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Abstract: In the paper, a model of a three-phase frequency-controlled induction electric drive has been
developed in Simulink Matlab 2019 (MathWorks, Natick, MA, USA). This model is mathematically
converted into a two-phase model by transforming equations. It is proposed to compensate the
voltage drop in the power system during start-up operation under load by using supercapacitors as a
buffer power source. A block of supercapacitors was calculated. Simulation modeling was performed
at a different voltage than the network. The diagrams of the transient processes occurring in the
electric drive when the power supply is changed were prepared. It was found that such a principle
of implementing an additional source of electric energy allows to start induction electric drives
in areas remote from industrial networks without significantly affecting their static and dynamic
characteristics.

Keywords: electric drive; modeling; Matlab Simulink; supercapacitor; transient response

1. Introduction

Electrically driven power plants, monitoring, and diagnostic systems in Asia and Aus-
tralia are often located in areas remote from industrial power grids. For such conditions, it
happens that the power of the electrical energy source becomes commensurate with the
power of the electric drive due to losses in an extended network of power lines [1]. The
length of the long line exceeds the permissible length and the condition of the power lines
is poor, causing the voltage to drop in the remote industrial facility—Figure 1. Therefore,
it is necessary to either use additional stand-alone power sources that form a combined
power supply system for the electric drive, or use various methods of starting the electric
drive. These methods include power supply from a diesel or gas turbine power plant, an
autonomous transformer, reactor start-up of an electric drive, the use of a synchronous gen-
erator, and uninterruptible power supplies. Despite the wide range of the listed methods
for starting an electric drive in remote areas, each of them comes with several disadvan-
tages. Most of these disadvantages, such as inefficiency, pollution, and dependence on
other raw materials, have been considered in previous works, but now it is proposed to
consider the disadvantages of using rechargeable batteries as a stand-alone sources [2].

In many industries, especially mining and metallurgy, fuel power supplies with high
reliability are required for starting electric motors under load. Uninterruptible Power
Supplies (UPS) are used to improve power quality and ensure reliability of emergency
power supply. During power outages, energy must be provided by local energy storage
systems. A UPS-based energy storage system mainly relies on the selection of a good
lead–acid battery. However, batteries have many disadvantages, such as low power density
and limited charge/discharge cycles. Moreover, the battery life may be shortened if it is
fed with pulsed energy rather than average energy. In addition, current fluctuations cause
voltage transients, surge currents have a higher root mean square (RMS) value that can
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lead to increased battery losses, and pulsed currents significantly shorten battery life. For
this reason, it is proposed to replace the lead–acid based batteries with supercapacitor
blocks [3,4].
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Figure 1. Voltage drop in overhead power line.

A supercapacitor is an electrochemical double layer capacitor that can store thousands
of times more energy than a conventional capacitor. It has the same characteristics as
batteries and conventional capacitors, but has an energy reserve of about 20% compared to
a battery. However, it also features low losses and a long service life. It can handle a large
number of charge and discharge cycles—several hundred thousand cycles compared to a
few thousand cycles for lead–acid batteries—and can deliver much higher currents than
batteries [5–7].

Batteries are most efficient when used for low, reasonably constant power. Superca-
pacitors are very efficient at storing charge for later use in startup mode.

It is worth noting that supercapacitors are in the development stage and are becoming
more competitive in price.

Supercapacitors offer high power density at low energy cost and are a cost-effective
solution for medium power stages where no power source is available and a buffer source
is needed.

The use of supercapacitors as buffer power sources is considered in many papers, but
there are a number of issues that have not been considered [8–10]. In particular, only the
static characteristics of the electric drive are evaluated, and the operation of the motor in
dynamics is not considered. In addition, these works focus on the recuperation mode of
operation without considering the motor start-up in the presence of network drawdown
and without evaluating the motor dynamics. The motor models are taken from the standard
Matlab Simulink library, where simplified models built only according to the main technical
parameters and not allowing to accurately trace the dynamics of the transient processes
occurring in these models. Moreover, there are cases where a block of supercapacitors
is connected through the Generator–Drive system, without using a frequency converter,
which reduces its effectiveness, since the use of a frequency converter affects the control of
the electromagnetic torque, which is important during start-up [11].

In other works, great emphasis is placed on considering the transient processes that
occur in supercapacitors in their charging and discharging modes, but there is no analysis of
the effects of supercapacitor blocks on the dynamics of an induction motor [12–16]. In this
context, it was decided to study the dynamics of the operation of the electric drive during
start-up and power supply by a combined buffer system based on supercapacitor blocks.

2. Induction Motor in a Rotating Coordinate System with a Buffer Source Supply

The research object of this article is the power supply system of a frequency-controlled
induction motor and a buffer power supply system based on supercapacitors. The analysis
of their connection is carried out on the basis of the mechanical properties when the motor
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is started under load. The resulting speed and torque curves provide the reference signal
for the drive control system to control the speed of the motor and, thus, supply it with
power. Once the speed, relative position in space and load were determined, the buffer
power source system was selected and calculated. This system consists of several banks
of supercapacitors connected to the DC link of the frequency converter. In this work, the
simulation model of a buffer power supply based on supercapacitors has been improved
compared to previous versions of the model by adding the possibility to recharge the
supercapacitor blocks by connecting them through a bidirectional DC–DC converter—
Figure 2 [2]. The flow of energy from or to the buffer must be controlled according to the
power management requirements. The converter operates either in boost mode during
power delivery from the buffer to the DC line or in buck mode during buffer charging [17].
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Figure 2. Bi-directional DC–DC converter.

The block of supercapacitors provides the peak power to the electric motor during its
start-up in the event of a drawdown in the supply network. The supercapacitor recharges
the energy during start-up without dropping the mains voltage.

The bidirectional DC–DC converter is a connection method between the storage
device, which is part of the buffer power supply control system, and the DC link, it must
be bidirectional to allow current to flow in both directions, corresponding to the discharge
or charge cycle block of supercapacitors.

In this paper, an AIR160S4 asynchronous electric motor is considered with the follow-
ing parameters listed in Table 1.

Table 1. Parameters of AIR160S4.

Electro-
Engine

Power,
kW

Speed,
rpm

Voltage,
V

Efficiency,
%

Power
Factor

I_start
/I_ominal

M_start
/M_nominal

M_max
/M_nominal

Moment Inertia,
kg ∗m2

AIR160S4 15 1450 400 89.5 0.86 7.7 2.2 2.6 0.075

The induction motor model is powered by a three-phase source, and a frequency
converter with scalar control provides its regulation.

This converter consists of the following parts: a rectifier, a buffer power source based
on supercapacitors with a control system, and an inverter based on MOSFET transistors.

In this work, a conventional diode rectifier is used, but it is planned to improve it in
the future to increase the quality of energy conversion by adding modulation to the rectifier
circuit. Modulation will be added using controlled current or voltage sources [18].

Generally, a three-phase voltage system is applied to the stator winding, which is
120 degrees offset from each other. The total voltage vector is equal to the sum of the
voltage vectors of the individual phases, as seen in Formula (1).

→
UΣ = Um sin ωt + Um sin

(
ωt− 2π

3

)
+ Um sin(ωt +

2π

3
) (1)
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The vector projections
→

UΣ on the phase axes determine the instantaneous voltages on
each of the phases A, B, and C. All equations of current and flux linkage that describe the
operation of an asynchronous AC motor can be described in the same way.

However, during the creation of real AC motor systems, 3/2 phase converters are
often used. A 3/2 converter from a three-phase voltage system A, B, and C creates a
two-phase α and β. The transition to a new two-phase system allows us to consider the
space vector in a Cartesian coordinate system. Such a change of variables is used in the
mathematical description of electrical machines to simplify the solution and writing of
differential equations of the stator and rotor, Formula (2) [19]. Uα =

2
[
UA−

UB+UC
2

]
3

Uβ = (UB −UC)/
√

3
(2)

After receiving the frequency-converted supply signal from the output of the frequency
regulator, the voltage is converted from a three-phase sinusoidal to a two-phase one to
create a model of an asynchronous motor in a rotating coordinate system—Figure 3. As a
result, the phase voltage UA, UB, and UC is converted into Ux and Uy.
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The resulting two-phase voltage is used to power the asynchronous motor model in a
rotating coordinate system.

The system of equations for describing an asynchronous AC machine is based on four
laws—Kirchhoff’s second law, Ampere’s law, Newton’s second law, and Lenz’s left-hand
rule and is indicated in Formula (3).

→
US = rS

→
iS + d

→
ΨS
dt + jαk

→
ΨS

→
UR = rR

→
iR + d

→
ΨR
dt + j(αk − pϑm)

→
ΨR

→
ΨS = xs

→
is + xm

→
iR

→
ΨR = xR

→
iR + xm

→
is

m = kMod
(→

Ψix
→
ik

)
→
Tm

dϑm
dt = m−mc

(3)
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After the transformation, the following equations can be obtained as Formula (4).

→
u Sx = r(1 + T′S p)iSx − αxx′SiSy −

kR
TR

ΨRx − pϑmkRΨRy
→
u Sy = r(1 + T′S p)iSy + αxx′SiSx −

kR
TR

ΨRy + pϑmkRΨRx
→
u Rx = 0 = 1

TR
(1 + TR p)ΨRx − kRrRiSx − (αk − pϑm)ΨRy

→
u Ry = 0 = 1

TR
(1 + TR p)ΨRy − kRrRiSy + (αk − pϑm)ΨRx

m = kR

(
ΨRx iSy −ΨRy iSx

)
iSx =

(
uSx + αxx′SiSy +

kR
TR

ΨRx − pϑmkRΨRy

)
1

r(1+T′S p)

iSy =
(

uSy − αxx′SiSx +
kR
TR

ΨRy − pϑmkRΨRx

)
1

r(1+T′S p

ΨRx = kRrRiSx + (αk − pϑm)ΨRy
TR

1+TR p

ΨRy = kRrRiSy − (αk − pϑm)ΨRx
TR

1+TR p

(4)

Based on the system of Equation (4), a model of an induction motor was calculated
and developed, this model is shown in Figure 4.
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2.1. Algorithm of the Control System Operation for the Buffer Source of Electricity

In order that the supercapacitor block is not constantly connected to the DC of the
frequency converter, i.e., its supply of electricity was not wasted, and also to have the
possibility of automatically charging this unit, an algorithm for the control system of a
buffer source of electricity based on supercapacitors has been developed—Figure 5.
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Figure 5. Algorithm of the control system operation for the buffer source of electricity.

If the rectifier voltage is below the nominal voltage preset in the control system, the
key that connects the buffer power supply system based on supercapacitors is closed—
Figure 6, red signal. As a result, the rectified supply voltage is connected in series with
the supercapacitor block. The rectified voltage is added to the voltage output from the
supercapacitor unit via a bidirectional DC–DC converter. The total rectified voltage is
passed to the inverter system for further conversion.
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Otherwise, if no voltage drop occurs when comparing the rectifier voltage with the
nominal voltage (the rectifier voltage is greater than or equal to the nominal voltage), the
key system connects the supercapacitor block for charging—Figure 6, blue signal—and
the supercapacitor block is included in the supply voltage circuit in parallel. When the
SOC (state of charge) supercapacitor block reaches 100% charge, the charging process
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is terminated. All discharging and charging processes of the supercapacitor block are
explained in the chapter “Simulation Modelling”.

2.2. Calculation of a Supercapacitors Block

It was chosen that supercapacitors added as energy storage should provide additional
buffer power for 30 s when the drive is started.

To calculate the equivalent capacity of a block consisting of several supercapacitors of
its own capacity, the following formula is applied [12]:

Ceq =
I ∗ t
U

=
3000 ∗ 30

150
= 600 F (5)

where Ceq is the equivalent capacitance of the supercapacitor block, I is the current flowing
through the supercapacitor block, U is the voltage of the given block, and t is the time.

To calculate the number of supercapacitors connected in series in a block, the following
formula is used:

Ns =
U

Usc
=

150
16

= 10 (6)

where Usc is the voltage of one supercapacitor, Ns is the number of supercapacitors in the
block connected in series.

The value is rounded to the nearest integer. In this case, the capacity of one superca-
pacitor in the block should be:

Csc =
Ceq

Ns
=

600
10

= 60 F (7)

where Csc is the capacity of one supercapacitor.
According to these parameters, a Maxwell supercapacitor BMOD0058 E016 B02 (Yongin-

si, Gyeonggi-do, Korea) was selected with the characteristics presented in Table 2 [20].

Table 2. Parameters of the supercapacitor.

Rated capacity 58 F
Rated voltage 16 V

Maximum current 170 A
Weight 0.63 kg

Accumulated energy 2.1 W·h

The following formula is used to calculate the number of parallel supercapacitors in a
block:

Np =
I

Isc
=

3000
170

= 18 (8)

where Np is the number of supercapacitors in the unit connected in parallel and Isc is the
current of one supercapacitor.

The final model of the system, consisting of a three-phase voltage source, a rectifier,
a buffer power source and its control system, inverters, and a model of an asynchronous
motor and its control, on which simulation modeling were carried out in this article, is
shown in Figure 7.
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3. Simulation Modeling

First, the simulation of the start-up modes of the electric drive without an additional
buffer source of electricity was performed to compare its dynamic characteristics. The
simulation of the voltage drop is realized by changing the input value by 20% less.

Scopes of the motor transient processes at rated voltage—Figure 8 and voltage less
than the rated one by 20%—Figure 9 without using a supercapacitors block as a buffer
source of electricity are shown below.

Energies 2021, 14, x FOR PEER REVIEW 9 of 19 
 

 

Scopes of the motor transient processes at rated voltage—Figure 8 and voltage less 

than the rated one by 20%—Figure 9 without using a supercapacitors block as a buffer 

source of electricity are shown below. 

  

(a) (b) 

 
 

(c) (d) 

Figure 8. Output characteristics at nominal values: (a) speed; (b) flux; (c) torque and (d) current. 

  

(a) (b) 

Figure 8. Output characteristics at nominal values: (a) speed; (b) flux; (c) torque and (d) current.



Energies 2021, 14, 4769 9 of 19

Energies 2021, 14, x FOR PEER REVIEW 9 of 19 
 

 

Scopes of the motor transient processes at rated voltage—Figure 8 and voltage less 

than the rated one by 20%—Figure 9 without using a supercapacitors block as a buffer 

source of electricity are shown below. 

  

(a) (b) 

 
 

(c) (d) 

Figure 8. Output characteristics at nominal values: (a) speed; (b) flux; (c) torque and (d) current. 

  

(a) (b) 

Energies 2021, 14, x FOR PEER REVIEW 10 of 19 
 

 

  

(c) (d) 

Figure 9. Output characteristics at a voltage less than nominal by 20%: (a) speed; (b) flux; (c) torque and (d) current. 

As can be seen from these scopes, the motor over-revs at a voltage drop of up to 20% 

at the moment of connecting the rated load at 0.055 s, indicating the need to connect an 

additional power source to start the electric drive under load. 

Then, a simulation was performed for starting an induction motor under load at a 

rated supply voltage—Figure 10—with a buffer power supply connected based on a su-

percapacitor unit. At the nominal supply voltage, the control system for the buffer power 

source starts the supercapacitor bank recharging system. The transient processes occur-

ring in the supercapacitor block are shown in Figure 11. 

  

(a) (b) 

Figure 9. Output characteristics at a voltage less than nominal by 20%: (a) speed; (b) flux; (c) torque and (d) current.

As can be seen from these scopes, the motor over-revs at a voltage drop of up to 20%
at the moment of connecting the rated load at 0.055 s, indicating the need to connect an
additional power source to start the electric drive under load.

Then, a simulation was performed for starting an induction motor under load at
a rated supply voltage—Figure 10—with a buffer power supply connected based on a
supercapacitor unit. At the nominal supply voltage, the control system for the buffer power
source starts the supercapacitor bank recharging system. The transient processes occurring
in the supercapacitor block are shown in Figure 11.
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Figure 11. Charge of the supercapacitor: (a) current; (b) voltage and (c) state of charge.

When the supercapacitor unit is charging, it consumes a voltage of 170 V, which is the
total voltage of this unit calculated above, consisting of 10 supercapacitors connected in
series. When 100% of the SOC% charge of the supercapacitor is reached, the control system
disconnects the supercapacitor unit from the parallel connection with the mains and the
charging process is terminated. The charging time of the supercapacitor bank from fully
discharged to 100% with parallel operation of the electric motor is about 40 s. At the same
time, the scope of the power dynamic characteristics of the motor shows that the parallel
charging of the supercapacitor block from the same source as that of the electric motor has
no noticeable effect. Only the oscillation of the torque increases within 10%.

In the second case, with a voltage drop of up to 20%, the control system of the
buffer power source includes a block of supercapacitors in series in the DC link of the
frequency converter, obtaining an additional buffer energy equal to the charge of this
block. The transient processes occurring in the supercapacitor unit in this case are shown
in Figures 12 and 13.
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The selected supercapacitor bank starts supplying 110 V to compensate for network
losses. After simulation, a 100% charged supercapacitor bank will last about 50 s to supply
buffer power to the network until it is fully discharged. This is sufficient since power was
originally assumed to be supplied for 30 s.

The analysis of the performance characteristics of the induction motor during super-
capacitor bank charging shows that the time taken for the motor to reach steady state
has increased by 0.05 s, which is 16.6% and is satisfactory for starting the motor under
load. The overshoot during supercapacitor unit charging has increased from 14.2% to
25%, which also slightly affects the transient quality. In this case, the electrical character-
istics of the motor—the rotor flux linkage and the stator current during charging have
almost not changed. It can be concluded that the calculated supercapacitor bank, based on
Maxwell BMOD0058 E016 B02, can be used as a buffer source of electricity in case of mains
drawdowns up to 20%, as well as this unit can be charged from the mains in parallel with
starting the motor at nominal mains voltage.

A simulation was performed with the voltage dropping from 400 V to 320 V. The
characteristics were recorded showing the change in voltage at the input of the rectifier
and after the inverter (Figure 14).
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Figure 14. Voltage drop at the input (a) and at the inverter (b).

The voltage drops at 0.5 s. After the fall, the supercapacitor unit begins to discharge
and is used as a buffer source of electricity. At the same time, the characteristics that
occurred in the drive were recorded—Figure 15.
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It can be seen from the figures that a slight voltage drop occurs at time 0.5 s, but thanks
to the supercapacitor unit, the voltage is immediately recovered and the motor continues
to operate at rated power.

Further simulations were performed to determine other properties and characteristics
of the supercapacitor unit. In particular, to determine the minimum allowable charge
voltage of the supercapacitor unit, a series of simulations were performed in which the
value of the current state of charge (initial value) changed. At the maximum value of the
unit voltage of 150 V, significant changes in the dynamics of the transient processes in the
electric motor occurred only when the current charge of the supercapacitor unit was 125 V.
The transient acceleration processes are shown in Figure 16.
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As a result of the simulations performed, it was found that the minimum value of the
state of charge of the supercapacitor unit is 121 V, which is 80% of the maximum charge
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value. With a current state of charge of 120 V and a network drawdown of 20%, this voltage
is no longer sufficient and the electric drive cannot start. Therefore, it is proposed to charge
the supercapacitor unit to this value before starting the electric motor.

A simulation was performed to determine the starting delay resulting from charg-
ing the supercapacitor bank to 80%. The supercapacitor unit was charged from a fully
discharged state to 80% when fed from a voltage source where a drawdown of 20% occurs—
Figure 17.
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Figure 17. Block charge from 0%: (a) current; (b) voltage and (c) state of charge.

From the diagram shown, it can be seen that charging to the minimum required
level of 80% takes 2.3 s and fully charging the supercapacitor unit takes 3 s, which has a
negligible effect on the delay in starting the electric motor, and it is recommended that this
be done before starting the electric drive itself. The scope showing the voltage coming
out of the rectifier when the voltage drop occurs and the buffer source of electricity is
connected, the oscilloscope shows the nominal value of the network voltage during the
charging of the buffer source of electricity were taken—Figure 18.
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Figure 18. Voltage at the rectifier: (a) using supercapacitor and (b) charging supercapacitor.

The difference between these values is 15 V, which also insignificantly affects the start
of the electric drive under load, as defined above.

A simulation of the electric drive scalar control was also carried out. The speed was
increased from the nominal value of 1500 rpm to 1750 rpm. The acceleration scope is shown
in Figure 19.
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4. Conclusions

When supplying power to electric drives of conveyors in metallurgical and mining
industries, which are located in areas remote from industrial networks, problems occur
when starting this electric drive due to losses on a long line. The supply voltage can
be up to 20% below the rated value, which significantly reduces the starting torque and
prevents the electric motor from starting under load. It is therefore recommended to use an
additional buffer power source developed on the basis of a supercapacitor unit.

The paper describes a mathematical model of an electric motor, a power source,
developed simulation models of a frequency converter, a buffer power source. Based
on these models, it was proved that it is not possible to start the electric motor under
load in the case of a drawdown in the network. In addition, a solution to this problem is
shown—the use of a buffer source of electricity based on a block of supercapacitors. The
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dynamic characteristics of the electric motor during discharging and charging of this unit
are considered. It was proved that the use of this unit allows to compensate for losses in
the electrical network and to start the electric motor under load.

An algorithm for the operation of the control system for the buffer power source
was proposed. The results can be applied to the power supply of devices with EMF and
active-inductive load, including for electric drives, batteries, and autonomous sources in
automation devices.

The analysis of the simulations showed the correctness of the assumption about the
use of a buffer power source and confirmed the possibility of using a block of Maxwell
BMOD0058 E016 B02 supercapacitors, calculated for the buffer power supply of the motor
AIR160S4. On conveyor lines in mining and metallurgy, where this motor is used, the
developed system of a buffer power source can be used as an emergency power supply
when starting an electric drive.

One direction, for further research, will be to try to use the energy generated during
recuperation to recharge a supercapacitor based buffer energy source.
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