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Abstract: To ensure the safe operation of an interconnected power system, it is necessary to maintain
the stability of the frequency and the tie-line exchanged power. This is one of the hottest issues in
the power system field and is usually called load frequency control. To overcome the influences of
load disturbances on multi-source power systems containing thermal power plants, hydropower
plants, and gas turbine plants, we design a linear active disturbance rejection control (LADRC) based
on the tie-line bias control mode. For LADRC, the parameter selection of the controller directly
affects the response performance of the entire system, and it is usually not feasible to manually
adjust parameters. Therefore, to obtain the optimal controller parameters, we use the Soft Actor-
Critic algorithm in reinforcement learning to obtain the controller parameters in real time, and we
design the reward function according to the needs of the power system. We carry out simulation
experiments to verify the effectiveness of the proposed method. Compared with the results of other
proportional–integral–derivative control techniques using optimization algorithms and LADRC with
constant parameters, the proposed method shows significant advantages in terms of overshoot,
undershoot, and settling time. In addition, by adding different disturbances to different areas of the
multi-source power system, we demonstrate the robustness of the proposed control strategy.

Keywords: load frequency control; linear active disturbance rejection control; soft actor-critic; multi-
source power system; reinforcement learning

1. Introduction

The interconnected power system has been developed in recent years to better meet
power needs. To ensure the safe and reliable operation of the power system, the stability
of the system’s frequency must be maintained. However, the mismatch between power
generation and required power is prone to instability [1]. Therefore, load frequency control
(LFC) and optimal power flow (OPF) [2] have become research hotspots in the field of multi-
area interconnected power systems. The former mainly considers designing the controller
to eliminate the influence of load disturbance on the frequency, and the latter determines
the steady-state operating conditions containing the frequency distribution of the power
system. In addition, there are multiple sources of power generation in power systems,
among which thermal power generation, hydropower generation, and gas turbines are
most common, and each has different characteristics. In this study, we mainly investigate
the LFC of the multi-source power system.

For the LFC system in the non-deregulated environment, the control strategy needs to
meet the performance requirements of frequency deviation and tie-line exchanged power
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at the planned value. Among various control strategies, proportional–integral–derivative
(PID) control [3–5] occupies a dominant position inLFC due to its clear principle and
simple implementation. However, PID is usually unsuitable for the demanding control
requirements of LFC. Other control strategies such as robust control [6], model predictive
control (MPC) [7], and adaptive control [8] could also achieve good results in LFC. For
example, Zeng et al. [9] proposed an adaptive MPC method for a multi-area interconnected
power system with PV generation realizing frequency deviation control. Rajeswari et al. [10]
designed an adaptive LFC PID controller based on the generalized Hopfield neural network
(GHNN), which can be used in situations where load demand is random, system dynamic
modeling is inaccurate, the system model is nonlinear, and system parameter changes
are uncertain. Although these methods can achieve higher control accuracy than PID,
their design process is complex and they are challenging to implement in engineering
applications. In reality, there may be multiple sources of power generation in one area. For
example, Sahu [11] et al. applied the differential evolution (DE) optimized fuzzy PID to
a two-area interconnected power system with multi-source power generation containing
thermal plant, hydro plant, and gas turbine plant in a deregulated environment, which
improved the dynamic performance.

Under these demands, active disturbance rejection control (ADRC) was proposed by
Han [12]. It has a simple structure and does not rely on model information. At present, the
most widely used ADRC is the linear ADRC (LADRC) [13], which linearizes the structure
of the extended state observer (ESO) and nonlinear state error feedback (NLSEF) control
law in ADRC. LADRC dramatically simplifies the design of the ADRC controller and
significantly reduces the number of parameters that need to be adjusted, which greatly
promotes the engineering application of ADRC. Currently, LADRC has been successfully
applied in many fields, such as ship path following control [14], aircraft control [15], and
hydraulic systems [16], to name a few. As for LFC, LADRC has also shown good control
effects. For example, Tan et al. [17] applied LADRC to power systems with a deregulated
environment to realize the stability of LFC. Tang et al. [18] studied the application of
LADRC in the LFC of complex power systems with wind energy conversion systems and
verified the effectiveness of the designed controller through simulations.

Although the number of controller parameters of LADRC has been greatly reduced
compared with the original ADRC parameters, when the number of controllers increases,
the determination of the parameters is still challenging. Therefore, parameter tuning is also
a vital part of the controller design process. At present, the most widely studied parameter
optimization methods are intelligent optimization algorithms, including particle swarm
optimization (PSO) [19], genetic algorithm (GA) [20], and simulated annealing (SA) [21].
However, these algorithms have poor robustness and can only obtain the optimal param-
eters of the controller under certain operating conditions. Fuzzy control [22] can obtain
adaptive parameter values depending on the model information. Neural networks [23]
can obtain adaptive control parameters without relying on model information, but they do
not cope well with sudden operating conditions. Therefore, an intelligent method that is
robust and does not rely on models is urgently needed for tuning parameters.

Reinforcement learning [24] is an algorithm that simulates the decision-making process
of the human brain, where the design of the reward function gives the algorithm its
decision-making ability. The salient feature of reinforcement learning is to obtain reward
feedback through interaction between the environment and the agent (brain) without
knowing the environment’s information so as to realize the selection of the optimal action-
value according to the environmental state. This realizes a process of self-adaptation
in which action-values are selected according to the environmental state. With these
advantages, reinforcement learning has achieved excellent results in path planning [25],
games [26], and other fields. Recently, research has been conducted on reinforcement
learning to adjust controller parameters. For example, Chen [27] and Zheng [28] applied
Q learning to parameter tuning of LADRC. Nevertheless, Q learning is more suitable for
systems with limited states and limited actions. Soft actor-critic (SAC) is an algorithm
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based on deep reinforcement learning that uses deep neural networks to remove the finite-
dimensional restrictions on states and actions [29]. In addition, compared with the deep
deterministic policy gradient (DDPG) algorithm, which is also suitable for continuous state
and continuous action in reinforcement learning, the convergence of SAC is proved to be
better. Therefore, in this study, we use SAC to solve the problem of LADRC parameters
(continuous actions) tuning in LFC (continuous states).

In this study, based on a two-area interconnected power system with thermal power
plants, hydropower plants, and gas turbine plants, we design three different LADRC meth-
ods for each area. Moreover, we use SAC to adjust the nine parameters of all controllers.
The simulation results verify the effectiveness of the proposed method.

The rest of the paper is arranged as follows. Section 2 presents a model description of
the two-area six-unit interconnected power system. Section 3 shows the design process
of LADRC. Based on introducing SAC, Section 4 describes how SAC optimizes controller
parameters. Section 5 demonstrates the superiority of the proposed method through
simulation results. Section 6 concludes the paper.

2. Modeling of Two-Area Six-Unit Power System

We consider a two-area six-unit interconnected power system consisting of one thermal
power plant, one hydropower plant, and one gas turbine plant in each area, as shown
in Figure 1 [30], where each unit consists of a governor Ggi, i = 1, 2, 3 marked in light
yellow and a turbine Gti marked in light green. Moreover, the links marked in purple are
generators Gp. The symbols are defined in Table 1. Generally, the governor mainly controls
the speed of the turbine, and the turbine converts mechanical energy into electrical energy.
However, to ensure the safe and stable operation of the system, two conditions need to be
met: one is that the frequency deviation ∆ f is stable at 0, and the other is that the tie-line
exchanged power ∆Ptie is maintained at the planned value.
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Figure 1. Transfer function model of two-area six-unit power system.
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Table 1. Symbol definitions and values.

Symbol Terminology Value

∆ f Frequency variation -
∆Ptie Tie-line exchanged power -
ACE Area control error -

Bi Frequency bias constant 0.4312 MW/Hz
Ri Speed regulation constant 2.4 Hz/MW
Tgi Governor time constant 0.08 s
Tt Turbine time constant 0.3 s
Tr Reheat turbine time constant 10 s
Kr Reheat gain 0.3
T2 Compensator time constant 28.75 s
TR Compensator time constant 5 s
Tw Hydro turbine time constant 1 s
bg Valve positioner time constant 0.05 s
cg Valve positioner time constant 1
Xc Governor lead time constant 0.6 s
Yc Governor lag time constant 1s

TCR Gas turbine combustion reaction time delay 0.01 s
TF Fuel system time constant 0.23 s

TCD Compressor discharge time constant 0.2 s
KT Proportional constant 0.543478
KH Proportional constant 0.326084
KG Proportional constant 0.130438
∆Pdi Step load disturbance -
Tp Generator time constant 11.49 s
Kp Generator gain 68.9566
T12 Synchronization time constant 0.086 s

Then, from Figure 1, taking the first area as an example, the following derivation can
be obtained:

∆ f1 =
Gp

1 +
3
∑

i=1
GpGgiGti/Ri

·
(

3

∑
i=1

uiGgiGti − ∆Pd1 − ∆Ptie

)
(1)

where ui(i = 1, 2, 3) are the inputs of the three units, Gg3 = 1
bgs+cgs , Ggi =

1
Tgis+1 (i = 1, 2),

Gt1 = KT(KrTrs+1)
(Tts+1)(Trs+1) , Gt2 = KH(TRs+1)(−Tws+1)

(T2s+1)(0.5Tws+1) , and Gt3 = KG(Xcs+1)(−TCRs+1)
(Ycs+1)(TFs+1)(TCDs+1) .

ACE1 = B1∆ f1 + ∆Ptie

=
B1Gp

1 +
3
∑

i=1
GgiGti/Ri

·
(

3

∑
i=1

uiGgiGti − ∆Pd1 − ∆Ptie

)
+ ∆Ptie (2)

where ∆Ptie is expressed as

∆Ptie =
2πT12

s
· (∆ f1 − ∆ f2) (3)

In addition, there are many uncertainties in the two-area six-unit power system, such
as unmodeled dynamics, load disturbance, and internal parameter perturbations, which
lead to model–reality mismatch. Therefore, our research goal in this study is to design
controllers to make the system stable despite these uncertainties.
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3. Design of LADRC

Because ADRC has a simple design, is model-free, and possesses self-decoupling
characteristics, it has been favored by many scholars in recent years. In this study, we
design an LADRC controller for the system shown in Figure 1. We adopt the tie-line
bias control (TBC) [31] mode to simultaneously adjust the frequency deviation and the
tie-line exchanged power, and we select ACE as the controller input. As for the coupling
of the system, we adopt a decentralized control method [32], that is, under the premise of
ignoring the tie-line exchanged power, we design a controller for each area. As shown in
Figure 1, the two areas have the same structure, so the two controllers will be identical.

The design of the LADRC does not require accurate model information of the system,
only the order of the controlled plant. Let us take the first area as an example. Removing
∆Ptie, we rearrange the expression of ACE1 as

y1 = ACE1 =

B1Gp
3
∑

i=1
uiGgiGti

1 +
3
∑

i=1
GgiGti/Ri

−
B1Gp

1 +
3
∑

i=1
GgiGti/Ri

· ∆Pd1 (4)

Then, for the thermal power unit, u1 is the output of the first controller, and u2 and u3
are constants, that is,

y1

u1
=

B1GpGg1Gt1

1 +
3
∑

i=1
GgiGti/Ri

(5)

Therefore, the system order of the thermal power unit is 3. Then, we can express the
system as shown in Equation (6). In the same way, the system orders of the hydropower
turbine unit and the gas turbine unit are 2 and 3, respectively. Therefore, taking the thermal
power unit as an example, we design the LADRC as follows.

y(3)1 = f + b01u1 (6)

where f is the total disturbance, including the unmodeled dynamics, load disturbance, and
parameter perturbation, and b01 is an adjustable parameter. The core idea of LADRC is to
estimate the total disturbance f through the linear extended state observer (LESO) and use
the PD control combination to eliminate the disturbance.

We define the states as x1 = y1, x2 = ẏ1, x3 = ÿ1, and x4 = f . Then, we design LESO as
e = z1 − y1
ż1 = z2 − β01e
ż2 = z3 − β02e
ż3 = z4 − β03e + b0u
ż4 = −β04e

(7)

where z1, z2, z3, and z4 denote the estimated values of x1, x2, x3, and x4, respectively.
Furthermore, β01, β02, β03, and β04 represent the observer gains. We write the observer
gain matrix as L = [β01, β02, β03, β04]

T . Then, the suitable L can guarantee the accuracy
of the estimation. For convenience, we configure the observer gain at the pole −ωo1 [33]
using the pole configuration method as

s4 + β01s3 + · · ·+ β04 = (s + ωo1)
4 (8)

Then,
β0i = Ci

4ωi
o1 (9)
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In the case of z4 ≈ f , the disturbance is eliminated. Then, we can take u1 in
Equation (6) as

u1 =
u0 − z4

b01
(10)

where
u0 = −k1z1 − k2z2 − k3z3 (11)

where k1, k2, and k3 are the feedback control gains.
Finally, we rearrange Equation (6) into the following form, thereby realizing the

compensation of disturbances:

y(3)1 = −k1z1 − k2z2 − k3z3 (12)

Similarly, we configure the feedback control gain to the pole −ωc1,

s3 + k3s2 + k2s + k1 = (s + ωc1)
3 (13)

Thus,
ki = Ci−1

3 ω3−i+1
c1 (14)

The structure diagram of LADRC is shown in Figure 2. The parameters that need
to be adjusted in LADRC are ωo1, ωc1, and b01. Second order or third order linear active
disturbance rejection controllers can be designed for the hydropower turbine unit and
gas turbine unit following the above process. To sum up, the parameters that need to be
adjusted are ωo1, ωc1, b01, ωo2, ωc2, b02, ωo3, ωc3, and b03.

PD control 

combination −
+

Controlled 

plant

LESO

0u

d

1z
3z

2z
4z

01

1

b

1y=0ry 1u

Figure 2. Structure diagram of LADRC.

4. LADRC Parameter Optimization Based on SAC

Because it is challenging to adjust nine parameters at the same time manually, we use
the SAC algorithm in reinforcement learning to adjust all controller parameters.

4.1. The Basics of SAC

Reinforcement learning is a method of solving sequential decision-making problems,
and its process is usually expressed as a Markov decision process (MDP): (S, A, P, R). S
and A represent the state space and action space, respectively, which need to be artificially
defined. P is the probability of state transition, which represents the probability of transition
from state st and action at to state st+1, namely p[st+1|st, at ]. R is the reward function,
which reflects how close the actual state is to the target state. The goal of reinforcement
learning is to find the optimal strategy through continuous iteration between the agent
and the environment, that is, the probability of taking action a under the condition of state
s: π(a|s ) = p[at = a|st = s ]. Then, based on π, the agent can choose the best action. In
general, the state-action value function is used to evaluate the value of the action:

Qπ(s, a) = Eπ [Rc|St = s, At = a ] (15)
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where Rc is the cumulative reward (Rc =
∞
∑

t=k
γkRt+k+1), and γ ∈ [0, 1] is the discount factor

reflecting the the importance of the reward value in the future.
SAC is an algorithm in reinforcement learning that can solve continuous state space

and continuous action space problems. The structure diagram of SAC is shown in Figure 3.
It should be pointed out that, unlike Q in the traditional reinforcement learning algo-
rithm, the Q value in SAC not only maximizes the cumulative reward but also increases
entropy [34].

Qπ(s, a) =
T

∑
t=0

Eπ [r(s, a) + αH(π(·|s ))|St = s, At = a ] (16)

where H(·|s ) represents the entropy under the policy π, which is a measure that describe
the uncertainty of random variables, H(π(·|s )) = −log(π(a|s)), and α is the weight
of entropy.
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Figure 3. Structure diagram of SAC.

It can be seen from Figure 3 that there are mainly three parts of SAC: the first is the
replay buffer for storing data (st, at, rt, st+1) to train the networks, the second is the critic
network used to generate the Q value, and the third is the actor network to generate the
action value.

Four networks contain two Q networks and two target Q networks for the critic
networks, where the target Q networks have the same structure as the Q networks. The
addition of the target Q network improves the stability of network training. For example,
assume that the corresponding weights of the four networks are θ1, θ2, θ′1, and θ′2, where
the first two weights are updated through network training shown in Equation (17), and
the latter two are updated through the exponential moving average method on the basis of
θ1 and θ2 shown in Equation (19) [35], where τ ∈ (0, 1] is the target smooth factor.

θi = θi +

[
min

Q
Qπ(st, at; θi)−Qs(st, at)

]
∇Q(st, at; θi) (17)

where Qπ(st, at; θi) represents the Q network output when the network inputs are st and at
and the network weight is θi. Qs is expressed in Equation (18).

Qs(st, at) = r(st, at) + γ[Qs(st+1, at+1)− α log(π(at+1|st+1 ))] (18)

θ′i = τθi + (1− τ)θ′i (19)
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For the actor-network, its purpose is to generate the optimal action-value through the
input of the state. In SAC, supposing that the weight of the actor-network is φ, the loss
function is [34]

Jπ(φ) = DKL

(
π(·|st )

∥∥∥∥exp{Qs(st, ·)}
Z(st)

)
(20)

where DKL is the Kullback–Leibler divergence and Z(st) is the log partition function. Since
Z(st) has little effect on the update of the weight φ, it can be ignored, so Equation (20) can
be rearranged as

Jπ(φ) = log
(
πφ(at|st )

)
−Qs(st, at) (21)

The action at can be obtained by the network input st and the weight φ [36], which is
expressed as

at = fφ(εt; st) = f µ
φ (st) + εt f σ

φ (st) (22)

where εt is sampled from a Gaussian distribution, and f µ
φ (st) and f σ

φ (st) denote the mean
value and covariance value of the network output.

4.2. The Design of Environment and the Agent

The main idea of SAC optimization is introduced above, and the optimal strategy
π∗ is obtained by maximizing Q, that is, π∗=max

a
Q(s, a). The whole process is realized

by the continuous interaction between the environment and the agent. In this study, the
environment refers to the power system, including LADRC, and the agent is similar to the
human brain and can make decisions. To optimize the parameters of LADRC, it is necessary
to define the states, actions in the environment, and the reward function in the agent.

We define the state as follows:{
s1(k) = ACE1(k)
s2(k) = ACE2(k)

(23)

where k is the simulation step.
The actions are the nine controller parameters to be optimized:

a1 = ωo1, a2 = ωc1, a3 = b01
a4 = ωo2, a5 = ωc2, a6 = b02
a7 = ωo3, a8 = ωc3, a9 = b03

(24)

The reward function is the primary basis for how the agent reacts, so we establish the
reward function according to the state. In this study, our control target is that the ACE in
the two areas can be stabilized to 0. Therefore, we give the reward function as

r = −|s1| − |s2| (25)

The whole process is shown in Figure 4, which mainly includes two stages. One is the
training stage for training the connected critic networks and the actor-network, and the
other is the online stage for using the trained actor-network to select parameters online.



Energies 2021, 14, 4804 9 of 17

Start

Initialize network weights              

and 

,i 

i i  =

Take actions following the initial 

actor network and store the data in 

the Replay buffer

For the current state   , take the 

action    by the actor network 

s

a

Obtain the reward     and the next 

state   

r

s

Store                  in the Replay buffer( ), , ,s a r s

Update the      according to 

Equation 17
i

Update the      according to 

Equation 21



Update the      according to 

Equation 19
i 

Randomly extract m sets of data 

from the Replay buffer

Reach the final 

episode?

No

Initialize the state of 

the power system

Input the current state of 

the power system to the 

actor network

Output the action and assign 

action to active disturbance 

rejection controller

Reach the final

 step?

End

Save actor network

No

Yes

Yes

Online stage

Training stage

Figure 4. Flowchart of LADRC parameter optimization based on SAC.

5. Simulation Results and Discussion

To verify the effectiveness of the proposed method, we conducted simulation experi-
ments on the two-area six-unit interconnected power system shown in Figure 1. Table 2
shows the parameter settings during the SAC training process, where these parameters
are chosen by multiple attempts, and Table 3 shows the optimization ranges of the nine
parameters to be adjusted.

Table 2. Parameter settings during SAC training.

Parameter Description Value

Random mini-batch 32
Learning rate of critic networks 10−4

Learning rate of actor network 10−4

Discount factor 0.9999
Target smooth factor 0.001
Simulation run time 20 s

Simulation sample step 0.01 s
Number of iterations 500

Table 3. Upper and lower bounds of controller parameters.

ωo ωc b0

Thermal power plant [20,80] [10,30] [10,50]
Hydropower plant [20,80] [10,30] [10,500]
Gas turbine plant [20,80] [10,30] [10,500]

The critic network consists of a fully connected neural network with two hidden layers,
in which the numbers of input and output neurons are 11 and 1, respectively, and the
numbers of hidden layer neurons are 400 and 300, respectively. As for the actor-network,
the structure is shown in Figure 5.
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Figure 5. Structure diagram of actor network.

In addition, to enable the proposed method to better cope with the impact of load
disturbances, during the training process, we randomly add the step load disturbance of
0–0.03 p.u. to area 1 and area 2 in each iteration. We present the simulation verification
results in the following subsection.

5.1. Performance Study of SAC-LADRC

Assuming that a load step disturbance of ∆Pd1 = 0.01 p.u. is added to the first
area at t = 0, the response curve is shown in Figure 6, and the parameters optimized
by SAC are shown in Figures 7–9. To verify the effectiveness of the proposed method,
Figure 7 also shows the control effect of the PID controller optimized by the differential
evolution (DE) algorithm [37], the PID controller optimized by the hybrid stochastic fractal
search and pattern search (hFSF-PS) algorithm [38], the PID controller optimized by the
teaching learning based optimization (TLBO) algorithm [39], and the LADRC controller
with conventional parameters. We select the parameters of LADRC as ωo1 = ωo2 = ωo3 =
50, ωc1 = ωc2 = ωc3 = 15, and b01 = 50, b02 = b03 = 500. Table 4 shows the quantification
results of performance indicators, including overshoot Osh, undershoot Ush, settling time
Ts, and integral of time-weighted absolute error (ITAE) for frequency deviation and tie-line
exchanged power. We calculate ITAE based on Equation (26).

ITAE =
∫ T

0
(|∆ f1|+ |∆ f2|+ |∆Ptie|)tdt (26)

It can be seen from the partially enlarged view that the proposed method has obvious
advantages in dynamic performance compared with other control methods, that is, the
performance of SAC-LADRC has the smallest overshoot and the shortest response time.
Furthermore, since the output of the actor-network is a distribution of parameters, the
parameter results obtained by the proposed method will fluctuate in a small range, which
is different from other reinforcement learning algorithms like Q learning, which will obtain
stable parameter values when the system is stable.
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Figure 6. Dynamic response comparison results.
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Figure 7. Controller parameters of thermal power plant.
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Figure 8. Controller parameters of hydropower plant.
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Figure 9. Controller parameters of gas turbine plant.

Table 4. Comparison of performance indicators of different control methods.

Control Method
∆ f1 ∆ f2 ∆Ptie

ITAE × 10−5

Ush Osh Ts Ush Osh Ts Ush Osh Ts

DE-PID −268 202 13.91 −223 8.11 8.45 −48 1.92 9.4 41,469
hSFS-PS-PID −217 41 8.59 −145 24 7.34 −34 2.50 3.84 18,289

TLBO-PID −155 21 6.17 −64 10 6.44 −16 1.87 2.82 9017
LADRC −42 39 2.52 −7.53 6.84 2.36 −2.11 0.88 0 848.7

SAC-LADRC −9.97 2.64 0.03 −0.25 0.023 0 −0.07 0.004 0 2.566
The magnitude of overshoot and undershoot is 10−4. The settling time means that the variable reaches and remains at ±0.05%.

5.2. Robustness Test of SAC-LADRC

To show the ability of the proposed method to suppress different load disturbances,
we add the step load disturbance of ∆Pd1 = 0.02 p.u. to the first area at t = 0 s, the step load
disturbance of ∆Pd2 = 0.01 p.u. to the first area at t = 10 s, and the step load disturbances of
∆Pd1 = 0.01 p.u. and ∆Pd2 = 0.02 p.u. to the second area at t = 20 s. The simulation results
of the above-mentioned trained actor-network are shown in Figure 10.

It can be seen from Figure 10 that, despite the existence of various disturbances, the
proposed method can still overcome the influence of load disturbances so that the frequency
deviation and tie-line exchanged power quickly stabilize to 0.
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Figure 10. Dynamic response with different disturbances.
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6. Conclusions

We studied the LFC problem for a two-area interconnected power system with ther-
mal power plants, hydropower plants, and gas turbine plants. Because traditional PID
controllers are unable to meet the system’s high-efficiency operation requirements, we
designed LADRC according to the characteristics of different power supplies. To further
improve the control performance of LADRC, we used SAC for adaptive adjustment of
multiple parameters. To be specific, according to the requirements of the LFC system, we
designed the reward function based on the area control error (ACE). Compared with other
methods such as DE-PID, hSFS-PS-PID, TLBO-PID, and traditional LADRC, the proposed
method dramatically improves dynamic performance, including overshoot, undershoot,
and settling time. Moreover, the response curves obtained by the trained agent under the
influence of different step load disturbances show that the proposed method has good
robustness. Generally speaking, the proposed method has the advantages of small error,
short stabilization time, and good robustness, so it is an effective method to solve the
LFC problem.

In future work, we will consider the application of the SAC algorithm in OPF [40,41].
Moreover, the high proportion of renewable energy is a development trend of the current
power system. However, the large-scale grid connection of intermittent renewable energy
represented by wind power and photovoltaics has brought challenges to the operation of the
power system. Thus, the power system containing the renewable energies will be a focus of
our research.
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