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Abstract: The energy efficiency of buildings is a key condition in the implementation of national
sustainability policies. Energy efficiency of the built heritage is usually achieved through energy
contracts or renovation projects that are based on decisions often taken with limited knowledge and
in short time frames. However, the collection of comprehensive and reliable technical information to
support the decision process is a long and expensive activity. Approximate assessment methods based
on stationary thermal models are usually adopted, often introducing unacceptable uncertainties
for economically onerous contracts. Hence, it is important to develop tools that, by capitalizing
on the operators’ experience, can provide support for fast and reliable assessments. The paper
documents the development of a decision support system prototype for the management of energy
refurbishment investments in the residential building sector that assists operators in the energy
performance assessment, using a limited set of technical information. The system uses a Case Based
paradigm enriched with probabilistic modelling to implement decision support within the corporate’s
knowledge management framework.

Keywords: energy performance contracting; decision support systems; reduced order modelling;
knowledge management; facility management

1. Introduction

Europe is a continent with a very well-established building stock, which is characterized
by large energy renovation needs, accounting for almost 50% of the building market [1].
Increasing the buildings’ energy efficiency is therefore the subject of the Energy Performance
of Buildings Directive (EPBD) [2,3]. There are many types of socio-economic dynamics that
trigger energy renovation activities in buildings. They include government incentives,
real estate investments, energy performance contracts (EPC), and standard maintenance
processes. Each dynamic corresponds to various panels of actors and decision-making
processes guided by value systems that differ in substantial aspects.

The professional field of real estate management raises specific operational issues.
Like any management process, real estate management must take into account the cost of
acquiring the information needed to support decisions.

The time and resource constraints that affect the typical energy refurbishment pro-
cesses hamper the gathering of information for reliable building condition assessment.
They also limit the development of the analytical models, which are used to get reliable
predictions of the post-intervention performance. The literature shows that some effort has
been made to speed up the current process of field inspection of buildings. However, the
process is still a resource-demanding task [4]. Residential and small commercial markets
are particularly affected by such diseconomies of scale: “The energy auditing business in
both the residential and small commercial markets is tough and, in some cases, prohibitive
for both users and providers” [5].

The analysis of the decision processes in building energy refurbishment is dealt with
in the broader and more complex framework of the overall building refurbishment [6,7].
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Current decision support tools are based on large stock analyses of buildings and are well
suited for the strategic management of real estate investment [8,9]. These systems have
been developed to speed-up the audit process in the context of large-scale energy efficiency
policies. They use a simplified calculation method adopted in both EN 832 and EN-ISO
13790, which is based on the quasi-steady-state approximation, where the dynamic effect of
internal and solar gains is considered through a simple utilization factor [10,11]. However,
in professional settings, the best possible condition assessment and post-intervention
estimates are required to approach call for tenders in a competitive way. This makes
average appraisals, derived from the analysis of large building stocks, of little effectiveness.

Alternative approaches to decision support for improving the energy performance of
buildings employ multi-objective optimization. In the real estate management perspective,
multi-objective optimization has the undoubted advantage of finding the best solution
among a set of competitive objectives. However proposed solutions do not seem to address
the resource gap of implementing energy audit procedures. Carli [12] in his overall proce-
dure foresees a diagnosis phase which is left undetailed, while the design-oriented approach
of [6,13] is based on a large set of parameters, whose cost of acquisition is not considered.

A further relevant issue concerns uncertainty. The practice of condition assessment
by building inspectors yields variable results due to subjective perceptions of inspectors.
Surveyor variability is defined as the situation where two or more surveyors, examining
the same building, arrive at very different survey decisions [14,15]. Tian [16] reports a
detailed analysis of uncertainty affecting building condition assessment and identifies two
basic types:

- The aleatory uncertainty that is due to system intrinsic or external dynamics;
- The epistemic uncertainty resulting from a lack of knowledge.

In the energy analysis of buildings, aleatory uncertainty is mainly related to human
factors (e.g., usage profiles) and weather.

The epistemic uncertainty usually stems from time and economic limits that hinder a
thorough analysis of the real building conditions. On-site surveys reduce such epistemic
uncertainty but are very onerous in terms of human and economic resources.

Finally, professional operators possess a considerable wealth of knowledge gained
from long experience in the field. It tacitly drives their decisions and must, therefore, be
elicited for effective support.

In brief, the professional context places three main requirements for decision sup-
port systems:

• Achieving the highest possible accuracy within the narrow technical limits and time
constraints of operational processes;

• Managing uncertainty;
• Improving estimates by capitalizing the knowledge of technical operators.

A good degree of accuracy in building energy performance estimates can be achieved
by combining two strategies: (i) deepening site investigations through targeted observation
and, if possible, measurements, and (ii) using energy models calibrated to the available
building data. On-site inspections aim at minimizing as much as possible the uncertainty
present in the information concerning the actual building condition [17], providing the most
comprehensive basis on which to develop modelling and calibration. Model calibration
compensates the limits of on-site inspections with the consistency introduced by the thermal
physics equations of the model [18]. This strategy mirrors on the operational plane the logic
used in the System Identification domain, where the parameters of a stochastic differential
model are determined by means of maximum likelihood inference, due to its ability to
estimate noise parameters [19,20].

Calibration of building energy models, however, might show some practical limits.
Detailed energy models, typically used in the design phase, are too complex to be calibrated
for already existing buildings. The high number of parameters, which on buildings of
medium complexity can amount to thousands, does not allow a reliable management of
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the overfitting problem, which defeats the predictive capabilities of the model itself. The
terms “overfitting” and “underfitting” are very well known in the system identification
domain and describe the use of too complex and too simple a model, respectively [21].
Giretti [22] and Piccinini [23] introduced a reduced order building energy model (ROEM)
that can be profitably calibrated to obtain good accuracy in predicting energy performance.
The practical value of such an approach is threefold:

(a) The reduced order model, although relatively abstract, is sufficiently expressive to
produce energy performance predictions within ASHRAE accuracy boundaries [24];

(b) The model can be implemented according to information obtained from inexpensive
surveys, mostly based on visual inspection;

(c) The calibration process provides support in assessing the consistency of the surveyed data.

The objective of this article is the development of a decision support system for real
estate management that mitigates the lack of information in the energy audit of buildings,
while maintaining acceptable accuracy in the estimation of the energy performance. The
paper aims at defining the best combination of technical solutions meeting the operational
requirements of real estate management processes. The focus is on the operating conditions
typical of the early stages of real estate investment appraisal, where the large number
of buildings to be considered hinder detailed technical analysis. The paper discusses
the issues of technical surveying and performance estimation from the perspective of
business knowledge management. The analysis is limited to residential buildings and, at
present, does not include a cost model, although it could easily be extended to buildings
with other uses including refurbishment costs. The proposed system combines ROEM,
Case Based Reasoning (CBR) [25,26] and probabilistic modelling approaches. ROEM is
an effective performance estimation means and provides the information framework
that is relevant for the building energy refurbishment management. CBR provides the
conceptual framework to integrate the ROEM in the corporates’ knowledge cycle and is
used to implement the knowledge repository. A Bayesian probabilistic model is used to
mine the knowledge repository and to implement an index frame that provides decision
support. Such a system can estimate building energy performance with different accuracy
degree, depending on the available information, either through simulation or CBR. It
can manage the process uncertainty through Bayesian inference. It can capitalize the
corporate’s operational knowledge through CBR.

Section 2 describes the structure of the corporates’ knowledge cycle that the system
is intended to support and the resulting requirements for the decision support system.
Section 3 briefly introduces the key features of the reduced order energy model that
underpin the performance analysis. Section 4 describes the architecture of the decision
support system, and Section 5 comments in detail examples of the inferences supported by
the system. Finally, Section 6 discusses the limitations of the present implementation and
its future developments.

2. The Corporate Knowledge Cycle

This section will explore the salient aspects of the knowledge workflow that character-
ize the decision-making process concerning the implementation of an energy refurbishment
investment and introduces the CBR paradigm as the supporting computational means.
The reference corporate process (Figure 1—right) has been derived from [6] and further
expanded to reflect the work practice of the professional operators that collaborated on this
research (see Acknowledgment Section). A brief description is given in the following points:

1. Marketing: The marketing department identifies a set of most promising buildings
from the commercial point of view (Target Pool);

2. Pre-selection: An early pre-assessment phase reduces the number of buildings to
be analyzed in more detail (Short List). The characteristics of each building in the
target pool, obtained from a quick survey, are assigned as indexes, which are used to
retrieve one or more similar cases from the corporate DB. The proposed solutions are
evaluated, and a preferential ranking is defined;
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3. Analysis: a selection from the short-list is made based on the estimated performances,
largely using the corporate’s experience. In this phase the assessment is deepened
through simulation and the results are possibly combined with requirements from
other domains, such as architectural or structural. The analysis phase produces the
overall list of requirements for the subsequent design phase;

4. Design: The design finally completes the technical development of the interventions.
The resulting projects, which will guide the construction phase, are archived in the
corporate DB.

Figure 1. The Case Based Reasoning Cycle (left), the corporate workflow (right).

CBR is a general problem-solving paradigm that operates from experience [27]. In
CBR a case is an example of a solution to a problem of any kind. CBR solves a specific
problem using past solutions that show similarity to the problem under consideration
(Figure 1—left). CBR therefore assumes a memory model for remembering, indexing, and
organizing past cases and a process model for retrieving and modifying old cases, and
assimilating new ones.

CBR is a reasoning paradigm that can be naturally translated into the information flow
of a real estate management corporate. Storing and retrieving past design cases in/from
the corporate’s DB is a fundamental step of the corporate’s workflow. The conceptual-
ization used for storing and retrieving designs, plays a fundamental role in supporting
the corporate’s knowledge cycle. The index system must reflect this conceptualization
and must be able to support the typical design inferences, such as: analysis (forward-
deduction)-diagnosis (backward-abduction). Bayesian networks (see Section 5) are very
effective and efficient tools for the implementation of such an index system [27]. Let it
suffice for now to mention that a Bayesian network, through its typical learning process,
can be used to generate a statistic on the corporate DB that encodes, in a single model, most
of the corporate’s operational knowledge on a specific domain.

3. The Reduced-Order Energy Model

This section will briefly introduce the main features of the ROEM. For technical
details please refer to [22] where the ROEM, the calibration procedure and the predicting
performance are discussed in detail and [23] where the ROEM has been further developed.
The conceptual framework of the reduced order model is an example of the third order
model proposed by [28]. A schematic representation of the model is shown in Figure 2
using the same set of electrical symbols. A third-order model was chosen as recommended
by [29], with only the addition of the heat flux against the ground, implemented as the
series of a constant temperature Tground plus the resistance Rg. Thus, Rie is the average
resistance of the opaque envelope, Rea is the outdoor air-envelope coupling resistance, Ria
is the infiltration resistance, Rm and Cm are the resistance and heat capacity of the indoor
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partitions, Ce and Ci are the thermal capacity of the envelope and the thermal capacity
of the indoor air, respectively. Unconditioned rooms are outside the model boundary.
Hence, they are assumed to be either at Tground or at Tout depending on whether they are
basement or summit respectively. Their influence is averaged in Rg and Rea. The thermal
system is modelled as a variable heat gain Φh coupled with the environment by the thermal
resistance Rih and the capacity Cih of the system. The photovoltaic system, if any, is
modelled as an additional generator modulated by the weather data and coupled to the
environment by the resistance Rpv. The internal gains Φu, the solar radiation through the
windows Φws and on the opaque surfaces Φos are modelled as additional variable gains.
Two schedules concerning system operation and occupancy, as well as the meteorological
dataset, were added to provide the temporal dynamics of the external and internal gains.
Finally, two feedback control signals were introduced to implement thermostatic control of
the heating/cooling system over the internal temperature Tin and the average temperature
of the heating system Tf.

Figure 2. The conceptual diagram of the reduced energy model.

ROEM require a relatively limited set of information that can be acquired during
on-site surveys with a reasonably limited effort. The set of model variables is reported in
Table 1. For each variable, the source of information and the degree of datum reliability,
if obtained in a survey operation without direct instrumental measurement, is described.
The general strategy is to acquire as much as possible data in the survey phase with the
highest level of reliability. Then, the best estimate of parameters with lower reliability
will be carried out during the calibration phase, using the consistency constraints of the
physical equations of the ROEM.

Table 1. The parameter set of the reduced energy model.

Name Description Source Typical Reliability

Building

Vol Heated volume Project data or survey High
Apq Opaque envelope area divided as per orientation Project data or survey High
Awin Window area divided as per orientation (e,w,n,s) Project data or survey High
Gv Solar shading coefficient Project data, survey Medium
Rea Outdoor air—envelope coupling resistance Regulation High
Rie Average resistance of the opaque envelope Project data or survey High
Ce Heat capacity of the opaque envelope Project data or survey High

Rm
Thermal resistance between the walls and

furniture and the interior air Regulation High

Cm Heat capacity of the interior walls and furniture Project data or survey High
Rg Resistance between the interior and the ground Project data, survey Medium
Tg Surrounding ground temperature Literature, survey Medium
Lea Air infiltration resistance Regulation Low
Vrt Mass flow rate through forced ventilation Project data High
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Table 1. Cont.

Name Description Source Typical Reliability

System

Rih
Thermal resistance between the HVAC system

and the interior Technical datasheets Low

Cih Heat capacity for the HVAC system Technical datasheets Medium
Eff Efficiency of the HVAC system Technical datasheets Medium
Pow Installed heating/cooling power Technical datasheets High
Hys Hysteresis range of the thermostat Technical datasheets High

Operation

Occ Average monthly occupancy level Monitored or interviews Low
Oper System operation schedule Monitored or interviews Medium
Setp Indoor temperature set-point Monitored or interviews Medium

Environment

Wea Whether data file Web High
Gp Heat gain per person Regulation High
Geq Heat gain due to fixed equipment and systems Survey Medium

The calibration process is therefore a key point of the proposed approach, as it allows
to create a reliable baseline for the assessment of any possible energy improvement option.
The use of ROEM greatly facilitates the calibration process. As highlighted in [22], the
reduced number of parameters allow limiting the overfitting problems that plague detailed
model calibration. The calibration process is based on a parameter ranking according to
the level of certainty achieved during the on-site survey. Figure 3 represents a typical
calibration arrangement for residential buildings. The building energy consumption
records of one or more past years is the baseline used for testing. The calibration process
starts from the system parameters, then proceeds to the building parameters, and ends
with usage aspects.

Figure 3. The calibration workflow. The < . . . > step stays for any other parameter subject to
high uncertainty.

A Calibration Example

Consider, for example, the case of a real estate operator who must inspect several
properties to guide a real estate investment. The daily tour includes the inspection of
six properties in the Lecce area in the region of Puglia. One of the properties is shown
in Figure 4 and is an ancient dwelling built in the Muro Leccese, which has potentially
many valuable aspects due to its history and the panoramic view of the rear side. As for
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every ancient dwelling the technical documentation, apart from the cadastral plans, is
non-existent. It is therefore necessary to proceed, given the operator’s work schedule, to a
preliminary visual inspection to guide a general energy audit. The inspection consists in
the acquisition of documentary photos, the survey of the orientation, the metric survey of
opaque and transparent surfaces and volumes, the acquisition of the data of the heating
system, the evaluation of the air tightness class of the fixtures and, finally, the acquisition of
the energy bills for the past year. The collected data are reported in Table 2. The cumulated
energy consumption for the year 2020 is 8712.36 KWh.

Figure 4. A photo of the property to be assessed (left) and of the sketched floor plan made by the
operator (right).

Table 2. The parameter set used for the model calibration.

Name Description Source Reliability

Building

Vol 480 m3 Survey High

Apq
31 m2(S), 35 m2(N), 100 m2(W), 100 m2(E),

160 m2(Roof)
Survey High

Awin 19 m2(S), 5.1 m2(N), 0 m2(W), 0 m2(E), Survey High
Gv 0 Survey High
Rea 0.004 m2K/W Regulation High
Rie 1.28 m2K/W Survey High
Ce 182,223,300 J/K Survey High
Rm 0.005 m2K/W Regulation High
Cm 92,268,600 J/K Survey High
Rg 1.28 m2K/W Survey Medium
Tg 17 ◦C Literature Medium

Lea 0.345 kg/s Estimated Windows’ permeability class
according to EN 12,207 Low

Vrt 0 Survey High

System

Rih 0.00052 m2 K/W Technical datasheets Low
Cih 1.0 × 106 Technical datasheets Medium
Eff 95 Technical datasheets Medium
Pow 32 KW Technical datasheets High
Hys 1 ◦C Technical datasheets High

Operation

Occ 1 Survey Low
Oper Winter Heating Survey Medium
Setp 18 ◦C Survey Medium

Environment

Wea Whether data file Web High
Gp 70 W Regulation High
Geq 10W averaged/day Survey Medium
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This is an extreme case where very little information is available, and it serves to
highlight the process of generating the most plausible picture that explains current energy
consumption. Detailed energy bills do not reflect real usage, as they are affected by the
supplier company’s policy of averaging consumption. Therefore, the cumulative annual
consumption is used as a benchmark. Surveys of envelope technologies are approximated,
and the conditions of use are determined through interviews with owners, who provide
broad indications.

The calibration process starts with the calculation of the energy consumption based
on surveyed data. The simulation reports a consumption of 7756 KWh/y. The simulation
graphs (Figure 5) show a consistent behavior of the consumptions and of the internal
temperature. Since the estimated consumption is not satisfactory, an adjustment of the
parameters is required. Simulation times are irrelevant, so many scenarios can be explored.
For the sake of brevity, a simple scenario where only the parameters that have greater
uncertainty, in our case Lea and Rih, are considered. Since Rih shows greater sensitivity to
energy consumption, it is selected for the first adjustment.

Figure 5. The graphs of the simulation of the initial assessment, obtained by OpenModelica 17.0 using
the Buildings 7.0.0 library. (Top) the consumption trend, (bottom) the internal temperature trend.

The Lea value is then doubled. The rationale of this choice depends on the fact that
the initial value was calculated assuming class 1 for the windows, which appear anyway
very old. It is therefore plausible to assume an initial underestimation of their permeability.
Usually, the schedule of the heating system appears in the list of the most uncertain factors
too. In this case, however, the interview with the owners gave sufficient certainty about the
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on-off switch dates. Doubling the value of Lea produces an over-estimation of the annual
consumption of 9618 KWh/y. The final value of Lea is 0.69 Kg/s which corresponds to
a consumption of 8682 KWh/y and amounts to 1.5 times the value for a class 1 window.
This appears to be a plausible setting. This procedure is aimed at building a maximum
likelihood explanation of the parameters values that are the result of the survey. Obviously,
there is no certainty about any of the parameters that are not directly measured. However,
in the inevitable condition of scarce information, this assessment framework is the one that
is supported by the best justification within the operational constraints.

Giretti [22] and Piccinini [23] have demonstrated the predictive ability of this class
of models using precise records of weather data, consumption, and usage profiles. The
availability of such data would allow further validation of the model in this case as well.
However, in this case such information was not available. Hence, parameters on Table 2
with the adjusted Lea represent the most likely setting provided by this process.

4. The Decision Support System

The decision support system consists of three components: the Case Base, the set of
Model Views and the set of Index Frames (Figure 6).

Figure 6. The conceptual schema of the case base.

The Case Base stores design cases. In this prototypical implementation, the Case
Base module is structured as simply as a relational data base in which tables are linked
through unique case identifier. It consists of two tables containing general information,
the parameters common to all supported decision processes and the metadata of files
containing further unstructured information (e.g., technical specifications, plans, photos).
Each decision process corresponds to one or more tables, the model views, which contain
the parameters required by the related inferences. Finally, each model view is related to an
index frame which exploits its statistics.

An index frame is a probabilistic model implemented by means of a Bayesian network.
A Bayesian network [30,31] is an acyclic directed graph where

1. Nodes represent random variables characterized by a probability distribution over
their domain, which can be discrete or continuous;

2. Links represent the presence of a significant correlation, often interpreted as a causal
relationship, between the variables at the ends, and are implemented as conditional
probability tables.

Figure 7 (left) shows a simple example of a Bayesian network that models the probabil-
ity distribution of the internal temperature of a building Tint in relation to the distributions
of the external temperature Test and the wall transmittance Uvalue.



Energies 2021, 14, 4738 10 of 21

Figure 7. Example of Bayesian network.

A Bayesian network supports different types of inference, which on a semantic level,
can be classified as

- Forward, which proceeds from observing technical parameters to estimating perfor-
mance;

- Backward, which proceeds from imposing a performance class and determining the
most appropriate technical configuration.

At lower computational level, however, each form of inference corresponds to ob-
serving certain parameters values and propagating the observations through the network.
Observing a parameter means assigning a particular probability distribution to the cor-
responding random variable. In case of perfect certainty, a 100% probability is assigned
to the range of the discretized domain in which the observed value falls. The observa-
tion of a value at a node triggers the recalculation of the probability distributions of all
nodes (Figure 7—right). More generally, and this is perhaps the most interesting case, it is
possible to assign a complex probability distribution that reflects an uncertain judgement
over the values of the variable. We will see in the following paragraphs some examples of
this possibility.

There are many possible topologies for modelling a given problem using Bayesian
networks, and in fact there is no absolute best solution. However, an extremely simple
topology known as the Naive Bayes Classifier (NBC) proves effective in many situations. An
NBC is a Bayesian network with a tree topology (Figure 8), made of a root node whose
domain is formed by the set of possible classes, connected to a set of leaf nodes representing
the parameters whose values characterize the different classes.

Figure 8. Naive Bayes Classifier.

One of the main features of Bayesian networks is their flexibility in integrating in-
formation sources of different nature while maintaining and/or explicitly highlighting
their logical structure. Bayesian networks can be constructed by mapping the analytical
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equations that represent any process or system onto the probabilistic relationships between
nodes, they can be built from qualitative expert judgements or, through data-mining pro-
cesses, directly from data sets. The three processes are not mutually exclusive and can
be integrated into the network development process. The process of learning from data
consists of three steps:

(1) Domain discretization;
(2) Structural learning;
(3) Learning of the conditional probability tables (EM Learning).

The discretization of the domains of the variables is an extremely delicate step, since
it introduces an error that tends to render the inference of a qualitative nature. The level of
discretization of the domains must therefore be carefully controlled, using where possible
thresholds that have a precise semantic or operational value in the domain of interest.
Structural learning serves to define the topology of the network and is usually a process
that is carried out by successive approximations under the supervision of the modeler.
Finally, the learning of the conditional probability tables takes place automatically through
the expectation maximization algorithm (EM-Learning).

5. The Analysis of a Test Case

This section will exemplify the functionalities of the proposed system through the
analysis of a test case, describing the corporate’s database, the structure of the index frame,
and the main types of inference.

5.1. The Case Base and the Thermal Model View

The Case Base comprises 40 buildings in the Marche region of central Italy, mostly
located in the countryside. The Case Base is made of a table that contains the basic
information of each building (Figure 9), and of a table that contains the metadata of photos
and technical document files (Figure 10). The construction of the Thermal Model View
required 250 simulations. For each building a baseline was calculated using the annual
consumption of the year 2020. Performance forecasting were then made by simulating
the consumption for different combinations of thermal insulation and photovoltaic. The
parameters of the thermal system, the usage profile and the envelope have been determined
with a good degree of certainty during on-site surveys. The site inspections involved the
collection of technical drawings, when present, the survey of the main dimensions of the
building and the visual inspection of the walls and thermal systems. Model calibration has
been used to estimate the thermal resistances of the fan coil diffusers (or radiators), and the
air exchanges due to the opening of windows and doors.

Figure 9. A fragment of the Case Base table.

Figure 10. The File System Table for Case No. 10.
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5.2. The Thermal Index Frame

The Bayesian model used for the thermal index frame consists of a mixed Bayesian
network that uses both discrete and continuous nodes. The network was derived from
the Thermal Model View data set using the learning procedure. The discretization of the
variables was carried out as far as possible using a good level of resolution, determined
as a trade-off between network complexity and detail, and a uniform interval width.
This avoids tailoring too much the model on the data set, hindering future expansions.
In some cases, however, specific regulations involving some parameters (e.g., building
consumption per square meter), imposed the use of standardized thresholds. The structure
of the network was defined a priori, using a simple Naive Bayes Classifier model. Finally,
the EM Learning algorithm was used for learning the conditional probability tables. The
resulting Bayesian network is shown in Figure 11. Nodes’ specifications are reported in
Table 3. The Bayesian Network has been implemented by means of the Hugin 8.8 library.
Figure 12 shows a legend of the node monitor windows.

Figure 11. The Bayesian Network that implements the thermal index–frame.

Table 3. The specification of the nodes in the Thermal Index Frame.

Node Domain Description Mapping

Case_id Integer Positive Value Unique Case Identifier
Location String Location of the building Maps to Case Base parameter Location

Building_Type Row_House, Condominium,
Detached_House Typical residential building typologies Maps to Case Base parameter Type

Energy Type Electric, Gas Type of the heating/cooling system Maps to Case Base parameter
Energy_Type

Cooling Yes, no Cooling system switched on Maps to a simulation set-up
Photovoltaic Yes, no Photovoltaic system switched on Maps to a simulation set-up

Yearly Consumption Real Value

Total energy consumption. Can be a
negative value, meaning the building

produce more energy than
it consumes

Maps to Simulation Result

Energy Class Set of ranges Defined according to
Italian legislation

Calculated from Model View as Yearly
Consumption/Floor Area

U_Value Set of ranges
Envelope U value, ranges are
arranged according to typical

U_Value thresholds

Calculated from model view Rie, Cie
and Wall Surface
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Table 3. Cont.

Node Domain Description Mapping

Coating Yes, no Calculated from model view
parameter U_Value

Lrate_m3 Real value Infiltration rate-kg of air per second
per cube meter Derived from Ria

Window Surface Real Value The building total window surface Map to model parameters
Window_Surfaces

Wall Surface Real Value The building total opaque surface Map to model parameters
Wall_Surfaces

Envelope technology
Blocchi Semipieni, Blocchi Forati,

Blocchi Pieni, Legno, Mattoni
Pieni, Mattoni Semipieni

Typical Italian masonry components Maps to Case Base parameter
Envelope Technology

Volume Real Value The Building Volume Map to model parameter Volume

Figure 12. The legend of the node monitor windows of the following networks.

Not all the parameters of the Thermal Model View have been used in the Index Frame,
as they were not strictly necessary for making inferences. Instead, more synthetic, and
directly observable parameters have been adopted. For example, a single parameter the
envelope type is used to synthetically represent the thermal capacities and resistances that
characterize the envelope, since it both is directly observable and strongly correlated to the
thermal resistances and capacities.

The Bayesian index frame introduces several noteworthy features. The Bayesian
probabilistic representation lets us use probability distributions of the various parameters
to represent uncertain evaluations. A second relevant aspect concerns the lack of values.
The correlated index system lets us compensate the missing data by providing the best
explanation according to the probability distributions of the missing parameters, derived
from the model view. Finally, the system seamlessly operates both in a forward way, estimat-
ing the expected performances starting from the observed indices, and in a backward way,
estimating the framework of the technical characteristics that are most likely to achieve the
expected performances.

The following sections will detail these aspects, where we will discuss three inference
examples: forward reasoning as performance estimation, backward reasoning as estimation
of technical parameters, and the full CBR.

5.3. Performance Estimation

The first example of performance estimation concerns the assessment of the actual
condition. It is articulated by defining the dwelling type and some of the most easily
identifiable parameters, such as the volume (Volume approx 440 [m3]), the technology
of the envelope walls (Wall_Type = brick, Coating = no) and the characteristics of the
systems (Cooling = no, PV = no). The model provides a consumption estimate of about
67 [KWh/m2] (see Figure 13).
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Figure 13. The index–frame used for condition assessment.

As a further inferential step, it is possible to evaluate alternative scenarios as a function
of different possible energy efficiency measures. For example, Figure 14 shows the result
that can be obtained after a coat of insulation (Coating = yes).

Figure 14. The index–frame used for scenario analysis (Coating = yes) relatively to the condition
described in Figure 13.

Finally, it is possible to represent the uncertainty in the estimation of more fuzzy
parameters, such as the infiltration rate. Figure 15 shows the performance estimation of a
detached house with a heated volume of about 640 m3. In this case the case base contains
examples with a wide range of performance values. It is therefore necessary to include
further parameter estimates to narrow the range.

Figure 16 shows the performance values obtained downstream of an infiltration
(Lrate_m3 Node) and transmittance (U_Value Node) estimates. In this case, the U_Value
parameters and Lrate_m3 parameters are observed as likelihood distributions over their
domain (Figure 17). The Energy Class converges towards the range 120–180 [KWh/m2].
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Figure 15. A new example showing uncertainty management.

Figure 16. The result after observing the ‘Infiltration’ variable distribution.

Figure 17. The input boxes of the likelihood distributions of the U_Value and Lrate_m3 variables.
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5.4. Estimation of Technical Parameters

The analysis of technical parameters is obtained by constraining the probability distri-
bution of a performance parameter (e.g., Energy Class) and, possibly, other parameters such
as the building type of interest (Figure 18).

Figure 18. Example of backward reasoning.

The Index-Frame assumes a configuration that indicates the compatible cases that
can support the investigation of this scenario. A first relevant aspect emerges: these
performance classes can only be achieved after a building envelope insulation intervention.

Considering the effect of a heating/cooling system that includes photovoltaic pan-
els it is possible to achieve Near Zero Energy Building (-inf-15) [KWh/m2] performance
in the case of a condominium located in the city of Ancona (Figure 19) while class A
(15–30) [KWh/m2] performance is achieved in a case located in the municipality of Monte-
cosaro (Figure 20).

Figure 19. The effect of a PV installation in a case of a condominium located in the city of Ancona.
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Figure 20. The effect of a PV installation in a case located in the municipality of Montecosaro.

5.5. Case Based Reasoning

This section will exemplify a form of reasoning that combines Bayesian network
inference with CBR. We will show how this combination let the inference range to include
unstructured information.

Let us consider the case in which an operator needs to quickly evaluate the energy
saving potential of the house in Figure 21, a country house of 472 m3 of heated volume,
built with traditional technology most likely in mattoni pieni or semipieni (i.e., typical bricks
used in Italy), less likely in blocchi (i.e., blocks).

Figure 21. The case under consideration.

This situation is very frequent, it can occur both in business contacts with owners
and during screening of potential investments in specific regions by real estate managers.
Under these conditions, both information and technical time are limited.

The reasoning will be Case Based. Estimates made in the closest cases will be used
to build a first picture of the energy saving potential of the building. The assessment
of similarity between different buildings, however, requires more information than is
available in the index frame, such as the location in the urban or rural context, the form
factor, the presence of appurtenances, and shading. In the reduce order modelling, these
factors are absorbed by the calibration process and are therefore not explicitly expressed
in the index frame. The CBR system lets us compensate for this limitation by offering the
possibility of visual comparison and/or the access to technical documents.
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Using, for example, the available information, it is possible to circumscribe through the
index frame the set of cases which have some similarity with the case under examination
(i.e., likelihood distribution on the technology) (Figure 22).

Figure 22. Searching for neighborhood cases.

At this point an explicit search in the case base can be used to mitigate the information
gap using the unstructured information collected in the Case Base. Table 4 shows the result
of the query to the Case Base by selecting the most likely cases.

Table 4. The result of the case base query.

Case_Id Location Volume Photo

15 Montegiorgio 427

14 Massa Fermana 472

10 Montegiorgio 513

A visual comparison points out that the selected cases are quite compatible: isolated
buildings, same region, no shading, not very different volumes and surfaces. It is therefore
possible to use the results of this set of cases to build a first estimate. The estimation of the
building condition is obtained by selecting a very typical scenario for the area, {Coating = no,
E_Type = Gas, PV = no} (Figure 23).

Similarly, it is possible to estimate consumption downstream of an efficiency inter-
vention by selecting the appropriate configuration {Coating = yes, Energy_Type = Electric,
PV = no} (Figure 24).



Energies 2021, 14, 4738 19 of 21

Figure 23. Fixing neighborhood cases and scenario analysis.

Figure 24. A second scenario analysis.

The performance values thus obtained reflect the statistics of the case base and are
very much like the judgements that would be made by an expert in the field with legacy
knowledge of the company’s energy refurbishment projects. The values obtained through
the index frame are approximate and qualitative.

The approximation is due to the already discussed epistemic uncertainty, while the
qualitative nature of the inference derives from the fuzziness introduced by the discretiza-
tion of the variable’s domains. The integration with the Case Base, however, mitigates the
problem of qualitative inference because it allows access to the point data of each analytical
simulation that was used in the inference process. For example, it is possible to obtain from
the thermal model view table the precise values of the envelope resistances and capacities,
as well as the calculated consumption. Following the analysis phase, the workflow foresees
the intervention design (Figure 3). Once completed, the design data will be fed into the case
base together with the simulated and, over time, measured performances. This completes
the corporate knowledge cycle. The relevance of the knowledge cycle implementation for
the competitive development of facility management companies is well discussed in [32].
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6. Conclusions

This paper discussed the architecture of a decision support system for energy re-
furbishment of buildings. A case study limited to a Case Base of residential buildings,
developed in collaboration with the GUMPUB s.r.l. corporate, was described. The contri-
bution showed how ROEM provides a level of abstraction that is at the same time able to
maintain an acceptable accuracy in predicting performance under different intervention
conditions, and to support the logic of decision-making processes in the management of
energy efficiency projects. The integration of Bayesian networks as a further refinement
of the index frame of the Case Base provided a good operational flexibility. Finally, the
CBR system allowed to extend the scope of inference by integrating, as far as possible, also
unstructured information.

The system shown in this paper represents a proof of concept of a methodology that
will integrate, with the same paradigm, other areas of analysis, such as the evaluation of
seismic vulnerability and the flexibility in the lay-out of spaces and a cost model. The NBC
structure of the Bayesian network represents only an initial hypothesis. It will be necessary
to investigate the development of networks with different structures and to evaluate their
degree of generality, especially in the integration of new cases.

The methodological approach is complementary to the procedures already developed
in the literature, as it has been discussed in the introduction, since it is specialized on a well-
defined usage profile. The main innovative aspect of the research lies in the integration of a
particular form of energy modelling into corporate business processes. By emphasizing the
operational costs of energy audit processes, it highlights new requirements for modelling
techniques and propose new solutions that are not typical of the Building Physics domain.
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