
energies

Article

Assessment of Energy Arbitrage Using Energy Storage Systems:
A Wind Park’s Perspective

Pavani Ponnaganti 1,* , Birgitte Bak-Jensen 1 , Brian Vejrum Wæhrens 2 and Jesper Asmussen 3

����������
�������

Citation: Ponnaganti, P.; Bak-Jensen,

B.; Wæhrens, B.V.; Asmussen, J.

Assessment of Energy Arbitrage

Using Energy Storage Systems: A

Wind Park’s Perspective. Energies

2021, 14, 4718. https://doi.org/

10.3390/en14164718

Academic Editors: Anca D. Hansen,

Tuhfe Göçmen, Elisabetta Tedeschi,

Anne Blavette, Qing Xiao and John

Ringwood

Received: 14 June 2021

Accepted: 27 July 2021

Published: 4 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark; bbj@et.aau.dk
2 Department of Mechanical and Manufacturing Engineering, Aalborg University, 9220 Aalborg, Denmark;

bvw@mp.aau.dk
3 Lead-Performance Optimization, Blue Power Partners, 9000 Aalborg, Denmark; jas@bluepp.dk
* Correspondence: pap@et.aau.dk

Abstract: With the growing application of green energy, the importance of effectively handling the
volatile nature of these energy sources is also growing in order to ensure economic and operational
viability. Accordingly, the main contribution of this work is to evaluate the revenue potential for wind
parks with integrated storage systems in the day-ahead electricity markets using genetic algorithm.
It is achieved by the concept of flexible charging–discharging of the Energy Storage System (ESS),
taking advantage of the widespread electricity prices that are predicted using a feedforward-neural-
network-based forecasting algorithm. In addition, the reactive power restrictions posed by grid code
that are to be followed by the wind park are also considered as one of the constraints. Moreover, the
profit obtained with a Battery Energy Storage System (BESS) is compared with that of a Thermal
Energy Storage System (TESS). The proposed method gave more profitable results when utilizing
BESS for energy arbitrage in day-ahead electricity markets than with TESS. Moreover, the availability
of ESS at wind park has reduced the wind power curtailment.

Keywords: Battery Energy Storage System; wind energy arbitrage; electricity markets; genetic
algorithm; regression

1. Introduction

Increasing the penetration of Renewable Energy Sources (RES) is of high importance,
as many countries have already set their goals for increasing RES share in the energy
mix [1,2]. The technical and economical analysis of both standalone and grid-connected
RES is presented in [3,4]. Climatic conditions highly influence the wind farm output that
often causes voltage and frequency deviations in the connected power grid. Using the
governor actions to solve these instability issues due to either shortage or surplus wind
power would be detrimental to speed-control systems [5]. For example, in Denmark, 10%
of hourly small variations are most common for wind farms, but up to 30% of hourly
fluctuations still occur once in 1.1 years [6]. Energy storage systems not only enable the
effective integration of widespread RES into power systems, but also provide various
services including load shifting, energy management, frequency regulation, wind power
smoothing, or energy arbitrage to the power grid. Among various Energy Storage System
(ESS) technologies, Battery Energy Storage System (BESS) turned out to be a suitable choice
for integration of wind farms and for maximizing profit [7]. There has been a large interest
towards investing in BESS for a decade; for example, Tesla completed installation of a
129-MWh, grid-scale, lithium-ion battery connected to Neoen’s Hornsdale Wind Farm near
Jamestown, South Australia in 2017 [8]. Further, ABB won an order from DONG Energy,
the leading Denmark-based sustainable energy group, to deliver a 2-MegaWatt BESS to
support the integration and transmission of power from the Burbo Bank offshore wind
farm near Liverpool, UK [9].
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Study of Literature: Battery Energy Storage System (BESS) and Thermal Energy Storage
System (TESS)

The Energy Storage System (ESS) plays a key role, even in the reserve market; however,
cross border and intraday trade have lessened the potential for ESS in the Nordic intraday
market [10], resulting in a lower return on investment compared to the day-ahead market.
The most significant revenue stream for BESS is energy arbitrage in short-term electricity
markets, such as the day-ahead electricity market. In general, the arbitrage is a transaction
that generates revenue by using price differences over a period, where the energy is stored
during the low-demand periods or low energy prices and dispatches during high-demand
periods or high energy prices [11]. For storage units, real-time arbitrage is a major source
of revenue, but the uncertain nature of prices pose difficulties in designing good strategies.
The difficulties arise from the fact that the future electricity prices are unknown, highly
stochastic, and difficult to forecast as well [12]. In general, the demand dynamics dictate the
price dynamics in a cyclical pattern, which can be daily, weekly, seasonal, and with some
unpredictable factors. Application of appropriate optimization methods would maximize
the returns from the combination of wind farms and ESS.

The general solutions that can be employed for handling the intermittency of the wind
power systems include flexibility technologies such as demand response technologies [13],
energy storage technologies [14], etc. Several research works demonstrated that the ef-
fective coordination of Wind and ESS can handle the future fluctuations in wind power
generation [15]. In [16], BESS is used to reduce the shortfalls of load, and reserves are
reduced along with a decrease in wind power curtailment in day-ahead scheduling. It is
assumed that the BESS is a system asset operated by the system operator. A comprehensive
analysis of the fallouts of grid-scale ESS in a real thermal power system under a centralized
spot market is carried out in [17]. The ESS is employed to provide energy arbitrage, and
primary and secondary reserves. A novel wind dispatch control scheme is proposed in [18],
where the major decision lies in discharging the BESS during peak price times and storing
it at off-peak periods in agreement with the Australian National Electricity Market. Further,
the price arbitrage-based feasibility study is carried out for BESS in relation to a RES park
in [19]. In the literature, several tools have been developed to analyze the economic viability
of the wind-storage systems [20]. The storage technologies used for integrating renewable
generation are not only in the form of electrical energy, but also chemical and thermal
energy [21]. Thermal energy storage systems, especially with latent heat storage methods,
have also been proven to be a competing energy dispatcher, due to their large-scale, being
environmentally friendly, and long life [22]. In TESS technologies, latent heat storage is
preferred over sensible due to its high storage capacities. The molten-salt-based phase
change material (PCM) is used for energy storage in the form of latent heat at high temper-
atures due to its recognition as the best heat transfer fluid (HTF) in Thermal Energy Storage
System (TESS) [23] and the cost of molten salt being low. In countries such as Denmark,
where more than 60% of heating in Danish houses is supplied by district heating and, in
addition, high wind power penetration, a considerable amount of wind energy can be used
to support DH system in low electricity price periods [24]. For half of the concentrated
solar power (CSP) throughout the world, TESS is used as a viable storage [25]. Moreover,
thermal energy present in the solar irradiance can be stored in the TESS and used to meet
the heat load [26].

The present work prioritizes the use of battery and thermal energy storage systems
for maximizing the profit of the wind farm operator obtained by selling the wind energy
through energy arbitrage. The problem is formulated as a maximization function that
measures the economic benefits obtained from the dispatched power from the wind farm
against the cost of ESS. Both BESS and TESS types are considered and their effect on the
wind park’s profit is evaluated. Considering the point of common connection (PCC) node
prices, the ESS is scheduled for either charging/discharging. According to the grid codes of
various countries, for maintaining power factor at the PCC as a function of voltage, the wind
farms not only supply active power but also reactive power into the grid [27]. Accordingly,
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the reactive power compensation at the PCC is considered one of the constraints, which is
a regulatory imposition by the Transmission System Operator (TSO) to be followed by the
wind park operator for injecting its power production into the grid. The modeled wind
farm is used to find the reactive power set points and passed onto optimization routine
in the form of a constraint. This is an important aspect, as in the process of maintaining
the reactive power at the PPC and within wind farm, there can be a possibility to adjust
the real power output of the wind farm, which has a direct effect on energy sold to the
grid, thereby on the hourly profit. However, the wind turbine dynamics are not considered
in this work, as the time scale is hourly precision. The dynamics, including electrical
converter controls and turbine mechanical controls, is a study of a seconds or less time
range but this is out of the scope of present work. The advantage of this work is that both
the performances of BESS and TESS are compared with respect to the wind park’s revenue.
The novelty of this work lies in considering the energy storage arbitrage along with grid
code fulfillment in terms of reactive power response for finding a trade-off solution to
maximize the revenue generated by selling wind energy to the grid. In addition, the neural
network model proposed in this work for forecasting the electricity price is compared with
the methods that are proposed in literature [28,29] and were revealed to be better.

Figure 1 shows the generic wind park model with the ESS. The ESS (either battery
or thermal) is installed at the wind park site and connected to the main grid through a
charge controller/inverter. The energy capacity of ESS describes the energy stored in the
battery for a given hour and the power that can be supplied or stored under the rated
charge/discharge time interval. The selected power and energy rating are given in the
wind park modeling section. The details of the BESS and TESS mathematical models are
described in the following subsections.

WIND PARK

CHARGE 

CONTROLLER

BESS TESS

STEAM 

TURBINE

GENERATOR

SET-UP

TSO

WIND PARK

CHARGE 

CONTROLLER

BESS TESS

STEAM 

TURBINE

GENERATOR

SET-UP

TSO

Figure 1. Wind park schematic diagram under study. BESS—Battery Energy Storage System; TESS—
Thermal Energy Storage System; TSO—Transmission System Operator.

2. Battery Energy Storage Systems

There are several BESS models reported in the literature. The charging/discharging
process for both the long-term and short-term applications is illustrated in [30]. The present
work considers the long-term operation (e.g., over hours/days) for BESS/TESS charging
and discharging processes, which is relevant for energy arbitrage applications. Besides this,
a numerical model in [31] is adapted for charge/discharge for BESS modeling, as given in
Equation (1).The equation gives the state of charge (SoC) at any time step k with respect
to charge (Pch,BESS) and discharge (Pdch,BESS) instances corresponding to given charge
(ηch)/discharge (ηdch) efficiencies. The SoC is having upper limit (SOCmax) and lower
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limit (SOCmin) and the SoC for any time interval (∆t) are limited by charge (rch)/discharge
(rdch) rates.

SoC(k + 1) = SoC(k) +
Pch,kηch,BESS∆t

EBESS,k

SoC(k + 1) = SoC(k)−
Pdch,kηdch,BESS∆t

EBESS,k

SoCmin ≤ SoC(k) ≤ SoCmax

rch ≤ SoC(k + 1)− SoC(k) ≤ rdch

(1)

3. Thermal Energy Storage Systems

Thermal energy storage systems are considered for wind parks due to many factors
including cost effectiveness, large-scale potential, and environmental friendliness. The
most widespread configuration of TESS is the two-tank sensible heat system with Solar
salt as Heat Transfer Fluid (HTF) and a storage medium due to its high thermal efficiency
and strong operability [32]. The molten-salt-based TESS system is one of the best HTFs
due to its low cost, which makes it economically attractive. The present work considers a
thermal storage model proposed by Stiesdal, currently under development [33], which is
basically a two-tank model with a compressor connected to a generator with a governor
system. End-use TESS stores electricity from off-peak periods in the form of heat using hot
or cold storage tanks in underground aquifers, water or ice tanks, molten salts, or other
storage materials. Heat losses would be there, which can be considered in cost calculation.
In the present model, the associated delays are due to the ramping time of the generator
dynamic system. The state of energy (SoE) that is stored at any time step k is derived from
the total thermal energy (Ecap) and current energy (Ek) available in the TESS. The binary
variable (uk) is used to avoid simultaneous charge/discharge and (lk) is accounting for the
internal losses within the thermal storage tank. are given in Equation (2):

E(k + 1) = (1 − uklk)E(k) + ηch,BESSPch,k∆t −
Pdch,k

ηdch,BESS
∆t

SoE(k) =
E(k)
Ecap

(2)

The power capacity (Pcap) of both the thermal and battery storage systems is used in
formulating the charge and discharge constraints, which are given in Equation (3):

Pch,k ≤ ukPcap

Pdch,k ≤ (1 − uk)Pcap
(3)

Unlike BESS, the thermal storage systems have a ramp constraint, expressed in terms
of SoE, which is given in Equation (3). Further, the constraint on the minimum energy
(Emin) and maximum energy (Emax) that TESS can handle is given in Equation (4):

− Rk∆t ≤ SoE(k + 1)− SoE(k) ≤ Rk∆t

SoEmin ≤ SoE(k) ≤ SoEmax

Emin ≤ Ek ≤ Emax

(4)

In the present work, the ramp rate (Rk) is seen as rate at which the dispatch of power
takes place from TESS to grid.

4. Problem Statement and Optimization Formulation

The optimization formulation was solved using a Genetic Algorithm (GA) due to its
parallel optimization capability, thereby giving a group of solutions at once. In addition,
the conventional optimization solvers might end up in local minima and oscillation effects,
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thereby failing to arrive at global optima. The Darwinian principle of natural evolution was
adapted in GA involving a population, which finds the solution for a given problem [34].
In comparison with other global search algorithms, GA proves to be superior over global
convergence. This method solves the problem by considering an appropriate selection of
mutation and cross-over operators, thereby updating the individual population in each
iteration [35].

The objective is to maximize the revenue of the wind park, as shown in Equation (5),
using intelligent charging/discharging based on predicted electricity prices for relevant
constraints on storage systems including their SoC limits, ramp rates for thermal storage,
charge/discharge rates and reactive power limits ((Qmin), (Qmax)). The power management
strategy for ESS (PESS,i) is based on given wind production profiles (PW,i) and forecasted
electricity prices (Epr,i) by the maximization optimization of the revenue.

Max
24

∑
i=1

Epr,i(PW,i + PESS,i)

Constraints

Equation (1) − BESS

Equations (2) − (4) − TESS

Qmin ≤ Qi,W ≤ Qmax

(5)

From the above formulation, the revenue obtained by selling energy from both wind
and ESS (EESS) to the grid is obtained. The net profit is obtained from the difference of
revenue and the costs that is given in Equation (6). Since the focus of this paper is on energy
storage facility, the corresponding capital costs of both the wind farm and converters are
assumed to be constant. This equation describes the costs of both the TESS and BESS,
whereas the cost of storing energy is comparatively less than that of the cost of operating
for the TESS system. This is due to the fact that the TESS consists of a steam turbine along
with a generator for generating electricity from thermal form. So, the operating cost of
TESS is assumed to be high compared with BESS.

Pro f it = αPsold − βPESS − γEESS (6)

In this study, it is considered that the predicted values of wind speed profiles are
already available and electricity prices are forecasted from historical data using neural
networks. The real data for a period of two years (2018–2019) corresponding to wind speed
profiles of the wind farm under study and electricity nodal pricing is provided by our
project partners. The forecasting is carried out only for electricity prices, with price being
the main decision maker in the profit maximization.

The simulation model is as shown in Figure 2, illustrating the neural-network-based
forecasting model for day-ahead electricity prices. The input for the model contains hour of
the day, day of the week, and time of year, which are used deterministically, and this dataset
is divided into a training set to train the neural network for day-ahead price forecasting.
The other dataset is the test set to validate the accuracy of the forecast model. The model
accuracy for the given sample periods is computed with the Mean Absolute Error (MAE)
and Mean Absolute Percent Error (MAPE) metrics. The forecasting toolbox available in
Matlab is used to carry out the prediction algorithm.
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Neural network
Forecasting algorithm 

Calibration
(Training and validation)

Historical data, seasonal 
(hours, weeks or days)

Forecast inputs
Previous price profiles

Predicted day-ahead 
electricity prices

Figure 2. Schematic model of forecasting algorithm.

Once the day-ahead electricity prices are forecasted, the GA-based optimization is
carried out for two cases, (1) BESS and (2) TESS, and the working flowchart is as shown
in Figure 3. The optimization formulation given in Equation (5) is solved once for BESS
and once for TESS. Within the GA optimization routine, the control goes to the DIgSILENT
(power flow program) routine to simulate the total wind farm model and obtain the
values of reactive power to be inserted in the Matlab routine. In the profit maximization,
along with constraints of BESS and TESS, meeting the reactive power requirements is also
formulated as one of the constraints.

Run forecasting algorithm for finding 
day-ahead electricity prices

System model
Simulated production profiles

Profit maximization using GA

DIgSILENT

Matlab

Output the results

Run control to 
DIgSILENT

Run control to 
Matlab

Figure 3. Flowchart showing the proposed method.

5. DIgSILENT Model of Wind Park

The DIgSILENT model of the wind farm illustrating the basic load flow results is
shown in Figure 4. This model is one of the examples within the software, and the original
wind farm under study is modeled in the same way. However, it is not shown here due
to data protection policy. Parameters such as copper losses and short circuit voltage are
calculated [36].

A fully rated converter-based wind turbine generator of 3.45 MW model is used to
model the wind turbines. The maximum real power output of the park is around 197 MW.
The reactive response to be seen at the PCC, which is a 345 kV connection that is governed
by the Vestas Power Plant Controller (PPC) utilizing the capabilities of the turbines. As
ordered by the TSO, the park controller sends the set points for real and reactive powers
either directly to wind turbine units or through a cluster controller that is commonly used
in large wind parks [37]. When reactive power supply is insufficient, the PPC will operate
the capacitor bank installed at the wind park site, thereby avoiding drawing reactive power
from the grid, which would otherwise have led to grid code violations [38]. The bank is
sized into two steps of 12.6 MVar each-total 25.2 MVar compensation. The real data of
wind speed profiles are given as input to the DIgSILENT models of wind turbines and the
load flow simulations are carried out for determining the total wind park production at the
PCC for a month, as shown in Figure 5.
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Figure 4. DIgSILENT model of Wind Park POC: Point of Conection, PCC:Point of common coupling.
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Figure 5. Simulated real power production at the PCC for a March month.

The active power injection of the wind turbines mainly depends on the wind speed.
The real power production at PCC and real power losses within the wind park with respect
to wind sweep speeds are shown in Figure 6.
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Figure 6. Simulated real power production and losses versus wind sweep speed.

Reactive Power Capability

The concept of capability curve is used to determine the active and reactive powers
that can be delivered by a wind farm. The real power–reactive power (PQ) diagrams depict
the performance of the individual turbines or wind farm as a whole based on the limits
of active and reactive powers. It is possible to control the reactive power at PCC with
the park controller on-site. The reactive power capability of the wind park without and
with park controller are analyzed and the results are represented as Case 1 and Case 2,
respectively. The reference curve for reactive power capability (red color) of the wind
park for a given reactive power requirement (blue color) without a park controller system
is shown in Figure 7. The active power is swept from the starting value to maximum
using two cases, i.e., Qmin and (Qmax) correspond to reactive power for underexcited and
overexcited cases, respectively. This is formulated as a constraint in the optimization
problem given in Equation (5). The DIgSILENT output is given in Table 1. In Figure 7,
the blue curve (requirement of reactive power) is exceeding the red curve (capability of
the wind park) for both underexcited (left side of origin) and overexcited (right side of
origin) cases.

Table 1. Simulation results from the DIgSILENT model without PPC set points.

At Maximum Active Power Requirement (Mvar) Capability (Mvar) Mismatch (Mvar)

Underexcited −58.99 −41.59 17.41
Overexcited 58.99 41.37 17.62

It can be seen from both Figure 7 and the DIgSILENT output data in Table 1 that the
wind park is unable to meet the required reactive power in few operating conditions. For
overexcited case, the reactive power requirement is 58.99 MVar, whereas the wind park
capability is only 41.37 MVar. Likewise, during underexcited cases, the wind park could
not meet the required reactive power. Therefore, the park controller is made responsible
for meeting the reactive power requirement either by switching the capacitor bank or
modifying the active power output of the wind park.
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Figure 7. Reactive power capability of wind park without PPC.

The modified reactive power capability of the wind park by park controller in accor-
dance with the reference (blue color) is as shown in Figure 8. The capacitor bank is switched
on by PPC in order to meet the reactive power requirement. The park controller present in
the wind farm switches ON the capacitor bank of 25.2 MVar in two steps depending on the
reactive power requirement at the PCC. It can be observed from the DIgSILENT report that
the capability is increased to 82.58 Mvar for underexcited and 83.14 Mvar for overexcited
cases compared with the results obtained without park controller. As can be observed
from Figure 8, the blue curve (requirement) is well within the red curve (capability of the
wind park) for both underexcited (left side of origin) and overexcited (right side of origin)
cases. The DIgSILENT output is given in Table 2. The PPC finds new active and reactive
power set points, thereby operating the capacitor bank in order to meet the reactive power
requirements. It can be seen from the results that there is a fair margin between capability
and requirements, enabling the wind park to accommodate any future rise in reactive
power requirement.
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Figure 8. Modified reactive power capability of wind park after PPC set points.
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Table 2. Simulation results from the DIgSILENT model after correction using PPC set points.

At Maximum Active Power Requirement (Mvar) Capability (Mvar) Margin (Mvar)

Underexcited −58.99 −82.58 23.5941
Overexcited 58.99 83.11 24.15

Table 3 presents the simulation results for PQ-analysis carried on the wind park before
and after PPC operation. It can be observed from the PQ-analysis results, that the maximum
and minimum voltage at shunt terminal are above 1 p.u. in Case 2 and are higher than
in Case 1 because the capacitor bank is switched ON, thereby injecting reactive power.
Further, in Case 1, the transformer should be loaded to 100%, whereas it is only loaded
to 99.9%, showing that the real power production of wind park is also reduced to meet
the reactive power requirement. This reduction in active power is significantly lower for
both cases, but may be significant during fault disturbances within or outside the wind
farm. This is not of main interest for this work. The DIgSILENT model is used to simulate
the system and obtain the operating points for the later optimization problem that will be
solved in Matlab, where a cosimulation between Matlab and DIgSILENT is established.

Table 3. Simulated results for PQ-analysis before/after PPC operation.

Dataset Simulated Results
Before PPC Operation (Case 1) After PPC Operation (Case 2)

Max. cable loading 53.315% 55.022%
Max. transformer loading 100.00% 99.974%
Max. voltage inside power plant 1.022 p.u. 1.095 p.u.
Min. voltage inside power plant 0.952 p.u. 1.023 p.u.
Max. voltage at generation unit terminals 1.001 p.u. 1.071 p.u.
Min. voltage at generation unit terminals 0.960 p.u. 1.034 p.u.
Max. voltage at shunt terminal 0.953 p.u. 1.024 p.u.
Min. voltage at shunt terminal 0.952 p.u. 1.023 p.u.

6. Simulations Results

The performance of the profit maximization algorithm is validated for various seasons
where electricity prices are widespread, and the comparative analysis is shown for both
BESS and TESS. The power and energy ratings, SoC/SoE limits, and ramp rates for both
the storage models are given in Table 4. Considering the hourly time-steps, the response
time of BESS is only from 20 ms-s [39], where BESS characteristics show no delay in terms
of ramp rate. In addition, the amortized cost parameters are taken from [6] for the present
work. Considering the BESS costs, the investment cost is $29 million for a battery cost
of 116 $/kWh. This can be recovered in a span of 3–4 years with the proposed energy
arbitrage solution for the wind farm.

The ability of deep learning regarding the input–output relationship for a given
input data makes neural networks preferable over linear regression techniques. Figure 9
shows the electricity price results obtained from the forecasting algorithm. The residuals
plot shows the estimated error between actual data and modeled data. The forecasting
algorithm is based on Neural Network (NN)-based regression. The simple linear regression
uses an approach where a line is used to best fit the given data for minimizing the error.
However, when the data is scattered, this approach leads to either overfitting or underfitting.
Even though the overfitting problem is also an issue in neural networks, in this work, it
is handled by decreasing the complexity of the model through strategically reducing the
number of neurons. There are many methods to resolve this problem, but this solution
came out to be feasible for handling the present formulation. A three-layer feedforward
neural network is used for forecasting the day-ahead electricity prices of hourly interval.
The NN model consists of an input layer, hidden layer with 10 neurons, and output layer
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connected by weight functions. These weight functions are adjusted to better fit the model,
thereby reducing the error. The model considers inputs including historical hourly prices,
temperature, and holidays. The predictor matrix contains information about hour of the
day, day in a week, previous day’s average price, and price from the same hour on the
previous day. Then, this whole data is split into training for building the model and test
data for forecasting the prices using estimated parameters from the training data set. The
MAPE for a day is as given in Equation (7):

MAPE =
1
24

24

∑
i=1

Pi,actual − Pi,model

Pactual

Pactual =
1

24

24

∑
i=1

Pi,actual

(7)

Table 4. Parameters of storage systems.

Parameters BESS TESS

Power (MW) 197 197
Energy (MWh) 250 250
SoC limits (%) 20–90 0–95

Round trip efficiency (%) 75–90 65–75
Ramp rate No delay 3 MW/min [40]

BESS capital Cost 116 $/kWh 100 $/100l
BESS maintenance Cost 29 $/kWh/year 1 $/100l

α 0.065 $/kWh 0.065 $/kWh
β 0.0116 $/kW/h –
γ 0.0099 $/kWh/h –

It can be observed from Figure 9 that the model is able to predict the electricity prices
using the historical data, where the model is able to track the actual data. There exists
large MAE during the large peaks for certain periods, this is due to the fact that sometimes
the NN model could not capture the sudden uncertainty in the electricity prices, which
has no relation with the historical data. This uncertainty in electricity price can be caused
by the demand, as electricity price is sensitive to load changes. The average MAPE is
6.89%, MAE is 5.27 MWh, and Daily Peak MAPE is 6.33% for the considered data set.
The MAE provides information about the deviation in the estimated model and predicted
model—the less the deviation, the better the predicted model. The average MAPE result
obtained from the proposed NN model is 6.89%. Table 5 shows the comparison of the
results from the proposed method with the results from the literature. It is to be noted that
the MAPE obtained from the proposed method is lower, which shows the effectiveness
of the proposed method. Figure 10 shows the daily forecast results corresponding to
various seasons. The MAPE came out to be higher in the fall season, i.e., 7.05%, as shown
in Figure 10c; it is worth noticing that the prediction is quite good during morning and
evenings. However, the inaccuracy exists, especially during higher price ranges caused due
to the uncertainty in the power demand. For the winter season, as shown in Figure 10d,
the ANN forecast price is almost same as the actual price from morning till evening, this
is due to the fact that the training data has better accuracy that could lead to increased
efficiency in the forecasting.
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Figure 9. Forecast results of electricity prices.

Table 5. Comparison of proposed ANN results with literature.

References Methods MAPE for a Day

[28] Selected 8 days for year 2010 7.81% (Average value)
[29] Selected 4, 8, and 12 neurons for hidden layer 23.3% (Best value)

Proposed method Selected 10 days for year 2019 with 10 hidden neurons 6.89% (Average value)

The predicted electricity prices and the simulated wind production profiles are given
as known variables and the ESS charge/discharge strategies are decision variables in the
GA optimization routine. As a first step, GA initializes the population and creates the next
generation, including elite children with better fitness function, cross-over children from
a pair of parents, and mutated children with random changes of same parent. The cross-
over generation extracts the best features from the different populations and mutation
helps in adding diversity—this way, GA generates superior individuals with a better
fitness function that increases the maximum likelihood. For these heuristic algorithms, the
initial population plays a significant role in finding the feasible solution. The convergence
of objective/fitness function for four days corresponding to four seasons is shown in
Figures 11–14. The selection function provides information about the selection of offspring
from the cross-over and mutation of parents/individuals from the population of 200.
The GA tool in Matlab is a minimization algorithm, however, the present study is a
maximization problem. Accordingly, the objective function is given as a negative function,
as is the negative value for the fitness function. The day in July could capture more profit
compared to other seasonal days, which is a positive outcome from energy arbitrage using
BESS. Further, the number of iterations that are needed by GA to meet the stopping criteria
are different.
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Figure 10. ANN results for a day during various seasons.
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Figure 13. Selection and fitness functions from GA for fall (10 September 2019).

The results obtained from GA are shown in Figure 15a,b for the SoC (BESS: min—20%
and max—90%) and SoE (TESS: min—0% and max—95%) of both the BESS and TESS,
respectively. The depth of discharge is different for the two storage systems, which can
be observed from charge and discharge profiles as shown in Figures 16 and 17. The
thermal storage system discharges fully to zero, whereas the battery storage system’s
minimum discharge limit is 20% of the total capacity. Internal losses are comparatively
higher in the thermal storage system than in BESS, as can be seen from the negative axes of
Figures 16 and 17. Even though the TESS could charge up to 180 MW, due to more internal
heat losses, it could only discharge 150 MW at any given time interval.
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Figure 15. SoC/SoE results for both (a) BESS and (b) TESS.

The optimal fitness function values, which is the profit that is obtained without ESS
and with BESS/TESS, for the year 2019 are given in Table 6. It is to be noticed that the
profit obtained from BESS is more than that in the TESS case. Nevertheless, if the objective
is a trade-off between being ecologically friendly and maximizing the profit along with
leveled costs, then TESS could be a better solution in spite of P2X losses.

Table 6. GA results: Profit obtained for cases without and with ESS.

Without ESS (Million $) BESS (Million $) TESS (Million $)

14.2 42.5 38.6
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Figure 16. Charge (a), Discharge (b) profile for BESS.
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Figure 17. Charge (a), Discharge (b) profile for TESS.

Without the introduction of ESS, the wind farm is subjected to curtailment due to
wind speed prediction errors, reactive power restrictions, etc. In this study, the curtailment
of wind power for the year 2019 is compared for three cases (No ESS, BESS, and TESS),
given in Table 7. It can be observed that the curtailment is less in the presence of BESS than
with TESS case. This is due to the fact that there exists operational delays, including ramp
rate charge/discharge for TESS, which is negligible in BESS.

Table 7. Wind power curtailment without and with ESS.

Without ESS (GW) BESS (GW) TESS (GW)

79.94 43.58 60.55

7. Discussion and Conclusions

Grid-scalable energy storage systems, including BESS and TESS, are utilized to study
their impact on wind park owner’s revenue through selling power to the grid, taking
advantage of the price arbitrage. The thermal storage system behavior is different to the
BESS system, which is due to the ramp rate constraints and the higher operating losses.
Even though the depth of discharge of TESS is more than that of BESS, due to internal heat
losses in the conversion of heat to electricity, BESS gives more profit than TESS. In this
work, the energy from the TESS is used to produce electrical energy, thereby selling to the
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grid. Whereas, there can be other option of meeting heat demand with the TESS. The main
conclusions can be summarized as follows.

• The present work deals with a real-world project, proposing an optimal strategy that
helps the wind park owner to invest in large-scale ESS in order to prudently sell
wind energy into the grid along with adhering to grid code requirements, thereby
maximizing the profit.

• The proposed forecasting algorithm using feedforward neural network obtained better
results compared to the results from the literature. The overfitting problem of the NN
is handled by strategically reducing the model complexity by decreasing the number
of hidden neurons.

• Profit maximization by GA mainly depends upon the accuracy of the electricity price
and wind power forecasting, which are inputs to the optimization problem. In this
work, the electricity price is considered as a major factor, so NN-based regression
analysis is performed to have better prediction values. Furthermore, the mean absolute
error is only 6.89% with the proposed NN model, which shows the accuracy of the
predicted model regarding the profit.

• The utilization of wind energy (reduced curtailment) is much better in BESS than
in TESS because of the ramp rate constraint and also significant power to heat and
heat-to-power losses. However, with respect to the cost associated with operation and
maintenance, TESS would be in high competition to become the first choice for a wind
park operator.

• The reactive power support is provided by the wind farm, whereas the ESS is only
responsible for real power charge/discharge with respect to electricity prices.

• The integrated system either with the BESS or the TESS gives better revenue to wind
park owners when compared to the case where there is no ESS facility.

• The BESS of large capacity will be a better option for short-term or long-term energy
arbitrage, i.e., in day-ahead electricity markets. However, the cost is a major factor in
this decision.

• Further, balancing markets and reserves could also be possible marketplaces for
energy arbitrage with ESS.
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Abbreviations
The following abbreviations are used in this manuscript:

BESS Battery Energy Storage Systems
CSP Concentrated solar power
EES Energy storage systems
GA Genetic algorithm
HTF Heat transfer fluid
MAE Mean absolute error
MAPE Mean absolute percent error
MW Megawatt
NN Neural Network
PCC Point of common coupling
PCM Phase change material
PPC Power plant controller
PQ Real power-reactive power
RES Renewable energy sources
SoC State of Charge
SoE State of Energy
TESS Thermal energy storage systems
TSO Transmission system operator
Nomenclature
∆t Time interval
Pch,k BESS charging power at time k
Pdch,k BESS discharging power at time k
SoC(k) BESS State of Charge (SoC) at time k
SoCmin Minimum limit on SoC of BESS
SoCmax Maximum limit on SoC of BESS
rch Allowable charging rate
rdch Allowable discharge rates
ηch,BESS BESS charging efficiency
ηdch,BESS BESS discharging efficiency
uk A binary variable used to avoid simultaneous charge and discharge
lk Internal losses occurring due to self-discharge in each time step
Ecap Energy capacity of the TESS system
SoE(k) SoE of TESS at time k
SoEmin Minimum limit on SoE of the TESS system
SoEmax maximum limit on SoE of the TESS system
Rk Ramp rate
Epr,i Forecasted electricity market price
PW,i Wind production of the wind park
PESS,i Available power within ESS
Qi,W Reactive power capability of the wind park

Qmin
Minimum reactive power capability of the wind park at its maximum
active power output

Qmax
Maximum reactive power capability of the wind park at its maximum
active power output

α Wind energy unit price in dollar per kilowatthour
β Amortized capital costs in dollar per kilowatt
γ Amortized capital costs in dollar per kilowatthour
Psold Wind power sold to grid
PBESS Power rating of BESS
EBESS Energy capacity of BESS
Pi,actual Actual price for ith hour
Pi,model Forecasted price from NN model for ith hour
Pactual Average actual price for that day
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