12 for step reference signal and in Figure 13 for band-limited
reference signal. During the step reference signal there is overshot in the position response
which is increasing with the amplitude of the reference—for 0.5 mm the overshot is 0% but
for 2.5 mm it is almost 20%. Obviously this is due to the nonlinearity in the system and
look like a wind-up effect. Therefore, we make the following assumption.

Assumption 1. The cause for the overshot in the step response of the nonlinear closed-loop system
with the linear µ-controller is the saturation of the control signal u.

For now the supporting argument for such a claim is apparent integral nature of the
controller (Figure 9) and the observed saturation of the control action during the rising
period of the output signal (Figure 14). In addition, if the reference trajectory is with limited
bandwidth, such as in Figure 13, then the overshot disappears. The remaining oscillation
comes from high-frequency switching of the micro valves and cannot be compensated.
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Figure 12. Spool position from the nonlinear model with the controller.
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Figure 13. Spool position and control action for aperiodic reference.
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Figure 14. Control action with the modified controller.

4. Controller Modification for Anti Wind-Up

In order to attenuate observed wind-up effect we decided to exploit the structure of
the µ-controller by explicitly introducing the saturated control action. For the following
analysis usat ∈ [−1, 1] denote the saturated control, and u = K(r− y) denote the unsatu-
rated output of the controller K. Furthermore, ξ = usat − u denote an input disturbance
signal. The input to the linear plant model becomes usat = u + ξ. The aim here is to
construct a modified controller Kmod(s) which calculates a control action umod as

umod = Kmod(s)
(

usat
r− y

)
, (13)

such that umod(t) = u(t) if and only if u(t) = usat(t), ∀t > Tsat, where Tsat > 0 is the
duration of the saturation period.

According to (12) the µ-controller can be regarded as a H∞-controller for a scaled plant
DL MDR

DL MDR =

 A B1 B2
C1 D11 D12
C2 D21 D22

 (14)

and the matrix D in our case is

D =


0 0 0.01358

−3× 10−4 −1× 10−4 10−6

0 0 0.08526
2.941 1 0.01375

 (15)

and assume that D11 ≈ 0. It has been verified that such a change does not account
for any significant effect in the controller frequency response or closed-loop dynamics.
However, it simplifies the analytic form of the controller. The controller K is calculated
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from the solution of the Riccati equations corresponding to the controllability and the
observability Hamiltonians. The bound for γ = 0.974 is fixed according to Table 1 such
that ‖DL MDR‖∞ < γ.

Table 1. A summary of the DK-iterative procedure.

Iteration 1 2 3 4 5

Controller Order 24 28 28 28 28
D-Scale Order 6 10 10 10 10

Achieved γ 2.309 1.043 0.974 0.977 0.981

Peak µ 2.192 1.038 0.974 0.977 0.981

Then, the regulator takes the form

K(s) =
(

AK −H2r21
r12F2Z∞ 0

)
(16)

where r12 and r21 are from singular value decomposition of the matrices D12 and D21 in
order for their normalization to a standard form, Z∞ is the product of the solutions of the
controllability and observability Riccati equations, H is the observer gain partitioned as

p =
(

H11 H12 H2
)

(
u∆
ze

)
zu
y

 (17)

The state feedback gain F is partitioned as y∆
r
u

 =

 F11
F12
F2

p (18)

Here, p(t) is a vector of internal state variables of the controller K(s). The matrix AK
for the the case of D11 = 0 is

AK = A + HC + B̂2Ĉ1 − B̃((I −M)D̃−1)C̃ =
A + HC + (B2 + H12 −mr21H2)F2Z∞,

(19)

where B̂2 = B2 + H12, Ĉ1 = F2Z∞,

B̃ =
(
−H2r21 B̂2

)
, C̃ =

(
r12F2Z∞

−(C2 + F12)Z∞

)
, (20)

M = (I + D̃22D̃)−1 =

(
1 m
0 1

)
is a term related to the value of D22 6= 0, where

D̃ =

(
0 r12

r21 0

)
, D̃22 =

(
0.01375 0

0 0

)
(21)

Let us examine the matrix AK defined with (19), and noting that u = Ck p = r12F2Z∞,
we can possibly substitute the term F2Z∞ with usat/r12 in order to introduce some informa-
tion about control saturation into controller. The following theorem gives conditions about
when such a substitution would lead to attenuation of the input disturbance ξ.
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Theorem 2. Let the controller K(s) is of the form (16) and (∃M)(AK = ĀK + MCK). Moreover,
let the controller Kmod(s) is defined by the substitution CK p(t) 7→ usat(t). Then, ||umod||2 < ||u||2
for every r ∈ L2 if (BT

KBK)BT
K M > 0.

Proof. In Appendix A.

The expression (19) for the matrix AK offers seven choices for the matrix M which
are summarized in the Table 2. It can be observed that they lead to various damping
rates which are characterized by the minimal real part of the eigenvalues of the matrix
AK − CK M. Two of the choices would make the closed-loop even unstable. Therefore, in
order to achieve the faster convergence we have selected M = B2 + H12.

Table 2. Selection of the anti wind-up gain.

Choice for r12 M max(Reλ(AK − CK M)) (BT
K BK)BT

K M

B2 + H12 −mr21H2 −0.025 0.0043
B2 + H12 −1.1487 0.0181

H12 −mr21H2 0.1608 -0.0137
B2 −mr21H2 −0.025 0.0043

B2 −1.1487 0.0181
H12 −0.025 4× 10−20

−mr21H2 0.1608 −0.0137
0 −0.025 0

The controller is then applied to the nonlinear physical model. The results for spool
position responses are presented in Figure 15 and the corresponding control actions are in
the Figure 14. The modified controller successfully attenuates the wind-up effects observed
on the Figure 12.
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Figure 15. Spool position with the modified controller.
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5. Experimental Results

We have constructed a laboratory hydraulic test equipment for an electro-hydraulic
steering unit with load-sensing RM technology (OSPEC200), complying with the current
electro-hydraulic power steering systems requirements. The implemented test rig layout
includes a MC012-022 microcontroller, a programmable joystic (JS6000) for supplying
operator commands, and the spool valve, pilot operated with switching micro valves,
which drives a hydraulic servo cylinder. The position of the cylinder piston is obtained
with the resistive position sensor. The µ-controller algorithm, which is originally designed
as a Simulink model is translated to structured text language (according to IEC 61131-3) by
employing automatic code generation through the Simulink PLC Coder.

Figure 16 shows a picture of the laboratory test bench with its main components
highlighted. Figure 17 presents the measured spool position step response for various
amplitudes, and in Figure 18 is the corresponding control signal.

Figure 16. A photo of the laboratory test bench with its main functional components.
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Figure 17. Measured spool position with linear variable differential transducer (LVDT).
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Figure 18. Control signal to the PVE actuator.

6. Conclusions

The main contribution of the article is successful design and application of a high-order
robust controller to control the position of a spool valve through switching digital valves.
The implemented µ-controller guarantees robust stability and robust performance analyzed
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through examination of the structured singular value of the uncertain closed-loop system.
The robust performance practically means that system will keep its tracking accuracy even in
presence of relatively large parameter variations or strong external disturbances.

Another contribution is in the propose anti-windup modification of the standard
µ-controller. In addition, such an approach can be used to control of other electro-hydraulic
drive systems with complex dynamics. The classical approach for such situations is
optimal selection of anti-windup compensator R(s). However, we investigate an alternative
approach which modifies the internal structure of the controller. In future investigation, we
will try to connect the proposed approach in the unified coprime-factorization framework
as in the works of Morari. Alternatively, the use of a pre-filter on the reference signal may
improve the tracking performance of the closed-loop system but it should be tuned with
respect to some optimization criteria as well. Results before and after the anti wind-up
scheme are presented when the nonlinear simulation model is utilized. However the
controller without anti-windup modification is not tested experimentally because a large
overshoot at the end of spool range may cause some mechanical damage.

A critical component for the successful design and implementation of the robust
embedded controller is the availability of an accurate linearized dynamical model of the
controlled system. From the nonlinear analytic model of the hydraulic spool valve we know
that the nonlinearity is mainly in the the low frequency range and can be represented by
smooth functions. Another nonlinearity in the high frequencies is the discontinuity due to
switching behavior. Determining a model-parameter subset with “high probability” from
the covariance matrix can be questioned for the nonlinear models because such covariance
matrix lies on the assumption of normally-distributed white-noise disturbance input and
model being “in the model class”. However, it is clear that switching dynamics of the micro
valve bridge can be equivalently represented in the model by its averaged pressure–flow
characteristic acting upon the spool. The other nonlinear terms in the analytical model are
monotone (products, squares, powers) and not periodic functions. The whole system is
constructed by design to behave as a monotone or linear-like, meaning that an increase in
the input variable will lead to a proportional as a scale increase in the output variable. That
is because the spool response has to mimic a steering wheel if a human operator directly
manipulates it. Therefore, the role of the nonlinearity in the model can be considered as a
disturbance upon the valve response caused by an inherent properties of the fluid equations
which cannot be compensated with the valve geometry design. Therefore, should exists a
reasonable linear approximation G(jω) to the system dynamics (obtained for example with
Taylor linearization around the neutral valve position), of course coming with a respective
output disturbance (higher Taylor series terms), which eventually will be accounted in
the residual e(kTS). Thus, the model belonging to the model class is actually the Taylor
approximation G(jω), which is guaranteed to exist for the case of our model. The only
problem here is how to choose the model class to make sure that G(jω) will belong to it
and the solution is to select a higher order of the model structure with independent noise
dynamics (like the Box-Jenkins from the 8th order utilized in the article).

The assumption of normally-distributed white-noise disturbance e(k) is a prerequisite
for almost any statistical method. Moreover, if e(k) is not normally-distributed or not white-
noise then there exists a Gaussian approximation process v(k) such that E(v(k)) = E(e(k))
and E(v2(k)) = E(e2(k)). The higher moments E(en(k)), n > 2, which describe the
statistics of e(k) will not be captured by the v(k) but both signals will eventually span a
same range of values which is practically acceptable for a random variable. In conclusion
we will get more conservative results if we approximate a non-Gaussian process with
a Gaussian one but the model will be still correct, despite conservative or with larger
covariance of parameters.
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Appendix A. Proofs

Proof of Theorem 1. The intersection Mest ∩Msig is obtained from the output equiv-
alence yest(jω) = ysig(jω), ∀mest ∈ Mest and ∀msig ∈ Msig. Thus, (G + G̃)u(jω) +

(H + H̃)e(jω) = Gu(jω) + Hz(jω) and we can express the set of disturbances z(t) by
z(jω) = e(jω) + G̃

H u(jω) + H̃
H e(jω). We can fix an upper bound on the amplitude spectra

z(jω) such thatMest ⊂Msig from the assumption in identification that |e(jω)| = 1 then

|Z(jω)| ≤ 1 +
3σ|G|
|H| Cu +

3σ|H|
|H| , where Cu = supω |u(jω)| is the bound on the input signal.

The intersection Mest ∩Mmul we can find from (G + G̃)u(jω) + (H + H̃)e(jω) =
G(1+Wm∆(jω))u(jω). Therefore, the set of uncertain transfer functions is Wm(jω)∆(jω) =
G̃
G +

(
H
G + H̃

G

)
e(jω)
u(jω)

. Now. we define an upper bound on Wm(jω)∆(jω) such thatMest ⊂

Mmul , |Wm(jω)∆(jω)| ≤ 3σ|G|
|G| + |H|

|G|
1
Cl

+
3σ|H|
|G|

1
Cl

, where Cl = infω |u(jω)| is the lower
bound of the spectra of input signal.

Moreover, examineMsig ∩Mmul , with Y(jω) = G U(jω) + H Z(jω) = G U(jω) +
G Wm ∆(jω) U(jω). Therefore, now we can find the correspondence between the distur-
bance z(t) and the uncertain transfer function Wm(jω)∆(jω) Wm ∆(jω) = H Z(jω)

G U(jω)
By substi-

tuting in the expression for the upper bound used for definingMmul and excluding |Z(jω)|
|Wm(jω)∆(jω)| =

∣∣∣H Z(jω)
G U(jω)

∣∣∣ ≤ 3σ|G|
|G| + |H|

|G|
1

|U(jω)| +
3σ|H|
|G|

1
|U(jω)| we get an expression for the

upper bound definingMsig, as |Z(jω)| ≤
( 3σ|G|
|G| + |H|

|G|
1

|U(jω)| +
3σ|H|
|G|

1
|U(jω)|

)
|G|
|H| |U(jω)|.

Therefore, when defining the upper bounds with by accounting for |U(jω)|, the
covering sets ofMest would be equivalentMsig ≡ Mmul . Alternatively, when account
only for the upper Cu and the lower Cl bound of the spectra of |U(jω)|,Msig ⊂ Mmul

because |Z(jω)| ≤ 3σ|G|
|H| Cu +

Cu
Cl

+
3σ|H|
|H|

Cu
Cl

and Cu > Cl .

Proof of Theorem 2. First, represent saturated control action usat as usat(t) = d(u)u(t),
where d(t) ∈ (0, 1]. Therefore, limu→∞ d(u) = 0 and limu→0 d(u) = 1. Assume that
d(jω) = usat(jω)/u(jω)—the frequency response of d is bounded such that ||d(jω)||∞ < κ.
In the case when the controller K is used we have u(jω)

r(jω)
= (jωI + KGd(jω))−1K and

when Kmod = (K1K2) is used umod(jω)
r(jω)

= (jωI + (K1G − K2)d(jω))−1K1 Assume that the
controller has an integral action such that limω→0 σ̄(K(jω)) = ∞ and limω→0 σ̄(K1(jω)) =

∞. Then, in the case when K is used we have
∥∥∥ u(jω)

r(jω)

∥∥∥ = G−1

d(jω)
and in the case when

Kmod is used
∥∥∥ umod(jω)

r(jω)

∥∥∥ =
(G−K−1

1 K2)
−1

d(jω)
As K1 = CK(sI − AK + MCK)

−1BK and K2 =

CK(sI−AK + MCK)
−1M then the term K−1

1 K2 expands as K−1
1 K2 = (BT

KBK)BT
K M Therefore,

if (BT
KBK)BT

K M > 0 then ||umod||2 < ||u||2 for every r ∈ L2.
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