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Abstract: Increasing the energy efficiency of machining operations can contribute to more sustainable
manufacturing. Therefore, there is a necessity to investigate, evaluate, and optimize the energy
consumed during machining operations. The research highlights a method employed to prioritize
the most energy-intensive machining operation and highlights the significance of electric param-
eters as predictors in power estimation of machining operations. Multi regression modeling with
standardized regression weights was used to identify significant power quality predictors for active
power evaluation for machining operations. The absolute error and the relative error both decreased
when the active power was measured by the power analyzer for each of the identified machining
operations, compared to the standard power equation and that obtained from the modeled regression
equations. Furthermore, to determine energy-intensive machining operation, a hybrid decision-
making technique based on TOPSIS (a technique for order preference by similarity to ideal solution)
and DoM (degree of membership) was utilized. Allocation of weights to energy responses was carried
out using three methods, i.e., equal importance, entropy weights, and the AHP (analytical hierarchy
process). Results revealed that a drilling process carried out on material ST 52.3 is energy-intensive.
This accentuates the significance of electric parameters in the assessment of active power during
machining operations.

Keywords: machining operations; electric parameters; active power; active energy; specific energy
consumption; energy efficiency; TOPSIS; entropy weight; AHP

1. Introduction

Manufacturing activities can negatively impact the environment. It is one of the major
consumers of electricity. Electricity production and heat contribute to CO2 emissions,
especially the production of electricity through fossils fuels like coal. Due to Covid-19,
there was an unprecedented decline in emissions in 2020. Worldwide CO2 emissions from
the electricity sector reduced by almost 450 million tons in 2020 [1]. This was mainly due
to the reduction in industrial production. Worldwide energy demand dropped by 3.8%
in the first quarter of 2020 compared with the first quarter of 2019. As a result, annual
energy demand in 2020 decreased by 6%. The reduced use of coal amounted to 1.1 Gt of
reductions in CO2 emissions. This highlights that the increase in manufacturing activity
and its decrease in the lockdown period due to the coronavirus pandemic directly affected
the growth and decline of CO2 emissions [2,3].
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The IEA (International Energy Agency) Global Energy Review 2021 assessed that
emissions of CO2 are likely to increase by 5% to 33 billion tons. Global energy demand
is expected to increase by 4.6% in 2021. The electricity sector is expected to contribute to
75% of this increase. Unless tangible steps are taken to curb emissions of CO2, the situation
in 2022 may become alarming [2,3]. It is a clear warning that enough is not being done
to introduce clean energy technologies. We face an immense challenge in reforming the
worldwide energy system. Therefore, there is a need to inculcate machining practices that
limit electrical energy consumption and promote a green environment, thus highlighting
the need for this research.

Review papers provide great insight into the work done to improve the energy effi-
ciency of machining processes. For example, Zhang et al. [4] focused on theoretical and
experimental models in the preview of energy efficiency of machine tools, Yoon et al. [5] re-
ported on energy-saving strategies in the case of machine tools, Zhou et al. [6] researched in
the field of cutting energy models based on machining processes, and Zhao et al. [7] concen-
trated on the optimization of energy components, process constraints, and improvements
in auxiliary system efficiency.

The literature review indicates that research in energy conservation of machining
processes started way back in 1994 when Bayoumi and Hutton [8] applied specific cutting
energy to measure energy efficiency in the milling process. Draganescu et al. [9] stipulated
numerical models for specific energy consumption and energy efficiency at the spindle
level. Gutowski et al. [10] reported that the energy consumed by the cutting process
accounts only for 20% of the total energy consumed by the machine tool. A theoretical
model for the power consumption of a machine tool was put forward and the concept of
specific energy consumption (SEC). Li and Kara [11] proposed an empirical SEC model
in the turning process on a CNC lathe. The model encompassed coefficients related to
workpiece materials and machine tools, along with material removal rate (MRR). He
et al. [12] stated that machine tools usually function at an efficiency of less than 30% and
have a high possibility for energy saving and efficiency improvement.

The SEC model introduced the milling process and considered the effect of change in
spindle energy due to different cutting conditions [13]. A generalized SEC put up a model
for automated machine tools in the milling process [14]. The production of machine tools
and energy efficiency were solved with the help of scheduling and electricity utilization
with a hybrid genetic algorithm. This method could diminish prices, minimize greenhouse
gas emissions, and save energy [15]. Velchev et al. [16] set up an energy consumption
model for the turning process and optimized the machining parameters. The main barrier
faced in getting enhanced industrial energy efficiency is the mindset and attitude of
manufacturing unit owners toward sustainable development and product manufacturing.
The 11 key hurdles to making more sustainable and low-carbon manufacturing units were
discussed [17]. Zhao et al. [18] broadened the model proposed by Li et al. [13] for the
SEC for the turning process by considering the coolant pump’s unloaded spindle power
and power accompanied by standby and cutting power. Sealy et al. [19] measured the
energy consumption of the machine tools at the cutting, spindle, and machine tool levels.
Zhou et al. [7] broadened the Gutowski [10] and Li [11] models by considering the outcome
of the speed of the spindle upon power utilization in the milling process. Other research
focused on machining process-level energy. For example, Hu et al. [20] examined the
machine tool’s variable and fixed energy utilization states. They recommended an online
method for checking the energy efficiency and energy utilization ratio of the machine tool.

Many researchers set up empirical models based upon the different working states
of the machine tool. For example, an energy model was presented while considering
toolset time, tool change, MRR, and embodied energy of the cutting tool [21]. The energy
consumption of different machine tools was observed on the basis of each machine tool’s
size and technical features [22]. The total energy in the milling process was estimated,
taking into consideration different tool paths. The total energy consumed was the aggregate
of energy consumed for each state, e.g., basic state, tool change spindle rotation, coolant,
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feed motion, and the cutting state [23]. The machining energy was modeled on the basis of
rapid transverse, spindle acceleration, and material removal states [24]. The variation in
specific cutting energy was studied using undeformed chip thickness, tool wear, cutting
tool nose radius, and dry and flood coolant, assuming that the tip energy was 25% of
the total energy demand. The optimum feed rate level helped the study achieve a 72%
reduction in tip energy, amounting to about an 18% reduction in total direct energy. It was
pointed out that tool wear increases the specific energy coefficient, and the flood-cutting
environment decreases the specific energy coefficient. Nose radii do not significantly
alter the specific energy demand [25]. A model for energy consumption was suggested
in the milling process based on machine tool constituents such as the spindle, feed axes,
coolant pump, ATC, and chip conveyor. The spindle power was further modeled as a linear
function of spindle speed. The axis feed power was modeled as a linear function of the
feed rate. Lastly, the energy consumed in the cutting process was estimated as a difference
between the total energy consumed and the energy consumed during the air cut [26].

The machine tool’s total energy utilization was computed considering the power
model and operation time for each machine tool component such as the spindle, tool
changer, axis, coolant, chip conveyor, and clamping [27]. A specific energy consumption
model was presented for material removal during the milling process, considering actual
cutting energy and air-cutting energy [28]. A therblig-based value stream model was
proposed. The therblig approach is built on the micro motions in the machine tool. Thus,
the machining operations are split into series of small energy-consuming machine tool
motions. This approach helps to analyze the energy consumption of the basic motions of
the machine tool [29]. The idle, cutting, and tool change states were considered and put
forward a model of direct machining energy. The model included embodied energies of
the cutting tool and the coolant as indirect energy [30].

Few studies focused on improving energy efficiency. Instead, experiments were
performed to conserve energy considering a weight reduction of moving parts of the
machine tool by introducing lotus-type porous carbon steel, energy-saving by reducing
standby time, use of an optimum-capacity coolant pump, and the influence of tilting angle
on machining energy [31]. In addition, many researchers worked on the optimization
of the machining parameters for a decrease in energy consumption. The modification of
machining variables led to improved energy efficiency and reduced energy consumption.
A higher cutting value led to diminished power of drilling, face, and end milling, but
constraints of surface quality and life of tool must be considered. An adaptive pecking cycle
also led to the lower power consumption of deep hole machining [32]. The dry milling
process was performed on medium carbon steel C45 with input responses of cutting speed,
feed, depth of cut, and radial depth of cut, and optimized output responses such as carbon
emissions, surface roughness, and MRR [33]. The dry turning process was performed on
AISI 1045 steel and optimized with the help of grey relational analysis for cutting power
and surface roughness (Ra) [34]. The machining process of grooving was observed under
dry conditions on AISI 4340 steel and considered an additional input response factor of the
hardness of the material; the MRR and tool wear carbon emissions were optimized with
the help of the fuzzy method [35]. Turning experiments were performed on alloy steel with
input parameters of cutting speed, feed, depth of cut and nose radius, optimized energy
efficiency, active energy consumption, and power factor during the machining process
with the help of Taguchi and ANOVA [36]. Kumar et al. [37] researched the wet turning of
EN 353 alloy and optimized the output response parameters of energy efficiency, active
power consumption, active energy consumption, MRR, Ra, and power factor with the help
of the Taguchi and TOPSIS methods. The effect of longitudinal ultrasonic vibrations and
minimum quantity lubrication on the drilling force, burr height, and Ra was identified
with the help of the RSM technique, showing that the most influential factors were the
feed rate, vibration amplitude, and spindle speed [38]. A multi-objective optimization was
performed on Ra, MRR, and SEC based on grey relational analysis while turning AISI 304
austenitic steel [39].
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The literature review reveals specific terms used to express the energy efficiency of
machine tool and machining processes. The energy utilization ratio is the ratio of the energy
utilized for actual cutting or machining the workpiece to the total energy consumed by the
machine tool. Researchers [19,28,37] utilized the concept of instantaneous energy efficiency
in their research. This is the ratio of the power used during the cutting or machining
process to the total power consumed by the machine tool at that instant. Researchers [9,20]
also used SEC in their work, which can be described in three stages at the process, spindle,
and machine tool levels. At the process level, it is defined as the ratio of energy consumed
for material removal or the machining process to the volume of the material removed;
alternatively, it is the ratio of the power consumed to the material removal rate. At the
spindle level, it is the energy consumed by the spindle motor during machining to the
volume of the material removed. At the machine tool level, it is the ratio of the volume of
the material removed. A few authors used the concept of relative energy efficiency in their
works [30,40] for energy benchmarking. This is the ratio of the minimum energy required
to remove the material to the actual energy consumed to remove the material.

1.1. Research Gaps Based on Literature Review

The literature survey revealed that the research in the field of energy efficiency of ma-
chining processes has mainly been dedicated to building up empirical models for evaluating
energy consumption. The empirical models obtained use coefficients and constants that
depend on the machine tool’s nature, the nature and composition of the workpiece, and
the cutting tool. Such constants can be determined from experimental data only. However,
there is a current need to evaluate energy or power consumption directly with the help of
devices such as power loggers or power quality analyzers rather than empirical models.
The literature review also revealed that most research has been conducted on machining
processes such as turning or milling for parametric optimization. However, it is better to
investigate, evaluate, and optimize machining processes that are energy-intensive. More-
over, the studies conducted previously revealed that electric parameters and their impact on
power consumption have not been analyzed. Hence, there is a need to investigate the elec-
tric parameters and prioritize the most energy-intensive machining processes. The “most
energy-intensive” term refers to the machining operation consuming maximum energy. It is
judged on the basis of not only a single condition of energy consumption but also criteria
such as specific energy consumption and energy efficiency.

1.2. Research Questions and Intended Contribution of the Study

Considering the research gaps mentioned above, the study addressed the following
research question:

“Do we need to identify the electric parameters and prioritize the most energy-intensive
machining processes?”

The answer to this query is yes; this study can fill the gap of nonavailability of
a systematic methodology to prioritize the most energy-intensive machining process.
Research on the shop floor of an industry poses a significant challenge. However, it is one
way to get hands-on knowledge and awareness about the industry’s real challenges. This
increases the chances of implementation of the results of the research by the industry. The
time restrictions for conducting experiments represent one of the challenges faced. The
production time of the industry may be affected. Halting one machine tool to perform
experiments may stop the entire production line. However, actual conditions can be
monitored and improved only when a real situation is observed on the shop floor. This
helps to identify the impact on the quality of power being supplied to the given machine
tool due to the working of other machine tools in the vicinity and the impact of electric
parameters on power consumption. An empirical study or theoretical research is of no
use unless it is meaningful and practical for the industry. This study intends to contribute
the methodology to any industry to find significant electric parameters and identify the
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most energy-intensive machining operations. Hence, the investigation laid down several
research objectives, described below.

1.3. Research Objectives

Considering the research gap and intended contribution, the study based its investiga-
tion upon the premises of the following research objectives:

• To investigate the significant electric parameters and to analyze their impact on
power consumption.

• To ascertain a methodology to identify and prioritize the most energy-intensive ma-
chining processes.

The rest of the paper is organized as follows: Section 2 describes the materials and
methods. Then, it identifies methods used to achieve the research objectives, followed
by explaining the materials and machine tools used for experimentation. Section 3 deals
with an investigation of significant electric parameters with the help of multiple regression
modeling and determination of their impact on active power consumption. Section 4
includes the hybrid decision-making methodology and its application to prioritize energy-
intensive machining operation, as well as a discussion of the results, followed by the
conclusions in Section 5.

2. Materials and Methods

A case study was conducted to prioritize energy-intensive machining operations
and gauge the influence of electric parameters. Firstly, the research team identified the
manufacturing industry for performing experiments. As a result, Auto International was
selected in the industrial hub of Ludhiana, Punjab, India. It is located in Kohara, a place
near the industrial town of Ludhiana. The main reason for choosing this industry was
the willingness and cooperation of the management of the industry to extend their facility
for experimentation despite the busy schedule of the shop floor. In addition, the industry
management was interested in the outcome of the investigation and looked forward to the
energy conservation of their machining operations. Next, the research team assessed the
various machining operations in the concerned industry’s machine shop. The identified
operation consisted of different machining operations to accomplish the final product. The
details of the specified machining operation are shown in Figure 1.

Figure 1. Machining operation details identified for study in the machine shop of the industry.
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A component called a Blickle (shown in Figure 2a, used as a component in airport
trolleys) was machined on a vertical milling machine (VMC). The first four operations
(O-1 to O-4) shown in Figure 1 were performed on the Blickle. Operation O-1 involved
drilling with an HSS drill and special core drill. Operation O-2 consisted of drilling with
a solid carbide drill and special core drill. Operation O-3 involved rough turning with a
carbide insert. Lastly, O-4 consisted of drilling, facing, and chamfering with a solid carbide
drill and special core drill. A Gear Blank (Figure 2b, used as a component in tractor gears)
was machined as the workpiece for O-5; its machining was completed on a CNC lathe.
Operation O-5 involved the turning and facing of the Gear Blank with a carbide insert. The
details of the workpiece, including the Blickle and Gear Blank, are shown in Table 1. The
cutting tools utilized for machining operations from O-1 to O-5 and their materials and
particulars are shown in Table 2. The details of cutting parameters for each operation are
shown in Table 3. The specifications of the machine tools used are presented in Table 4.
Figure 3a shows the power logger, and Figure 3b shows the connections of the power
logger with the main power supply.

Figure 2. Identified components under study.

Table 1. Details of the workpiece.

Component Blickle for O-1 to O-4

Workpiece material Mild steel grade: DIN: ST52.3

Percentage composition C: 0.207–0.22, Mn: 1.04–1.6, Si: 0.240–0.5,
P: 0.033–0.035, Al: 0.038, and rest Fe

Surface Hardness 149/167 BHN
Grain size 6.5 to 7.0

Micro Structure Pearlite + ferrite
Applications Manufacturing of automobile parts, airport trolley parts

Component Gear Blank for O-5

Workpiece material 20MnCr5 steel or EN 10084-2008

Percentage composition C: 0.17–0.22, Simax: 0.4, Mn: 1.1–1.4, Cr: 1–1.3,
Pmax: 0.035, Smax: 0.035

Applications Auto parts, tractor parts
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Table 2. Cutting tools, materials, and particulars.

Operation Cutting Tool Technical Particulars

O-1 Drilling HSS drill; Make: ITM Diameter Φ 16.0, flute length 110 mm, point angle
140◦, number of flutes 2

O-1 Core Drilling
Special core drill (solid carbide) with

SECO inserts;
Namoh Tooling’s

Flute length 85 mm, diameter Φ 17.75, tool with
two fine boring inserts SECO make SCGX060204P2

O-2 Drilling Solid carbide drill;
Namoh Tooling’s

Diameter Φ 16, point angle of 140◦, coating of
TiAIN, flute length 100 mm, shank length of

50 mm, external cooling

O-2 Core Drilling
Special core drill (solid carbide) with

SECO inserts;
Namoh Tooling’s

Flute length 85 mm, diameter Φ 17.75, tool with
two fine boring inserts SECO make SCGX060204P2

O-2 Chamfer SECO insert TCMT110204-F1-TP1501, chamfer at angle 45◦

O-2 Facing SECO insert SCGX060204P2
O-3 Rough Turning SECO carbide insert WNMG060408-M5-TP1501

O-3 Facing Facing insert; SECO Make ONMU0900520 ANTN-M13-F40M

O-4 Drilling Special carbide drill
Namoh Tooling Flute length 50 mm, point angle 140◦

O-4 Chamfer SECO insert TCMT110204-F1-TP1501 chamfer at angle 45◦

O-4 Facing SECO insert SCGX060204P2
O-5 Turning and Facing SECO carbide insert WNMG060408-M5-TP1501

Table 3. Cutting parameters for machining operations.

Machining Operation Cutting Parameters Details

O-1

Drilling and Core Drilling-1: (on VMC)
Drilling-1 (HSS drill): External diameter of workpiece 30 mm

Hole diameter in drilling: 16 mm, Spindle RPM 450
Incremental peck drilling 15 mm of peck length, Feed rate 70 mm/min,

the actual depth of the hole 77 mm
Core drilling: Core diameter 17.8 mm, Spindle RPM 1200, Feed rate 120 mm/min

O-2

Drilling and Core Drilling-2: (on VMC)
Drilling-2 (Solid carbide drill): External diameter of workpiece 30 mm

Hole diameter in the drilling 16 mm, Spindle RPM 1050
Incremental peck drilling 10 mm of peck length,

Feed rate 125 mm/min, The actual depth of the hole 77 mm
Core drilling: Core diameter 17.8 mm, Spindle RPM 1200, Feed rate 120 mm/min

O-3
Rough Turning: (on CNC)

External diameter of rough turning 35 mm, Final diameter 31.4 mm, depth of cut of 1.8 mm,
feed of 0.18 mm/rev, Cutting speed 31 m/min, Length of cut 105 mm

O-4

Drilling and Chamfer, Facing: (on VMC)
Facing: Spindle RPM 1500, Feed rate of 200 mm/min

Drilling: Drill diameter 14 mm, Spindle speed 1500 RPM, Incremental peck drilling
Peck length 8.2 mm, Hole depth 10.5 mm

Chamfer: Spindle RPM 2000, Feed 150 mm/min, 1 × 45◦

O-5

Turning and Facing: (on CNC)
Turning: Final outer diameter obtained 133.4 mm, Length of cut 19.1 mm, depth of cut 1 mm,

Feed 0.18 mm/rev, Cutting speed 168 m/min
Facing-1: Outer diameter 133.4 mm and inner diameter 105 mm, faced through the depth of 1 mm.

Feed 0.18 mm/rev, cutting speed 150 m/min
Facing-2: Outer diameter 68 mm and inner diameter 52.78 mm, faced through the depth 1 mm,

Feed 0.18 mm/rev, cutting speed 76 m/min



Energies 2021, 14, 4761 8 of 39

Table 4. Technical specifications of machine tool used.

Description Units VMC BFW/V-4
BT-40

CNC LATHE
BFW

RHINO (2550)

CNC LATHE
JYOTI

(DX-100)

CNC System - Fanuc 01-MF Fanuc (B-6i)
828D Siemens

Spindle
Motor Power kW

7.5 (Cont.) 11 7
11 (Int.) 15 10.5

Spindle Speed rpm 8000 2000 4000
Table X-Axis mm 600 200 (cross) 360

Saddle Y-Axis mm 450 - -
Spindle Z-Axis mm 500 625 (longitudinal) 200

Axis Drives Feed Rate mm/min 1–10,000 20 Rapid feed
(X and Z) axis

24 Rapid feed
(X and Z) axis

Ball screw
Día × Pitch mm 32 × 16 32 × 10 (X-axis)

40 × 10 (Z-axis) 32 × 10

Table Clamping Area mm ×mm 450 × 900 - -
ATC (No. of Tools) - 24 8/12 5

Accuracy Positioning mm ±0.007 ±0.007 ±0.007
Accuracy Repeatability mm ±0.005 ±0.005 ±0.005

Power Supply 3-Phase,
415 V, 50 Hz

3-Phase,
415 V, 50 Hz

3-Phase,
415 V, 50 Hz

Total Machine Power KVA 18 16
Chuck Size mm - 250 170

Std. Turning Diameter mm - 350 (max) 100
Max. Turning Length mm - 200 200

Figure 3. (a) Hioki power quality analyzer; (b) Hioki power analyzer connections.

The equipment used for making the observations was a Power Quality Analyzer,
HIOKI Make, model PQ3100 (HIOKI EE Corporation, Ueda, Nagano 386-1192, Japan). The
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wiring mode used was 3P4W (3-Phase 4 wire). The voltage measurement was 415 V (line
to line), the current sensor used was CT7126, the rated current was 60 A AC, the maximum
current was 100 A peak, the maximum rated voltage to earth was 300 V AC, the anticipated
transient overvoltage was 4000 V, the active power was 300 W to 9 MW with an accuracy
of ±0.3% rdg. ±0.1% f.s. + clamp sensor accuracy, the measurable conductor diameter was
Φ15 mm, and the measurement accuracy was as follows: frequency (45 Hz ≤ f ≤ 66 Hz),
for (±0.3% rdg. ±0.1% f.s.), and phase (±0.2◦).

2.1. Electric Parameters and Energy Responses

• Active power consumption by machine (ӒPCm/c) in kW
This is the total power consumed by the machine and machining operation during the

actual machining of the workpiece [41–43].
• Power factor (

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

Fm/c)
The

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

Fm/c is the ratio of active power to apparent power, as shown in Equation (1) [36].

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

Fm/c =
Active power

Apparent power
. (1)

Active power is the actual power utilized to do useful work. Reactive power in (Var-
volt-ampere reactive) is when the power swings back and forth without any work. It is the
product of the apparent power and the sine of the phase difference (sinθ). It results from
inductive loads known as lag reactive power and reactive power ensuing from capacitive
loads known as lead reactive power. Apparent power in VA is obtained by combining
active power and reactive power vectorially. Good
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ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

F usually ranges from 1.0 to 0.95, poor
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  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

F ranges from 0.95 to 0.85, and bad
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  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

F is below 0.85.
• Active energy consumption by machine (ӒECm/c) in kWh
This is the total energy consumed by the machine and machining operation during

the actual machining of the workpiece. Energy is a product of average active power over a
complete cycle, and machining time (

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/c) is shown in Equation (2) [36,42].

ÄECm/c = ÄPCm/c ×

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/c. (2)

• Energy efficiency (ĖĖή)
This gives the ratio of the energy consumed by the machining process to the total

energy consumed by the machine. The ĖĖή is shown in Equation (3) [36,44–47].

ĖĖή =
ÄECm/c − ÄECm/c(AC)

ÄECm/c
×100, (3)

where ÄECm/c(AC) is the energy consumed by the machine during air cutting.
• Specific energy consumption (

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

) in kJ/cm3

This is the energy required to remove a unit volume of the material. It is obtained by
dividing the total energy consumed by a machine during the machining of a workpiece by
the total volume of material removed, as shown in Equation (4) [48–50].

Specific energy consumption (

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

) =
ÄECm/c

Unit volume
. (4)

• Current RMS (root mean square) value (

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/c) in ampere
The power quality analyzer records the current at an interval of 1 s. The current

registered is the average of the root mean square (RMS) value of current of each of the
three phases at that instant. Thus, the magnitude of the current documented and used for
calculations is yet again the average of all these observations over the entire machining
cycle.

• Voltage RMS value (

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 
av) in volt
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The power quality analyzer logs the voltage at an interval of 1 s. The voltage measured
is a line-to-line voltage in a three-phase supply. The voltage noted is the average of the
RMS value of voltage across each of the three phases at that instant. Thus, the magnitude
of the voltage documented and used for calculations is yet again the average of all these
observations over the entire machining cycle [51].

• Current unbalance (

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cub)
This is measured as a percentage of the fundamental current, as shown in Equation (5).

The three-phase power system is balanced or symmetrical if the three-phase voltages and
currents have the same amplitudes and same phase shifting (angular difference) at 120◦

to each other. If either or both of these conditions are not met, the system is unbalanced
or asymmetrical [51].

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cub (%) =
Maximum deviation from

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/c m/c

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/c m
c

× 100. (5)

• Voltage unbalance (

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

ub)
This is measured as a percentage of the fundamental voltage, as shown in Equation (6). Thus,

the current unbalance factor is several times larger than the voltage unbalance factor [51].

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 
ub (%) =

Maximum deviation from the average voltage
average voltage

× 100. (6)

Thus, the current unbalance causes power and energy losses. International standards
such as EN-50160 and IEC 1000-3-series give limits for the unbalance voltage calculated
using the ratio of sequences method up to 2% for LV (low voltage) and MV (medium
voltage) systems measured as 10 min values with an instantaneous maximum of 4% [51,52].

• Current total harmonic distortion factor (

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cthdf)
Harmonics are measured in terms of the total harmonic distortion factor. This indicates

the extent to which the total harmonic component is distorting the fundamental waveform.
The power quality analyzer used for experimentation can measure all types of triplen
harmonics. According to the general system’s IEEE 519-1992 standard, the harmonic
voltage limits the maximum harmonic distortion factor’s to 5.0% [41,53].

• Electrical power transients
Electrical transients are brief bursts of energy that occur on power, data, or commu-

nication networks. Transients are momentary fluctuations in voltage or current that last
less than a millisecond. However, for a fraction of a second, high voltages are utilized to
drive large amounts of current into an electrical circuit. The cause of the power transients
may be due to utility grid switching, arc welders (arc flash), equipment cycling, grounding,
lightning strike, and voltage/current drops [41,53].

2.2. Experimental Procedure, Observations, and Calculations

Under the current study, a particular industry was selected. Five separate machining
operations on different machine tools were considered. These operations were designated
as O-1 to O-5. Details of these machining operations were presented in Section 2.1. The
machine tools were placed in the machine shop of the industry. The experiment was
performed under the actual operating conditions. Other machine tools in the vicinity
of the machine tool under study were simultaneously functioning. Power and electric
parameters for each of the machining operations were noted with the help of the Hioki-3100
power quality analyzer attached to the main power supply of the machine tool. Readings
were noted at an interval of 1 s. The data obtained were analyzed with the help of Hioki
PQ-one version 4.00 software (HIOKI EE Corporation, Ueda, Nagano 386-1192, Japan. The
machining time for each operation was carefully noted. Three sets of observations were
recorded for each of the machining operations.

Furthermore, two types of observations were made for each machining operation,
first under air cutting (AC) and then under an actual cut. In air cutting, observations were
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recorded without actual cutting taking place, whereas, under the actual cut, observations
were recorded when actual cutting or machining was taking place.

The observations were stored in the SD memory card of the power quality analyzer.
The memory card was then transferred to the laptop or computer where the Hioki PQ-1
software Ver. 4.00 was installed, and different electric parameters were recorded at an
interval of 1 s for the entire duration of the machining operation. The observed data were
tabulated under an excel chart. The average values of each electric parameter correspond-
ing to each machining operation were noted. In the study, the machining processes did not
have any power transients due to switching, welding, equipment cycling, grounding, and
lightning supplies. Consequently, these were not taken into account as factors affecting
electric parameters. Furthermore, motor conditions for machines such as VMC/CNC do
not change perceptibly with time and remain for a long time. Moreover, the machine tools
under study were no more than 3 years old; thus, this effect was negligible. Higher-order
harmonics (e.g., fifth and ninth) were seen in the observations, but their percentage values
were too minimal to make an impact; hence, they could be safely rejected. Moreover, these
harmonics were well within IEEE 519 and even EN50160 harmonic ratings or permissi-
ble limits. The experimental observations and calculations for air cutting, i.e., without
machining, are shown in Table 5.

Table 5. Experimental observations and calculations of air cutting (without machining).

Operation

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/c ӒPCAC ӒECAC

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cm/c

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cthdf

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cub

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 
av

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 
ub

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 
thdf

O-1 154 1.467 0.062 3.335 26.345 33.645 416.540 2.658 3.132
O-2 104 1.449 0.041 3.277 26.676 31.750 411.223 1.570 5.406
O-3 76 2.205 0.046 5.423 29.082 14.240 415.302 0.410 2.149
O-4 77 1.080 0.023 2.457 41.035 35.515 417.354 0.260 2.255
O-5 63 1.626 0.030 3.594 52.480 12.930 428.041 0.260 5.900

Active energy consumption was calculated as per Equation (2). The experimental
observations taken from the power logger for actual cutting, i.e., during machining oper-
ations for operations O-1 to O-5, are shown in Table 6. The calculations of active energy,
energy efficiency, and specific energy consumption as per Equations (2), (3), and (4) are
shown in Table 7. These data were used to evaluate the impact of electric parameters on
active power consumption and ascertain a methodology to identify and prioritize the most
energy-intensive machining processes.

Table 6. Experimental observations of the actual cut (machining).

Operation

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/c
(sec)

ӒPCm/c
(kW)

ӒECm/c
(kWh)

V
(cm3)

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

Fm/c

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cm/c
(A)

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cthdf
(%)

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cub
(%)

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 
av

(V)

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 
ub

(%)

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 
thdf

(%)

O-1 154 1.973 0.084 19.759 0.677 4.027 40.898 40.316 415.500 2.58 3.638
O-2 104 2.321 0.067 19.759 0.675 4.719 40.965 35.670 409.706 1.630 6.565
O-3 76 3.706 0.077 19.702 0.686 7.404 41.435 10.94 415.234 0.405 2.26
O-4 77 1.542 0.033 3.760 0.647 3.478 43.673 18.583 416.825 0.225 2.257
O-5 63 2.975 0.053 14.300 0.738 5.691 51.447 19.420 426.704 0.285 6.349

Table 7. Calculations of actual cut during O-1 to O-5.

Operation ӒECm/c
(kJ)

ĖĖή

(%)

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

(kJ/cm3)

O-1 302.472 25.637 15.308
O-2 241.200 38.209 12.207
O-3 277.74 40.260 14.097
O-4 118.620 30.303 31.548
O-5 190.800 43.396 13.343
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3. Regression Models of Active Power Consumption for Machining Operations

This section describes the multiple regression modeling of active power consumption
in each machining operation from O-1 to O-5. Experiments were carried out in the real
world at a machine shop in the industry. They were not carried out in a laboratory under
controlled settings. Many machine tools and pieces of equipment were used simultaneously,
along with the observed machine tools. As a result, the quality of the electric power
supplied to the machine tool was affected. Therefore, the main aim of the regression
modeling was to identify the significant electric parameters affecting the active power
consumed by the machining operations. The predictors or the independent variables
considered were the following electric parameters: the average current, power factor,
current total harmonic distortion factor, current unbalance, voltage unbalance, average
voltage, and voltage total harmonic distortion factor.

The regression models for the five machining operations were developed using the
backward elimination method. This involved eliminating nonsignificant terms from the
model. The elimination of nonsignificant terms is based on the p-value of the t-statistic test
evaluated at α = 0.05 for each of the predictors. If the p-value was higher than 0.05, the
predictor was considered nonsignificant. The coefficient of determination (R2) and ANOVA
were used to assess the fitness of the proposed model. The R-squared value describes the
variance in the response data interpreted by the regression model. The model’s predicted
R-squared (pred) indicates how it might anticipate data. When unnecessary variables are
included in the model, the adjusted R-squared (adj) will typically decrease. There is a good
chance that significant terms have been introduced into the model if the difference between
R-squared and R-squared (adj) is small [54].

The regression models were made with coded regression coefficients. These were
obtained by subtracting the mean from each predictor’s value and dividing it by the
standard deviation. Coded coefficients help to determine the relative importance of each of
the significant predictors to the dependent variable. The R-squared Value was noted after
the first iteration of the regression modeling process. The R-squared values are shown in
Table 8.

Table 8. Coefficient of determination (R-sq.) for O-1 to O-5.

Operation
Iteration-1 Final Iteration

R-Sq. (%) Non-Significant
Terms Removed R-Sq. (%)

O-1

R-sq. 98.56

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 
ub,

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 
thdf,

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cub

98.55

R-sq. (adj) 98.50 98.51

R-sq. (pred) 98.19 98.27

O-2

R-sq. 99.52

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 
ub,

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 
thdf,

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cthdf

99.50

R-sq. (adj) 99.48 99.48

R-sq. (pred) 99.39 99.42

O-3

R-sq. 99.69

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 
thdf,

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cthdf,

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 
av,

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cub

99.65

R-sq. (adj) 99.66 99.64

R-sq. (pred) 99.46 99.49

O-4

R-sq. 98.60

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 
ub,

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 
av,

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cub

98.41

R-sq. (adj) 98.46 98.33

R-sq. (pred) 98.07 98.02

O-5

R-sq. 93.96

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 
thdf,

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 
av

93.64

R-sq. (adj) 93.20 93.08

R-sq. (pred) 89.57 89.30
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The developed regression equations for machining operations in uncoded regression
coefficients from O-1 to O-5 are shown in Equations (7)–(11).

ӒPCm/c (O-1) = −12,133 + 23.8

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 
av + 7.893

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cthdf + 3964.8

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

Fm/c + 301.4

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cm/c. (7)

ӒPCm/c (O-2) = −17,763 + 13.25

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cub + 34.97

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 
av + 4494

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

Fm/c + 478.76

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cm/c. (8)

ӒPCm/c (O-3) = −1621 − 1441

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 
ub + 2316

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

Fm/c + 582.94

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cm/c. (9)

ӒPCm/c (O-4) = −1618 − 418

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 
thdf + 6.466

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cthdf + 4002

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

Fm/c + 355.57

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cm/c. (10)

ӒPCm/c (O-5) = −5019 − 11296

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 
ub + 68.4

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cub + 24.7

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cthdf + 6853

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

Fm/c + 629.2

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cm/c. (11)

After removing nonsignificant terms (p-values greater than 0.05), final models of active
power for each operation were accepted with electric parameters having significant effects
(p-value less than 0.05). The results of ANOVA are shown in Table 9. The coded coefficients
for machining operations from O-1 to O-5 are shown in Table 10.

Table 9. ANOVA Table for O-1 to O-5.

Source DF Adj SS Adj MS F-Value p-Value

O-1

Regression 4 41,924,033 10,481,008 2526.98 0.000
Error 149 617,999 4148
Total 153 42,542,032

O-2

Regression 4 103,689,348 25,922,337 4895.57 0.000
Error 99 524,211 5295
Total 103 104,213,559

O-3

Regression 3 68,657,447 22,885,816 6859.26 0.000
Error 72 240,227 3336
Total 75 68,897,674

O-4

Regression 4 19,636,536 4,909,134 1117.05 0.000
Error 72 316,419 4395
Total 76 19,952,955

O-5

Regression 5 143,722,619 28,744,524 167.81 0.000
Error 57 9,763,666 171,292
Total 62 153,486,286

Table 10. Coded regression coefficients for O-1 to O-5.

Term Coef SE Coef T-Value p-Value VIF

O-1

Constant 1942.20 5.19 374.24 0.000

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

av 12.04 5.39 2.23 0.000 1.07

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cthdf 82.22 8.76 9.39 0.000 2.83

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

Fm/c 369.48 7.55 48.93 0.000 2.10

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cm/c 239.48 8.97 26.71 0.000 2.95
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Table 10. Cont.

Term Coef SE Coef T-Value p-Value VIF

O-2

Constant 2302.78 7.14 322.73 0.000

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cub 96.0 11.7 8.19 0.000 2.67

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 
av 30.05 8.04 3.74 0.000 1.26

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

Fm/c 386.7 13.8 28.03 0.000 3.70

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cm/c 755.8 10.8 69.77 0.000 2.28

O-3

Constant 3685.24 6.63 556.20 0.000

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 
ub −30.80 6.91 -4.46 0.000 1.07

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

Fm/c 158.1 13.2 11.94 0.000 3.94

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cm/c 816.1 13.1 62.42 0.000 3.84

O-4

Constant 1528.34 7.55 202.30 0.000

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 
thdf −17.43 8.09 −2.15 0.035 1.13

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cthdf 105.1 13.8 7.60 0.000 3.30

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

Fm/c 431.4 13.0 33.31 0.000 2.90

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cm/c 415.02 8.96 46.34 0.000 1.39

O-5

Constant 2942.9 52.1 56.44 0.000

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 
ub −183.9 62.2 −2.96 0.005 1.40

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cub 367 180 2.04 0.046 11.68

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cthdf 218.9 98.9 2.21 0.031 3.54

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

Fm/c 1108.4 61.2 18.12 0.000 1.35

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cm/c 1211 133 9.11 0.000 6.40

3.1. Analysis of the Regression Model for Operation-1 (O-1)

In machining operation O-1, the overall regression model as per Equation (7) was
statistically the best fit because the coefficient of determination as per Table 8 after the final
iteration had values of R-sq. 98.50% and R-sq. (adj) 98.47%. This means that the regression
model explained the maximum variation of the dependent variable, which was active
power, up to 98.47%. A look at the residual plots for ӒPCm/c for (O-1) in Figure 4b indicates
that the residuals lie close to the diagonal line representing an ideal normal distribution.
The points of the residual plots were not skewed, and they were randomly distributed.
Therefore, it seems that the data were normally distributed. Furthermore, a look at the
histogram of residuals gives evidence that our residuals were normally distributed. The
distribution of residuals along the straight horizontal line was similar for all significant
parameters, suggesting equality of variance. Therefore, the conditions of normality of
residuals and equality of variance were fulfilled. The ANOVA results for (O-1) revealed
that there was significance between-group variance according to the value of the F-statistic
(see Table 9). At α = 0.05, the F-value was equal to 2526.98 with a p-value < 0.001. This
indicates evidence of a regression relationship between the dependent variable ӒPCm/c
and the independent variables

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

Fm/c,

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cm/c,

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 
av, and

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cthdf combined.
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Figure 4. (a) Main effects plot for O-1. (b) Residuals plot for O-1. (c) Contour plots for O-1.
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Individual coefficients contributed meaningful information in the prediction of ӒPCm/c
(see Table 10 for O-1). The test statistics showed significant t-values of

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

Fm/c,

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cm/c,

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 
av,

and

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cthdf at α = 0.05. Therefore,

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

Fm/c,

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cm/c,

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 
av, and

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cthdf were individually useful
in the prediction of ӒPCm/c. The coded coefficients in Table 10 reveal that, for machining
operation O-1, the predictor with the highest impact on the dependent variable ӒPCm/c was

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

Fm/c (369.48), followed by

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cm/c (239.48),

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 
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Fm/c, and ӒPCm/c in Figure 4c indicate the maximum
impact of

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cm/c and

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 
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3.2. Analysis of the Regression Model for Operation-2 (O-2)

In the machining operation O-2, the overall regression model as per Equation (8) was
statistically the best fit because the coefficient of the determination as per Table 8 after
the final iteration had values of R-sq. 99.50% and R-sq. (adj) 99.48%. This means that the
regression model explained the maximum variation of the active power up to 99.48%. A
look at the residual plots for ӒPCm/c for (O-2) in Figure 5b indicates that the residuals
lie close to the diagonal line, representing an ideal normal distribution. The points of
the residual plots were not skewed, and they were randomly distributed. Therefore, it
seems that the data were normally distributed. Furthermore, a look at the histogram of
residuals gives evidence that our residuals were normally distributed. The distribution
of residuals along the straight horizontal line was similar for all significant parameters,
suggesting equality of variance. Therefore, the conditions of normality of residuals and
equality of variance were fulfilled. The ANOVA results for O-2 revealed that there was
significant between-group variance based on the value of the F-statistic (see Table 9). At
α = 0.05, the F-value was equal to 4895.57 (p-value < 0.001). This indicates evidence of
a regression relationship between the dependent variable ӒPCm/c and the independent
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were significant, but their impact on ӒPCm/c was not as substantial as

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cm/c and

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

Fm/c,
whereas the plot between

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cub and

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 
av exhibited the least significance.

Figure 5. (a) Main effects plot for O-2. (b) Residuals plot for O-2. (c) Contour plots for O-2.
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3.3. Analysis of the Regression Model for Operation-3 (O-3)

In the machining operation O-3, the overall regression model as per Equation (9) was
statistically the best fit because the coefficient of determination as per Table 8 after the final
iteration had values of R-sq. 99.65% and R-sq. (adj) 99.64%. This means that the regression
model explained the maximum variation of the active power up to 99.64%. A look at the
residual plots for ӒPCm/c for (O-3) in Figure 6b indicates that the residuals lie close to
the diagonal line representing an ideal normal distribution. The points of the residual
plots were not skewed, and they were randomly distributed. Therefore, it seems that the
data were normally distributed. Furthermore, a look at the histogram of residuals gives
evidence that our residuals were normally distributed. The distribution of residuals along
the straight horizontal line was similar for all significant parameters, suggesting equality of
variance. Therefore, the conditions of normality of residuals and equality of variance were
fulfilled. The ANOVA results for O-3 revealed that there was significant between-group
variance based on the value of the F-statistic (see Table 9). At α = 0.05, the F-value was
equal to 6859.26 with a p-value < 0.001. This indicates evidence of a regression relationship
between the dependent variable ӒPCm/c and the independent variables
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1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cm/c (816.1),
followed by

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

Fm/c (158.1) and

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 
ub (−30.80). The negative sign indicates that the predictor

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 
ub had the highest negative effect on the consumption of ӒPCm/c. The value of the VIF
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that there was no significant multicollinearity between the significant predictors.

A look at the main effects plots for ӒPCm/c in Figure 6a also validates the above
result. The slope of significant predictors versus ӒPCm/c indicates that, in this machining
operation (O-3),
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Figure 6. (a) Main effects plot for O-3. (b) Residuals plot for O-3. (c) Contour plots for O-3.
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3.4. Analysis of the Regression Model for Operation-4 (O-4)

In the machining operation O-4, the overall regression model as per Equation (10)
was statistically the best fit because the coefficient of determination as per Table 8 for O-4,
after the final iteration, had values of R-sq. 98.41% and R-sq. (adj) 98.33%. This means
that, for O-4, the regression model explained the maximum variation of the active power
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up to 98.33%. A look at the residual plots for ӒPCm/c for (O-4) in Figure 7b indicates
that the residuals lie close to the diagonal line, representing an ideal normal distribution.
The points of the residual plots were not skewed, and they were randomly distributed.
Therefore, it seems that the data were normally distributed. Furthermore, a look at the
histogram of residuals gives evidence that our residuals were normally distributed. The
distribution of residuals along the straight horizontal line was similar for all significant
factors, suggesting equality of variance. Therefore, the conditions of normality of residuals
and equality of variance were fulfilled. The ANOVA results for O-4 revealed that there
was significant between-group variance based on the value of the F-statistic (see Table 9).
At α = 0.05, the F-value was equal to 1117.05 (p-value < 0.001). This indicates evidence of
a regression relationship between the dependent variable ӒPCm/c and the independent
variables
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in the prediction of ӒPCm/c. The coded coefficients in Table 10 reveal that, for machining
operation O-4, the predictor with the highest impact on the dependent variable ӒPCm/c
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Figure 7. (a) Main effects plot for O-4. (b) Residuals plot for O-4. (c) Contour plots for O-4.

3.5. Analysis of the Regression Model for Operation-5 (O-5)

In the machining operation O-5, the overall regression model as per Equation (11) was
statistically the best fit because the coefficient of the determination as per Table 8 for O-5,
after the final iteration, had values of R-sq. 93.64% and R-sq. (adj) 93.08%. This means that,
for O-5, the regression model explained the maximum variation of the active power up to
93.08%. A look at the residual plots for ӒPCm/c for (O-5) in Figure 8b indicates that the
residuals lie close to the diagonal line, representing an ideal normal distribution. The points
of the residual plots were not skewed, and they were randomly distributed. Therefore, it
seems that the data were normally distributed. Furthermore, a look at the histogram of
residuals gives evidence that our residuals were normally distributed. The distribution
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of residuals along the straight horizontal line was similar for all significant parameters,
suggesting equality of variance. Therefore, the conditions of normality of residuals and
equality of variance were fulfilled.

The ANOVA results for O-5 reveal that there was significant between-group variance
based on the value of the F-statistic (see Table 9). At α = 0.05, the F-value was equal
to 167.81 (p-value < 0.001). This indicates evidence of a regression relationship between
the dependent variable ӒPCm/c and the independent variables
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A look at the main effects plots for ӒPCm/c in Figure 8a also validates the above
result. The slope of significant predictors versus ӒPCm/c indicates that, in this machining
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Figure 8. (a) Main effects plot for O-5. (b) Residuals plot for O-5. (c) Contour plots for O-5.

3.6. Comparative Analysis of Modeling

In order to establish the impact of significant electric parameters of estimated active
power consumption of machining operations, the predicted results of equations devel-
oped with regression modeling for machining operations O-1 to O-5 were compared
in this section with a standard equation of power for three-phase supply, as shown in
Equation (12). Lastly, the experimental observations and predicted results from regression
models and standard Equation (12) were compared in terms of absolute error calculated
using Equation (13) and relative error (%) calculated using Equation (14) [55].

P =
√

3

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 
av

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cm/cCosφ. (12)

Absolute error = |Experimental value − Predicted value|. (13)
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Relative error (%) =
|Experimental value − Predicted value|

Experimental value
× 100. (14)

The absolute error and relative error for experimental (Exp.) active power and that
predicted by standard Equation (12) (i.e., Std. Equation) are shown in Table 11 for machin-
ing operations O-1 to O-5. The absolute error and relative error for experimental active
power and that predicted by regression models (Reg. Mod.) using Equations (7)–(11)
are shown in Table 12 for machining operations O-1 to O-5. The average active power
consumed during each of the machining operations was noted with the help of a power
quality analyzer, denoted as ӒPCm/c (Exp.). This experimental value was also considered
the true value of the power. The average active power was then calculated using the
standard Equation (12), denoted as ӒPCm/c (Pred.). The average active power was also
estimated from the regression model for each machining operation, denoted as ӒPCm/c
(Pred.) Reg. Mod.

Table 11. Active power determined using standard equation and measured by power analyzer.

Machining
Operation Avg.

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 
av Avg.
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m/cm/c
ӒPCm/c

(W) (Exp.)

ӒPCm/c
(Pred.)

Std.
Equation

Abs. Error
Std.

Equation

Relative
Error

O-1 415.500 0.673 3.986 1942.203 1930.828 11.375 0.586
O-2 409.706 0.667 4.739 2302.782 2243.197 59.585 2.588
O-3 415.234 0.684 7.386 3685.243 3633.658 51.585 1.400
O-4 416.825 0.645 3.459 1528.342 1610.101 81.759 5.350
O-5 426.704 0.735 5.638 2942.897 3061.838 118.941 4.042

Table 12. Active power determined using regression equation and measured by power analyzer.

Machining
Operation Avg.
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Avg.

1 
 

  Ƥ                a ƪ                 b 
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m/cm/c

ӒPCm/c
(Exp.)

ӒPCm/c
(Pred.)

Reg.
Mod.

Abs.
Error
Reg.

Mod.

Relative
Error

O-1 2.600 3.626 39.887 415.500 * 40.801 * 0.673 * 3.986 * 1942.203 1941.442 0.761 0.039
O-2 1.655 6.869 35.751 * 409.706 * 42.887 0.667 * 4.739 * 2302.782 2302.557 0.225 0.010
O-3 0.405 * 2.260 10.958 415.234 40.800 0.684 * 7.386 * 3685.243 3685.243 0.000 0.000
O-4 0.238 2.263 * 19.060 416.825 43.767 * 0.645 * 3.459 * 1528.342 1528.332 0.010 0.001
O-5 0.288 * 6.350 19.698 * 426.704 51.975 * 0.735 * 5.638 * 2942.897 2942.847 0.050 0.002

* Significant predictors as per developed regression models (Equations (7) to (11)).

Figure 9a represents the machining operation along the x-axis, relative error along
the primary y-axis, and the absolute error along the secondary y-axis. The relative error
between the values of active power obtained from the power analyzer and those calculated
using the standard Equation (12) is illustrated using a bar chart. The minimum relative
error was 0.586 for machining operation O-1, and the maximum relative error was 5.350
for O-4.

Figure 9b shows that the relative error was minimum for O-3 (0.000) and maximum
for O-1 (0.011). Figure 9 indicates the comparison between the relative errors obtained for
power estimation using the standard Equation and regression models for each machining
operation. It is visible that both the absolute error and the relative error were more signifi-
cant in magnitude when the standard Equation (12) was used to estimate the active power.
However, they become negligible when power was computed using the regression models
considering the significant electric parameters. This indicates that electric parameters
influence the active power and play a decisive role in gauging the magnitude of the active
power consumed during the machining operation.



Energies 2021, 14, 4761 25 of 39

Figure 9. (a). Relative and absolute error of experimental and standard equation values. (b) Relative
and absolute error of experimental and regression equation values.

The regression models validate that electric parameters significantly impact the power
consumption of a machining operation. It was observed that the average current had the
most significant impact on electrical power consumption, followed by the power factor.
Therefore, the average current consumption and power factor need to be monitored to
reduce electric power consumption during the machining process.

Other electric parameters impacting power consumption are the current total harmonic
distortion factor and current unbalance. Their impact was less as compared to the average
current and power factor. These parameters have not been researched much. Their impact
is comparatively new. There is a need to study the impact of these parameters on electrical
power consumption. As a result, they were considered in the analysis. It was also observed
that the average value of the power factor for different machining processes varied between
0.61 and 0.71. This value is low and needs to be improved.

It was further observed that, even for the same machining process and repetitive cuts,
the significance of electric parameters concerning power consumption changed. This could
have been because the electrical power being consumed by machine tools is a dynamic
quantity. The working of other machine tools on the shop floor of an industry may affect
the electric parameters from time to time. It is not easy to insulate a particular machine
tool from the effect of other machines consuming power.
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4. Hybrid Decision-Making Methodology

This section is dedicated to prioritizing the considered machining operations on
the basis of energy consumption. The term “prioritization” refers to ranking the five
different machining operations used in the industry. The ranks were assigned to the
machining operations while considering energy consumption responses, as well as electric
parameters. As a result, the user, engineer, or manager can quickly identify the machining
operation consuming maximum energy. Consequently, the machining operation consuming
maximum energy can be optimized on a priority basis.

Earlier regression modeling was completed to find the significant electric parameters
affecting the active power consumption in the machining operation. The significant energy
consumption responses and electric parameters were defined in Section 2.1. The energy
responses active power, active energy, specific energy consumption, and energy efficiency
were considered for decision making to prioritize the different machining operations
studied in the industry. The significant electric parameters considered in the decision matrix
for prioritizing machining operations were the power factor, average current, current total
harmonic distortions, and current unbalance. These parameters were considered because
of their significant impact on active power consumption. This was evident from the values
of the coded coefficients observed during regression modeling of machining operations
O-1 to O-5 (see Table 10). The electric parameters such as the average voltage, voltage
unbalance, and voltage total harmonic distortion factor had a negligible impact on power
consumption. In some cases, it was also negative. Moreover, these parameters were found
to be nonsignificant in all the considered machining operations. As a result, they were not
considered in the decision matrix.

A hybrid decision-making technique was utilized, based on the Technique for Order
Preference by Similarity to Ideal Solution (TOPSIS). It was employed to convert multiple
performances into a single score called the multiple composite score (MCS). The TOPSIS
assumes that the chosen alternative will have the shortest Euclidean divergence from the
ideal positive solution and the most divergence from the ideal negative solution. The steps
described below are usually employed in this technique [37,56,57].

Step 1: Identification of study objectives and responses. The decision pattern was
considered as per Equation (15). Every row of the decision matrix (DM) was assigned
to each experiment number and column to one response, i.e., ӒPCm/c, ӒECm/c, ĖĖή,
and
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Step 2: The vector normalization obtained the normalized DM (Mij) as per Equation (16).

Mij =


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Step 3: The weights (w. j) of significance were assigned to the responses, w. j; j = 1, 2 . . .
. . . m, such that ∑ w. jj = 1. In the present study, three methods of weight assignment were
used: identical, objective, and subjective preferences.

• Equal-weights method
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In this technique, weights were attained, dividing one by the total number of responses,
as per Equation (17).

w. jj =
1
m

. (17)

Since there eight responses in the present case, the weight assigned to each response
was 0.125 (w. jj = 12.5%).

• Entropy-weights method
Weights are established without considering the influence of decision-makers by using

probability and measuring uncertain information. The fundamental principle of weight
estimation with entropy is that a higher weight index value is more efficient than a lower
index value [58]. The DM listed in Equation (15) is normalized using Equation (18) for
a beneficial response, e.g., power factor, and Equation (19) for a nonbeneficial reaction,
e.g., energy consumption by the linear normalization technique; it is noticeable that the
normalized decision matrix NDMij ∈ [0, 1] [59].

The probability of the response (Pr ij) to happen is computed suing Equation (20), and
Equation (21) is utilized to attain the entropy (Enj) of the jth response. In Equation (21),
Y = 1

loge (n) is a stable expression, n is the number of experiments, and the value of Enj lies
between zero and one.

Equation (22) is utilized to compute the degrees of divergence (Divj), and Equation (23)
obtains the entropy weight (Ew) of the jth response.

NDMij =
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• Analytic Hierarchy Process (AHP) weights
This method attains weights for responses with the consent of the decision-maker. In

the end, a nine-point inclination scale is used to obtain the relative importance of responses
by building a pairwise comparison matrix [60].

Assuming m responses (Rm), a pairwise comparison matrix (Rm×m) can be built,
Equation (24), for the pairwise comparison of response (Ri) with a response (Rj). To attain
the elements of Rm×m, the suitable comparative significance can be assigned to every row
response (R1, R2, . . . , Rm) by comparing the value with the response from every column
(R1, R2, . . . , Rm). In Rm×m, the value of rij = 1 for i = j, i.e., a response compared with itself
is always equal to 1, and other leftover elements of the Rm×m (for i 6= j) are the reciprocal
of the equivalent component, e.g., r12 = 1/r21. Consequently, the first diagonal entries of
Rm×m are equal answers of responses. Half of the remaining entries are reciprocal of the
equivalent elements to 1, and the other half are agreed by contrasting the corresponding
elements. The relative normalized weight (w. j) of every response is obtained by taking the
ratio of the geometric mean [?]M of the equivalent row in the Bm×m comparison to the sum
of the geometric means of all the rows (see Equations (25) and (26)).

Equation (27) yields the consistency index (ĆÍ), where

1 
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Ϊ                    e Ѷ                f ƛ               h max is the maximum eigenvalue
of Bm×m. λmax is obtained by taking the average value of the sum of the matrix product
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of the pairwise Bm×m comparison and w. j vectors and dividing by the relative normalized
weight of the equivalent response. A lower value of ĆÍ, denotes a lower variation from
the consistency. Equation (28) provides the consistency ratio (ĆŔ). In Equation (28), ŔÍ is
the random index value (see [60]). Generally, a ĆŔ of 0.10 or less is considered adequate,
and it imitates an informed opinion attributable to the acquaintance of a market analyst
concerning the problem of study.

Response (j) R1 R2 _ _ Rj _ _Rm.
(i)

Rm×m =

R1
R2
__
Ri
__
Rm



1 r12 __ r1j __ r1m
r21 1 __ r2j __ r2m
__ __ __ __ __ __
ri1 ri2 __ rij __ rim
__ __ __ __ __ __
rm1 rm2 __ rmj __ 1


(24)
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ĆÍ =
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m − 1

. (27)

ĆŔ =
ĆÍ
ŔÍ

. (28)

Step 4: The weighted normalized matrix (ŴŻij) was obtained by multiplying the
columns of Mij with their respective assigned weight, w. j. Subsequently, ŴŻij was attained
using Equation (29).

Step 5: In this stage, it was necessary to find out the ideal best (Z+) and ideal worst
(Z−) solutions with the help of Equations (30) and (31), respectively. Here, Z+ and Z−

solutions were the largest and smallest values amongst all response values, respectively.
In Equation (30), j and j’ are related to the beneficial (m) and nonbeneficial attributes
(m’), respectively.

Step 6: Separation measures (Sepm) were prepared on the basis of Euclidean distance
(see Equations (32) and (33)).

Step 7: The relative closeness or ‘MCS’ of all experiments was computed, i.e., alterna-
tives representing the ideal resolution using Equation (34).

ŴŻij =
[
w. j ×Mij

]
. (29)

Z+
j = {best (ŴŻij

)
}n

i=1.

Z+ =
{

Z+
1 , Z+

2 , . . . , Z+
j , . . . Z+

m

}
.

(30)

Z−j′ = {worst (ŴŻij′)}
n
i=1.

Z− =
{

Z−1 , Z−2 , . . . , Z−j′ , . . . Z−m′
}

.
(31)

Sep+
i =

{
m

∑
j=1

(
Zij−Z+

j

)2
}0.5

. (32)
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Sep−i =

 m′

∑
j′=1

(
Zij−Z−j′

)2


0.5

. (33)

MCS =
Sep−i

Sep+
i +Sep−i

. (34)

Step 8: The methods to select the final ranks of alternatives based on individual results
from different MCDM weights are described below.

Step 9: Degree of Membership (DoM).
LetRxy be the rank matrix of the yth alternative using the xth MCDM method (x = 1,

2, . . . , k, y = 1, 2, . . . , t), where k is the number of MCDM methods and t is the number of
alternatives.

Step 9.1: Constitute the rank matrixR = (rxy) k × t.
Step 9.2: Calculate the values of the rank state variables; x = 1, 2, . . . , k, y = 1, 2, . . . , t,

z = 1, 2, . . . , t from the rank matrixR = (rxy) k × t, using Equation (35).
Step 9.3: Constitute rank frequency number matrix F = ( fyz) txt, where fyz is the rank

frequency number that the rank of the yth alternative is the zth place according to different
MCDM methods, and fyz is expressed as Equation (36).

Step 9.4: Constitute the membership degree matrix ϕ = (ϕyz) txt, where ϕyz is the
membership degree that the rank of the yth alternative belongs to the zth place according
to different MCDM methods, and ϕyz is expressed as Equation (37).

The yth row (ϕy1, ϕy1, . . . , ϕyt) of the membership degree matrix ϕ = (ϕyz) txt repre-
sents the degree that the rank of yth alternative belongs to k places, where 0 ≤ ϕyz ≤ 1
and ∑k

z=1 ϕyz = 1.
Step 9.5: Calculate the final rank index
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y of the yth alternative (y = 1, 2, . . . , t), where
Py is calculated using Equation (38).

Step 9.6: Determine final ranks r01, r02, . . . , r0t of the operations in ascending order
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δ
(x)
yz =

{
1; rxy = z
0; rxy 6= z

(x = 1, 2, . . . , k, y = 1, 2, . . . , t, z = 1, 2, . . . , t. (35)

fyz =
k

∑
x=1

δ
(x)
yz (y = 1, 2, . . . , t, z = 1, 2, . . . , t). (36)

ϕyz = fyz/k (y = 1, 2, . . . , t, z = 1, 2, . . . , t). (37)
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Table 13 describes the active power consumption by the machine (ӒPCm/c) in kW,
active energy consumption by the machine (ӒECm/c) in kWh, energy efficiency (ĖĖή) as a
percentage, specific energy consumption (
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average current of the actual or machining cut (
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m/cm/c) in rms, the current total harmonic
distortion factor of the actual or machining cut (
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m/cthdf), and the current unbalance of the
actual cut (
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m/cub) using a decision matrix as per Equation (15). The normalized decision
matrix was calculated as per Equation (16) and is shown in Table A1 (Appendix A). ӒPCm/c,
ӒECm/c,
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m/cub were “the lower, the better” energy responses,
and ĖĖή and
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Fm/c were “the higher, the better” energy responses; the calculation was
done to four significant decimal places.

Estimation of weights for responses
• Equal-Weights Method
The weights for responses were estimated using the equal-weights method as per

Equation (3), revealing 12.5% or 0.125 each.
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• Entropy-Weights Method
Equations (18) and (19) yielded the normalized decision matrix (NDMij) for computa-

tion of entropy weights for beneficial and by the nonbeneficial responses, respectively. The
NDMij for entropy-weights is shown in Table A1. The probability of the response (Pr ij)

was computed using Equation (20), and the result is shown in Table A2. The entropy (Enj)
of the response was calculated using Equation (21), while the degrees of divergence (Divj)
and entropy-weights

(
Ewj

)
were calculated using Equations (22) and (23), respectively.

The attained results are shown in Table 14.

Table 13. Decision matrix of energy responses.

Operation ӒPCm/c ӒECm/c ĖĖή
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  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cub

O-1 1.973 0.084 25.619 15.308 0.677 4.027 40.898 40.316
O-2 2.321 0.067 38.209 12.207 0.675 4.719 40.965 35.67
O-3 3.707 0.077 40.260 14.097 0.687 7.405 41.435 10.94
O-4 1.542 0.033 30.303 31.548 0.647 3.478 43.673 18.583
O-5 2.975 0.053 43.396 13.343 0.738 5.691 51.447 19.42

Table 14. Entropy-weights computation and weights.

ӒPCm/c ӒECm/c ĖĖή
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m/cub

Enj 0.9718 0.9600 0.9890 0.9741 0.9994 0.9798 0.9978 0.9316
Divj 0.0282 0.0400 0.0110 0.0259 0.0006 0.0202 0.0022 0.0684
Ewj 0.1437 0.2034 0.0561 0.1321 0.0030 0.1028 0.0111 0.3481

Ewj(%) 14.371 20.343 5.6058 13.207 0.2957 10.279 1.1134 34.806

• AHP Method
To attain AHP weights, a pairwise comparison matrix of responses was established

as per Equation (24). The pairwise comparison matrix was a collective decision of the
research group, as well as people from academia and industry. A questionnaire was
drafted on the basis of eight energy consumption responses to get opinions from the local
industry experts and people from academia. The questionnaire content was decided by
selecting energy responses from the literature and assigning electric parameters based on
regression modeling. Lastly, an event was arranged, and 12 experts were invited for a
brainstorming session to complete a pairwise comparison matrix of energy responses. This
event comprised six experts from academia and six from the industry. The final agreed
pairwise comparison matrix is shown in Table 15.

Table 15. Pairwise comparison matrix.

Responses ӒPCm/c ӒECm/c ĖĖή
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ӒPCm/c 1 1/5 1/7 1/5 1/7 1/3 1/5 1/2
ӒPCm/c 5 1 1 1 1 1/3 1/3 1

ĖĖή 7 1 1 1 1 1/3 1/3 1
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5 1 1 1 1 3 1/2 1
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Fm/c 7 1 1 1 1 1/3 1/3 1
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m/cm/c 3 3 3 1/3 3 1 1/3 3
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m/cthdf 5 3 3 2 3 3 1 3
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m/cub 2 1 1 1 1 1/3 1/3 1

Eigen Vector 0.03 0.093 0.1 0.151 0.1 0.174 0.269 0.083

The relative normalized weight and the weights of responses were computed using
Equations (25) and (26), respectively. The consistency index and ratio were calculated using
Equations (27) and (28), respectively. The maximum eigenvalue was λmax = 8.816, and the
consistency ratio CR was 8.3%. The CR was observed to be below the permitted value of
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10%, indicating substantial accuracy in the decision-maker’s judgment when assigning
values in the matrix for pairwise comparisons. The weights of significance computed using
the three different methods are listed in Table 16.

Table 16. Weights of energy responses computed using three methods.

ӒPCm/c ӒECm/c ĖĖή
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ʂ                  d 
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m/cub

Equal 12.5% 12.5% 12.5% 12.5% 12.5% 12.5% 12.5% 12.5%
Entropy 14.37% 20.34% 5.60% 13.21% 0.29% 10.27% 1.11% 34.81%

AHP 3% 9.3% 10% 15.10% 10% 17.4% 26.9% 8.3%

The normalized decision matrix for TOPSIS method calculations was obtained as per
Equation (16) and is shown in Table A3. The weighted normalized matrix (ŴŻij) was
computed using Equation (29) and is tabulated in Table A3 for equal, entropy, and AHP
weights. The positive ideal (best) answer was calculated using Equation (30), and the
negative ideal (worst) response was calculated using Equation (31); the attained values
are depicted in Table A6 for equal, entropy, and AHP weights. Equations (32) and (33)
were applied to calculate separation measures (Sepm) for positive and negative answers,
respectively. The evaluated responses are depicted in Table 17. The relative closeness
or MCS was calculated using Equation (34), and the computed results are tabulated in
Table 17. The final ranks attained using the three different weight methods are shown in
Table 17.

Table 17. Separation measures and multiple composite scores (MCSs).

Operation
Equal Weights Entropy Weights AHP Weights

Sepi
+ Sepi

− MCS Rank Sepi
+ Sepi

− MCS Rank Sepi
+ Sepi

− MCS Rank

O-1 0.0806 0.0721 0.0341 5 0.1827 0.2555 0.0208 5 0.0573 0.0702 0.0387 3
O-2 0.0628 0.0752 0.0410 4 0.1502 0.2321 0.0289 4 0.0450 0.0697 0.0423 2
O-3 0.0733 0.0839 0.0448 3 0.0883 0.2649 0.1177 1 0.0660 0.0666 0.0335 5
O-4 0.0636 0.0890 0.0519 2 0.0754 0.2315 0.1052 2 0.0514 0.0770 0.0461 1
O-5 0.0477 0.0829 0.0526 1 0.0688 0.2102 0.0951 3 0.0476 0.0656 0.0380 4

The ranks obtained using the various weight methods were different for each machin-
ing operation. Thus, to get the final combined ranks, the degree of membership technique
was applied, as shown in Step 9 of the decision-making methodology. First, the constitute
rank frequency number of the machining operations from O-1 to O-5 was calculated using
Equation (35), and the results are shown in Table A6. Then, a membership degree was
constituted using Equation (36). Lastly, the final rank index of each machining operation
was obtained using Equation (37), as shown in Table 18. The final ranks of each machining
operation were then calculated, and the results are presented in Figure 10.

Table 18. Final ranks of operations using degree of membership (DoM).

Weights 1 2 3 4 5 SUM Rank

O-1 0.0000 0.0000 1.0000 0.0000 3.3333 4.3333 5
O-2 0.0000 0.6667 0.0000 2.6667 0.0000 3.3333 4
O-3 0.3333 0.0000 1.0000 0.0000 1.6667 3.0000 3
O-4 0.3333 1.3333 0.0000 0.0000 0.0000 1.6667 1
O-5 0.3333 0.0000 1.0000 1.3333 0.0000 2.6667 2

Prioritizing the machining process in terms of energy consumption was conducted
systematically. Machining operation O-1 emerged as the most energy-intensive process.
Five machining operations O-1 to O-5 were considered, and eight response parameters
were measured. The allocation of weights to responses was an important step. To rule out
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any bias of the researcher, three methods were employed. The first assigned equal weights
to all the responses. Under this method, the reciprocal of the total number of the responses
was taken, and equal weights were assigned to all the responses. The second was an
objective method, i.e., the entropy weight method, in which weights were assigned without
considering the researcher’s input. First, the probability of the response was worked out,
and then the entropy of the response was calculated. This step was followed by working
out the degree of divergence and assigning entropy weights. This was a purely analytical
method, and the bias of the researcher was ruled out.

Figure 10. Ranks established using different weight methods, along with the final rank determined
using a degree of membership.

The third method involved giving importance to the responses by a process of subjec-
tive preference, i.e., the AHP method. In this method, a pairwise comparison was made
between identified responses. A nine-point Saaty scale was used to obtain the relative
importance of responses [60]. The decision-makers were a group of experts. For example,
for the present research, mechanical engineers, electrical engineers, technical experts from
the concerned industry, and technical tool suppliers formed the expert group. First, the
judgment values of each expert were considered. Then, the relative normalized weight
and the weight of responses were calculated. In this case, the consistency ratio worked out
to be 8.3%, which was less than the allowed value of 10%. This indicates precision in the
decision-maker’s judgment in allocating values for pairwise comparison.

Table 16 shows that the equal weights method assigned equal weights to all responses.
The entropy method gave the maximum importance to the current unbalance (34.81%),
followed by actual energy consumption (20.34%) and the average power consumption
(14.37%). The AHP assigned maximum weight to the current total harmonic distortion fac-
tor (26.9%). Even in the multiple regression analysis, the current total harmonic distortion
factor remained a significant parameter in machining operations O-1, O-2, and O-3. The
second parameter to which the entropy method assigned weight was the average current
(17.4%). This indicates the extreme impact of current on active power consumption.

Thus, in terms of prioritizing a machining operation based on energy consumption,
rank 1 indicated the most energy-efficient machining operation, and rank 5 showed the
most energy-intensive operation. It was observed that, under TOPSIS, the various weights
methods graded the machining operations differently. The method of equal weights and
the entropy weights method assigned rank 5 to the machining operation O-5. This indicates
that machining operation 5 was the most energy-intensive process. At the same time, the
method of AHP ranked machining operation O-3 as rank 5. To bring uniformity to the
results and get a final combined rank, the degree of membership (DOM) was implemented.
The results are presented in Table 18 and highlighted in Figure 10.



Energies 2021, 14, 4761 33 of 39

Machining operation O-1 emerges as the most energy-intensive process. O-1 is a
machining process in which drilling occurs with the help of a high-speed steel (HSS) drill
of diameter 16 mm and flute length 110 mm. The drilled hole depth is 77 mm. The spindle
RPM is 450, and the feed rate is 70 mm/min (see Table 3). The process takes 154 s to
complete, which is a lot of time. Hence, the energy consumed is more. This process will be
looked into, and possibilities for a reduction in energy consumption will be suggested with
the help of experimentation. This becomes a scope for future research.

5. Conclusions

This study presented a practical technique for enhancing the sustainability of machin-
ing operations in an industry. The article emphasized the significance of electric parameters
in the active power consumption of machining operations. It encompassed a systematic
approach for the identification of the most energy-intensive machining operation. Based
on the critical outcome, the following conclusions were drawn:

• The quality of the power supplied to the machine tool seems to be affected by the
concurrent functioning of the other machine tools in the surrounding area of the
machine shop. This is evident from the fact that different electric parameters become
significant at different times in the power consumption of a machining operation
examined on the same shop floor of the industry. Therefore, the quality of power
being supplied to the machine tool needs to be monitored and corrected to lower
power consumption.

• Multiple regression analysis revealed that, out of the seven electric parameters con-
sidered, the rms values of the current and the power factor emerged as significant in
all five machining operations. The current total harmonic distortion factor appeared
significant in the three machining operations (O-1, O-4, and O-5). Current unbalance,
the rms value of voltage, and voltage unbalance were significant in two machining
operations each (O-2 and O-5, O-1 and O-2, and O-3 and O-5, respectively). The
voltage total harmonic distortion factor was significant in only a single machining
operation (O-4).

• The values of the coded coefficients of regression models revealed the relative impact
of significant electric parameters on active power consumption. It was observed that
the rms value of the current had the maximum direct impact, followed by the power
factor. Therefore, their optimization would lead to a maximum reduction in electric
power and energy. These factors were followed by the current unbalance, which also
had a direct impact on power consumption. The rms value of voltage ranked last,
with a small positive impact, whereas the voltage unbalance and the total harmonic
distortion factor negatively affected the power consumption. To reduce the power
consumption of a machining operation, it is imperative to assess the significance of
electric parameters and evaluate their relative importance.

• The maximum absolute error in the estimation of active power using the standard
power equation was 118.941 for machining operation O-5, but that with the developed
regression model was 0.05. Similarly, the maximum relative error using the standard
power equation was 5.350 for O-4 compared to 0.001 using the developed regression
model. The R-squared value was more than 98% for O-1 to O-4 and 93% for O-5 for
the developed models. This proves the results are theoretically correct.

• The TOPSIS equal-weights method identified machining operation O-1 as the most
energy-intensive and O-5 as the least energy-intensive. With the assistance of the
entropy weights without the decision maker’s input, the same technique classified
machining operation O-1 as the most energy-intensive but O-3 as the least energy-
intensive process. The AHP weights method with the decision-maker’s input ranked
O-5 as the maximum and O-4 as the minimum energy consumption. Furthermore, the
degree of membership (DoM) approach was employed to establish the final conjoined
ranks. Machining operation O-1 was the most energy-intensive, followed by O-2, O-3,
O-5, and O-4.
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• The awareness of the importance of electric parameters in the active power consump-
tion of machining processes and the identification of the energy-intensive machining
operation benefit researchers and the industry in reducing energy consumption and
minimizing the impact of carbon dioxide emissions in the industry environment.

• The most energy-intensive machining operation identified, i.e., O-1, a drilling process,
needs to be optimized for minimum energy consumption. In addition, research is
required to investigate or explore why some electric parameters become significant
and others do not for the machine tools and machining processes conducted on the
same shop floor. Furthermore, some electric parameters have positive and small
negative impacts on the machining operation’s power consumption and need to
be investigated.
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Nomenclature

Abbreviations Acronym Units
Machining Time

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/c seconds (s)
Active power consumption air cut ӒPCair kilowatt (kW)
Active power consumption by machine ӒPCm/c kilowatt (kW)
Active energy consumption air cut ӒECair kilowatt hour (kWh)
Active energy consumption by machine ӒECm/c kilowatt hour (kWh)
Energy efficiency ĖĖή No units
Specific energy consumption

1 
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ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

kilojoule/cm3

Power factor
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  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

Fm/c No units
Average current (rms)

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cm/c ampere (A)
Current total harmonic distortion factor

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cthdf (%)
Current unbalance

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cub (%)
Average voltage (rms)

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 
av volt

Voltage total harmonic distortion factor

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 
thdf (%)

Voltage unbalance

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 
ub (%)

Air cut AC No unit
Actual cut ACT No unit
p-Value

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

No unit
Volume of material removed V cm3

Cutting speed Vc m/min
Depth of cut

1 
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Abbreviations Acronym Units
Specific cutting energy0000000000000000 Śe kJ/cm3

Tool wear

1 
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Appendix A

Table A1. Normalized decision matrix (entropy method).

Operation ӒPCm/c ӒECm/c ĖĖή

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

Fm/c

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cm/c

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cthdf

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cub

O-1 0.7814 0.3929 0.5904 0.7974 0.9169 0.8638 1.0000 0.2714
O-2 0.6644 0.4925 0.8805 1.0000 0.9146 0.7370 0.9984 0.3067
O-3 0.4160 0.4286 0.9277 0.8659 0.9309 0.4697 0.9870 1.0000
O-4 1.0000 1.0000 0.6983 0.3869 0.8767 1.0000 0.9365 0.5887
O-5 0.5183 0.6226 1.0000 0.9149 1.0000 0.6111 0.7950 0.5633

Table A2. Probability of responses (entropy method).

Operation ӒPCm/c ӒECm/c ĖĖή

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

Fm/c

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cm/c

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cthdf

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cub

O-1 0.2312 0.1338 0.1441 0.2011 0.1977 0.2346 0.2120 0.0994
O-2 0.1966 0.1677 0.2149 0.2522 0.1972 0.2002 0.2117 0.1123
O-3 0.1231 0.1459 0.2264 0.2184 0.2007 0.1276 0.2093 0.3663
O-4 0.2959 0.3405 0.1704 0.0976 0.1890 0.2716 0.1985 0.2156
O-5 0.1533 0.2120 0.2441 0.2307 0.2156 0.1660 0.1685 0.2063

Table A3. Normalized decision matrix (TOPSIS).

Operation ӒPCm/c ӒECm/c ĖĖή

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

Fm/c

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cm/c

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cthdf

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cub

Equal weights

O-1 0.3372 0.5746 0.3168 0.3654 0.4415 0.3430 0.4169 0.6592
O-2 0.3966 0.4583 0.4725 0.2914 0.4404 0.4020 0.4176 0.5833
O-3 0.6334 0.5267 0.4979 0.3365 0.4483 0.6308 0.4224 0.1789
O-4 0.2635 0.2257 0.3748 0.7530 0.4222 0.2963 0.4452 0.3039
O-5 0.5083 0.3625 0.5367 0.3185 0.4815 0.4848 0.5245 0.3176

Entropy weights

O-1 0.3372 0.5746 0.3168 0.3654 0.4415 0.3430 0.4169 0.6592
O-2 0.3966 0.4583 0.4725 0.2914 0.4404 0.4020 0.4176 0.5833
O-3 0.6334 0.5267 0.4979 0.3365 0.4483 0.6308 0.4224 0.1789
O-4 0.2635 0.2257 0.3748 0.7530 0.4222 0.2963 0.4452 0.3039
O-5 0.5083 0.3625 0.5367 0.3185 0.4815 0.4848 0.5245 0.3176

AHP weights

O-1 0.3372 0.5746 0.3168 0.3654 0.4415 0.3430 0.4169 0.6592
O-2 0.3966 0.4583 0.4725 0.2914 0.4404 0.4020 0.4176 0.5833
O-3 0.6334 0.5267 0.4979 0.3365 0.4483 0.6308 0.4224 0.1789
O-4 0.2635 0.2257 0.3748 0.7530 0.4222 0.2963 0.4452 0.3039
O-5 0.5083 0.3625 0.5367 0.3185 0.4815 0.4848 0.5245 0.3176
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Table A4. Weighted normalized matrix (ŴŻij) TOPSIS.

Operation ӒPCm/c ӒECm/c ĖĖή

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

Fm/c

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cm/c

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cthdf

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cub

Equal weights

O-1 0.0421 0.0718 0.0396 0.0457 0.0552 0.0429 0.0521 0.0824
O-2 0.0496 0.0573 0.0591 0.0364 0.0551 0.0502 0.0522 0.0729
O-3 0.0792 0.0658 0.0622 0.0421 0.0560 0.0789 0.0528 0.0224
O-4 0.0329 0.0282 0.0468 0.0941 0.0528 0.0370 0.0557 0.0380
O-5 0.0635 0.0453 0.0671 0.0398 0.0602 0.0606 0.0656 0.0397

Entropy weights

O-1 0.0485 0.1169 0.0178 0.0483 0.0013 0.0353 0.0046 0.2295
O-2 0.0570 0.0932 0.0265 0.0385 0.0013 0.0413 0.0046 0.2030
O-3 0.0910 0.1071 0.0279 0.0444 0.0013 0.0648 0.0047 0.0623
O-4 0.0379 0.0459 0.0210 0.0994 0.0012 0.0305 0.0050 0.1058
O-5 0.0731 0.0737 0.0301 0.0421 0.0014 0.0498 0.0058 0.1105

AHP weights

O-1 0.0101 0.0534 0.0317 0.0365 0.0667 0.0597 0.1122 0.0547
O-2 0.0119 0.0426 0.0473 0.0291 0.0665 0.0699 0.1123 0.0484
O-3 0.0190 0.0490 0.0498 0.0336 0.0677 0.1098 0.1136 0.0148
O-4 0.0079 0.0210 0.0375 0.0753 0.0637 0.0516 0.1198 0.0252
O-5 0.0152 0.0337 0.0537 0.0318 0.0727 0.0844 0.1411 0.0264

Table A5. Ideal positive and negative results.

ӒPCm/c ӒECm/c ĖĖή

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

Fm/c

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cm/c

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cthdf

1 
 

  Ƥ                a ƪ                 b 
ʂ                  d 

Ϊ                    e Ѷ                f ƛ               h 

m/cub

Equal weights

Ideal positive 0.0329 0.0282 0.0671 0.0364 0.0602 0.0370 0.0521 0.0224
Ideal negative 0.0792 0.0718 0.0396 0.0941 0.0528 0.0789 0.0656 0.0824

Entropy weights

Ideal positive 0.0379 0.0459 0.0301 0.0385 0.0014 0.0305 0.0046 0.0623
Ideal negative 0.0910 0.1169 0.0178 0.0994 0.0012 0.0648 0.0058 0.2295

AHP weights

Ideal positive 0.0079 0.0210 0.0537 0.0291 0.0727 0.0516 0.1122 0.0148
Ideal negative 0.0190 0.0534 0.0317 0.0753 0.0637 0.1098 0.1411 0.0547

Table A6. Frequency of ranks according to DoM.

Ranks 1 2 3 4 5

O-1 0 0 1 0 2
O-2 0 1 0 2 0
O-3 1 0 1 0 1
O-4 1 2 0 0 0
O-5 1 0 1 1 0
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