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Abstract: In modern electrical power distribution systems, the effective operation of inverter-based
arc suppression devices relies on the accuracy of faulty phase selection. In the traditional methods of
faulty phase selection for single-phase-to-ground faults (SPGs), power frequency-based amplitude
and phase characteristics are used to identify the faulty phase. In the field, when a high-resistance
SPG occurs in the system, traditional methods are difficult for accurately identifying the faulty phase
because of the weak fault components and complicated process. A novel realizable and effective
method of faulty phase selection based on transient current similarity measurements is presented
when SPGs occur in resonantly grounded distribution systems in this paper. An optimized Hausdorff
distance matrix (MOHD) is proposed and constructed by the transient currents of three phases’
similarity measurements within a certain time window of our method. This MOHD is used to select
the sampling time window adaptively, which allows the proposed method to be applied to any scale
of distribution systems. Firstly, when a SPG occurs, the expressions for the transient phase current
mutation in the faulty and sound phases are analyzed. Then, the sampling process is segmented into
several selection units (SUs) to form the MOHD-based faulty phase selection method. Additionally,
the Hausdorff distance algorithm (HD) is used to calculate the waveform similarities of the transient
phase current mutation among the three phases to form the HD-based faulty phase selection method.
Finally, a practical resonant grounded distribution system is modeled in PSCAD/EMTDC, and the
effectiveness and performance of the proposed method is compared and verified under different
fault resistances, fault inception angles, system topologies, sampling time windows and rates of
data missing.

Keywords: distribution power system; faulty phase selection; Hausdorff distance algorithm; single-
phase-to-ground fault; transient phase current

1. Introduction

Arc suppression coils have been widely used in power distribution systems in China
and Europe [1,2]. When a single-phase-to-ground fault (SPG) occurs in the distribution
network, the arc suppression device will compensate the fault current and then prevent
the fault arc from reigniting [3,4]. The effective operation of arc suppression devices relies
on the accurate selection of faulty phases. Faulty phase selection failure will lead to an
in-crease in the ground fault current and not only cannot achieve the fault arcing but also
increases the chance of arc reignition [5–7]. Seriously, there may be a large-area short circuit
of the system due to intermittent overvoltage.

Traditional faulty phase selection methods directly judge the phase with the lowest
phase voltage as the faulty phase when a SPG occurs in a resonant grounded distribution
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network [8]. However, in the case of high-resistance ground faults, the phase with the
lowest phase voltage is no longer the faulty phase. To solve this problem, another power
frequency-based faulty phase selection method is proposed by some scholars. When the
system is in the overcompensation state, the phase leading the highest voltage phase is the
faulty phase, and when the system is in the under-compensation state, the phase lagging
the highest voltage phase is the faulty phase. Since the above methods can only be used for
symmetrical systems, Xu [9] proposed a method to select the faulty phase by constructing
a “phase vector”, which used an asymmetric vector to determine the faulty phase, but its
calculation process was too complicated. In addition, Meng [10] proposed a faulty phase
identification method based on the zero-sequence voltage variation law, which was easy to
implement in a digital processor. In reference [11], the Clark Modal Transform (CMT) was
used to extract the zero-sequence components from the three-phase voltages, combined
with the voltage phase angle shift to determine the faulty phase in the 33-kV distribution
system. To avoid the complicated selection process, Wang et al. [12] determined the faulty
phase based on the phase voltage variation after the injection of a compensation current
at the neutral point in a distribution system with fully compensated arc suppression
technology, while Fan et al. [13] proposed a faulty phase recognition method based on
phase-to-ground voltage variations, who analyzed the effects of system asymmetry and
fault resistance in ungrounded distribution systems. All of the above methods are based
on steady-state signals, where the selection of the faulty phase is achieved by the power
frequency-based amplitude and phase characteristics of the voltage and current before and
after the fault. However, the application of these methods is susceptible to interference from
factors such as fault resistance values, system grounding methods and system asymmetries.

The transient process of the power system contains abundant fault signals, and various
criteria using fault transient characteristics have been applied in the field of relay protection
of the distribution system, such as faulty line selection, fault diagnosis, fault section location,
etc. [14]. The relay protection method based on a transient quantity is effective, unaffected
by the arc suppression coil, and has a higher sensitivity and better reliability [15]. In
reference [16], the gray-scale image was synthesized from the zero-sequence current signal
of the system through continuous wavelet transform (CWT), and then, the neural network
was used to adaptively extract the fault features to identify the faulty feeder. Compared
with reference [16], in addition to using the neural network to detect the faulty feeder,
Guo et al. [17] used a feature fusion method, which relieved the dependence of the neural
network-based methods on the amount of data. Guo [18] also used a 1D convolutional
neural network (1D-CNN) and waveform concatenation to overcome the difficulty of
feature extraction and classifier selection. This method can effectively realize the fault
location in the case of high-resistance SPG.

In the field, the transient faulty phase selection methods are interfered with less by
the grid structure parameters and fault resistance, which have become a hot research
topic in power transmission systems [19]. In references [20,21], the affiliation function
was constructed from the angle difference and amplitude difference among the basic fault
current sequences through WT, and fuzzy logic was used to realize the fault-type diagnosis.
Salim et al. [22] extracted the characteristic quantities in a specific frequency band from
the transient voltage and current information collected and selected the faulty phase by
comparing the threshold values of the faulty phase and the sound phase. Hong et al. [23]
proposed an intelligent faulty phase selection method by applying trained deep belief
networks (DBNs), which preprocessed the original data to obtain one-dimensional data
by min–max standardization and waveform splicing. These faulty phase selections can be
effectively realized in the transmission systems. However, they cannot be directly used in
a resonant grounded distribution network because of the different sequence impedances,
especially the zero-sequence impedance.

Indeed, once a SPG fault occurred on the distribution feeder, there were abundant
electromagnetic transient signals because of the energy interactions among the faulty
phase and two sound phases. The waveforms of different phase currents may exist as
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distinguished features. Some papers have used the similarity measurement results of the
voltage or current waveforms to achieve a power line protection function [24–27]. Our
research also showed that there is a significant difference between the waveforms of the
phase current mutation of the faulty and sound phases. Therefore, it is a viable method to
analyze the waveform similarity to select the faulty phase.

In this paper, a faulty phase selection method based on the transient current similarity
measurements is proposed for a power distribution system. After a SPG occurs in the
distribution network, there is a difference in the waveform of the transient phase current
mutation between the faulty phase and the sound phase. The HD algorithm is able to
determine the degree of similarity between the waveforms and can be used in cases of
high-resistance ground faults. The optimized HD matrix (MOHD) was first proposed in
this paper, and it can adaptively determine the sampling time window. The MOHD is
constructed by the transient currents similarity measurement in the divided faulty phase
selection units (SUs). The effectiveness of the proposed faulty phase selection method
is verified under various kinds of fault conditions in PSCAD/EMTDC and MATLAB.
The rest of this article is organized as follows. Section 2 describes the reasons why the
traditional faulty phase selection methods are not feasible when a high-resistance SPG
occurs. Section 3 introduces the basic principles of the proposed faulty phase selection
method. Section 4 presents the flow of the SPG faulty phase selection method based on
the HD and the MOHD. In Section 5, a typical resonant grounded distribution system is
modeled based on PSCAD/EMTDC to verify the accuracy of the proposed faulty phase
selection methods. In Section 6, the effectiveness of the proposed method is discussed in
different fault resistances, fault inception angles, system topologies and sampling time
windows. The conclusions are presented in Section 7.

2. Analysis of Phase Voltage under High-Resistance Ground Fault

When SPGs occur in the noneffectively grounded distribution system, the phase with
the lowest phase voltage is identified as the faulty phase. When the fault resistance is large,
the steady-state characteristics of the system are weak, and the use of this method can
lead to misclassifications. There is a SPG in the resonant grounded distribution system, as
shown in Figure 1.
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Figure 1. A phase-to-ground fault in the resonant grounded distribution system, where T  is the 
HV/MV transformer, and fR  is the fault resistance. C  is the equivalent capacitance of the sys-
tem. r  is the equivalent resistance of the system. L  is the equivalent inductance of the arc sup-
pression coil. Lr  is the equivalent inductance of the arc suppression coil.  

Figure 1. A phase-to-ground fault in the resonant grounded distribution system, where T is the
HV/MV transformer, and R f is the fault resistance. C is the equivalent capacitance of the system. r is
the equivalent resistance of the system. L is the equivalent inductance of the arc suppression coil. rL

is the equivalent inductance of the arc suppression coil.

The composite sequence network diagram formed based on the symmetrical com-
ponent method is shown in Figure 2. XC

+, XC
− and XC

0, respectively, are the system’s



Energies 2021, 14, 4695 4 of 19

capacitive reactions of the positive-sequence, negative-sequence and zero-sequence. U′+g ,

U′−g and U′0g, respectively, are equivalent three-sequence voltage sources at the fault point.

I′+f , I′−f and I′0f are the three-sequence fault currents at the fault point, respectively. ZS
+,

ZS
− and ZS

0, respectively, are the three-sequence equivalent impedances of the distribu-
tion system feeders. ZT

+, ZT
− and ZT

0 are the positive-sequence, negative-sequence and
zero-sequence impedances of the HV/MV transformer, respectively. E′+ϕ is the positive
sequence power electromotive force of the distribution system.
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Figure 2. Composite sequence network of a phase-to-ground fault. XC
+, XC

− and XC
0, respectively,

are the system’s capacitive reactions of the positive-sequence, negative-sequence and zero-sequence.
U′+g , U′−g and U′0g, respectively, are equivalent three-sequence voltage sources at the fault point. I′+f ,

I′−f and I′0f are the three-sequence fault currents at the fault point, respectively. ZS
+, ZS

− and ZS
0,

respectively, are the three-sequence equivalent impedances of the distribution system feeders. ZT
+,

ZT
− and ZT

0 are the positive-sequence, negative-sequence and zero-sequence impedances of the
HV/MV transformer, respectively. E′+ϕ is the positive sequence power electromotive force of the
distribution system.

The three-sequence fault current at the fault point in Figure 2 is given by

I′+f = I′−f = I′0f =
1
3

I′f =
E′A

3R f + Z+ + Z− + Z0 (1)

E′A is the electromotive force of the power supply. Z+, Z− and Z0, respectively, are
the three-sequence equivalent impedances of the feeder from the bus to the fault point. In
a resonant grounded system, there are Z0 >> Z+ and Z0 >> Z−, and the Equation (1)
becomes

I′+f = I′−f = I′0f =
1
3

I′f =
E′A

3R f + Z0 (2)

where
Z0 = XC

0//j3ωL =
j3ωL

1− 3ω2LC
(3)

There is a large resistance between the distribution network and ground. The zero-
sequence impedance of the HV/MV transformer and the zigzag transformer is very small,
and the resistance of the arc suppression coil is also very small. Therefore, the r0, the ZT

0
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and rL are ignored in Equation (3). According to Equations (2) and (3), the zero-sequence
voltage U′0g can be obtained as follows:

U′0g = −I′0f · Z0 = −
E′A

1 + jR f (3ωC− 1/ωL)
(4)

Therefore, the three-phase voltage U′A, U′B and U′C can be expressed by

U′A = E′A −
E′A

1 + jR f (3ωC− 1/ωL)
(5)

U′B = E′B −
E′A

1 + jR f (3ωC− 1/ωL)
(6)

U′C = E′C −
E′A

1 + jR f (3ωC− 1/ωL)
(7)

A medium voltage distribution system is modeled in PSCAD/EMTDC. The three-
phase power supply voltage is 110 kV, connected to a HV/MV transformer with a rated
capacity of 50 MVA and a rated ratio of 110/10. Seven feeders are connected to the sec-
ondary transformer. The length of all the feeders is 20 km. The arc suppression coil is
grounded through the secondary side of the zigzag transformer, and the equivalent induc-
tance value is 0.1078 H. The rated capacity of the distribution transformer is 0.63 MVA. The
distribution loads are connected to the end of the feeders with capacity of 0.39 + j0.18 MVA.

The parameters of the feeder are as follows:

r1 = 0.11 Ω/km, L1 = 0.52 mH/km, C1 = 0.29 µF/km;
r0 = 0.34 Ω/km, L0 = 1.54 mH/km, C0 = 0.19 µF/km.

Assuming a SPG occurs in phase A of the distribution system, the relationship between
the three-phase voltage amplitude and the fault resistance is shown in Figure 3.
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It can be seen from Figure 3 that, when a SPG occurs in phase A of the distribution
system, with the increase of the fault resistance, the voltage amplitude of phase A will
no longer be the lowest. When the fault resistance is greater than a certain threshold, the
traditional faulty phase selection method will misjudge phase C as the faulty phase. The
proposed faulty phase selection method based on transient current similarity measure-
ments in this paper can avoid the interference of the fault resistance and select the faulty
phase exactly.

3. Basic Principle of the Proposed Method

The distribution system currents under a SPG are shown in Figure 4. ikp is the phase
current near the bus bar on line k. ikpC is the capacitance current to the ground on line k.
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ikLp is the load current of line k. i f is the fault current at the grounding point (k is the serial
number of the feeder; p can be the A, B or C phase).
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L is the equivalent inductance of the arc suppression coil. rL is the equivalent inductance of the
arc suppression coil. u0 is the neutral point voltage before the fault. i f is the fault current at the
grounding point. eA, eB and eC, respectively, are the effective values of phase A, phase B and phase
C. i1A, i1B and i1C, respectively, are the phase currents of phase A, phase B and phase C near the bus
bar on line 1. i1LA, i1LB and i1LC, respectively, are the load currents of phase A, phase B and phase
C on line 1. i1AC, i1BC and i1CC, respectively, are the capacitance currents to the ground of phase A,
phase B and phase C on line 1. i2A, i2B and i2C are the phase currents on line 2. i2LA, i2LB and i2LC are
the load currents on line 2. i1AC, i1BC and i1CC are the capacitance currents to the ground on line 2.

When there is no fault in the distribution network, the feeder phase currents are
expressed by

ikp = ikpC + ikLp = Ck
d
(
ep + u0

)
dt

+ ikLp (8)

u0 is the neutral point voltage before the fault. ep is the effective value of the phase
voltage. In Figure 4, the phase currents of the sound feeder and the sound phase of the
faulty feeder are expressed by

i′kp = i′kpC + ikLp = Ck
d
(
ep + u′0

)
dt

+ ikLp (9)

u′0 is the neutral point voltage after the fault. i′kp is the phase current near the bus after
the fault. When a SPG occurs in the distribution system, the line voltage of the system
remains constant, so the load current ikLp before and after the fault also remains constant,
assuming that the source voltages before the fault have sinusoidal variations over time. In
Figure 4, the faulty phase current of fault feeder in the distribution system is expressed by

i′2A = i′2AC + i2LA

= C2
d(eA+u′0)

dt + i2LA +
(

Icm −
Ep
ωL

)
cos(ωt + ϕ)

+ Icm

(
ω′f
ω sin ϕ sin ω f t− cos ϕ cos ω f t

)
e−

t
τC

+
Ep
ωL cos e

t
τL

(10)

i′2AC is the capacitance current to the ground after the fault. Icm is the capacitance
current amplitude. ϕ is the initial phase angle of the fault voltage. ω f is the angular
frequency of the free oscillation component. τC and τL are the equivalent time constant.
ω f , τC and τL are related to the inductance value of the arc suppression coil, the leakage
impedance to the ground and the capacitance to the ground.
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i′2A is made up of the capacitive current to the ground, the load current, the steady-
state component of the fault current and the transient component of the fault current. The
steady-state component of the fault current is expressed by

(
Icm −

Ep
ωL

)
cos(ωt + ϕ), which

is the difference between the magnitude of the steady-state capacitive current and the
steady-state inductive current. The transient component of the fault current is expressed by

Icm

(
ω′f
ω sin ϕ sin ω f t− cos ϕ cos ω f t

)
e−

t
τC +

Ep
ωL cos e

t
τL , which is the sum of the transient

free oscillatory component of the capacitive current and the transient DC component of the
inductive current.

By subtracting Equation (8) from Equation (10), the phase current mutation of phase
A of feeder 2 where a SPG occurs can be expressed by

∆i2A = i′2A − i2A

= C2
d(u′0+u0)

dt +
(

Icm −
Ep
ωL

)
cos(ωt + ϕ)

+ Icm

(
ω f
ω sin ϕ sin ω f t− cos ϕ cos ω f t

)
e−

t
τC

+
Ep
ωL cos e

t
τL

(11)

By subtracting Equation (8) from Equation (9), the phase current mutation of the
sound feeder and the sound phase of the faulty feeder can be expressed by

∆ikp = i′kp − ikp = Ck
d(u′0 − u0)

dt
(12)

In a distribution system with k feeders, when a SPG occurs in phase A, the phase
current mutation in phase A on the low-voltage side of the HV/MV transformer can be
expressed by

∆iA =
n
∑

k=1
∆ikA

=
n
∑

k=1
Ck

d(u′0+u0)
dt +

(
Icm − EP

ωL

)
cos(ωt + ϕ)

+ Icm

(
ω f
ω sin ϕ sin ω f t− cos ϕ cos ω f t

)
e−

t
τC

+
Ep
ωL cos e

t
τL

(13)

The phase current mutation of the sound feeder and the sound phase of the faulty
feeder on the low-voltage side of the HV/MV transformer can be expressed by

∆iB = ∆iC =
n

∑
k=1

∆ikC =
n

∑
k=1

Ck
d(u′0 − u0)

dt
(14)

According to Equations (13) and (14), the conclusions are as follows:

• When a SPG occurs in the distribution system, for the sound phase current on the low-
voltage side of the HV/MV transformer, the phase current mutation is the sum of the
phase-to-ground capacitance current changes. For the faulty phase current on the low
voltage side of the HV/MV transformer, the phase current mutation is the sum of the
phase-to-ground capacitance current changes and the power–frequency steady-state
current components and the power–frequency transient current components at the
fault point.

• When a SPG occurs in the distribution system, one faulty phase current and two
sound-phase currents are collected on the low voltage side of the HV/MV transformer.
The similarity between the phase current mutation waveforms of the two sound
phases is high. There is a significant difference between the phase current mutations
of the faulty phase and the sound phase, and the similarity between the phase current
mutation waveforms of the faulty and sound phases is low.
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4. Faulty Phase Selection Method Based on HD and MOHD

At present, there are two main image similarity algorithms. One is to judge, based
on the characteristic points between the images, the typical Hausdorff distance algo-
rithm [25,26]; the other is to judge, based on the gray information between the images,
a typical gray correlation analysis [27]. In this section, the HD was used to calculate the
similarities among the transient three-phase current mutations when the SPGs occurred.
Then, the faulty phase selection criterions suitable for the distribution system were derived,
and the SPG faulty phase selection method based on HD was formed.

4.1. HD-Based Faulty Phase Selection Process

The calculation object of the Hausdorff distance algorithm is the discrete dataset of
the two images to be compared. Its calculation results are the characteristics’ distances
between the two datasets, which can reflect the similarity between the two datasets and
the similarity of the two images. The proposed faulty phase selection method based on HD
includes the following four parts.

4.1.1. Data Sampling and Normalization

The proposed faulty phase selection method performs similarity calculations and
faulty phase selection based on the phase current mutation of a one-quarter cycle.

Using 20 kHz as the sampling frequency, we collected the three-phase current of the
low-voltage side of the HV/MV transformer 20~15 ms before the fault and 5 ms after the
fault, totaling 600 data. The phase current sequences after the fault minus the ones before
the fault achieve the phase current mutation data of the three-phase current, with 100 data
per phase. The sampling data sequence of the phase A current mutation is defined as
XA(n); the sampling data sequence of the phase B current mutation is defined as XB(n).
The sampling data sequence of the phase C current mutation is defined as XC(n).

Normalizing the sampling data of the current mutation obtains the three-phase current
mutation data sequence YA(n), YB(n) and YC(n), and the following relations are satisfied:

YA(n) =
XA(n)√

XA(n)
2 + XB(n)

2 + XC(n)
2

(15)

YB(n) =
XB(n)√

XA(n)
2 + XB(n)

2 + XC(n)
2

(16)

YC(n) =
XC(n)√

XA(n)
2 + XB(n)

2 + XC(n)
2

(17)

4.1.2. Obtaining the Similarity Coefficient among the Three Phases

The similarity coefficient of the A–B phase current mutation is PAB, the similarity
coefficient of the B–C phase current mutation is PBC and the similarity coefficient of the
C–A phase current mutation is PCA.

The calculation process of the similarity coefficient of the A–B phase current mutation
is as follows:

• First step

We calculated the absolute value of the difference between the first data YA(1) in
YA(n) and all the data in YB(n) and selected the minimum value ∆YAB(1) among the above
absolute values, which is given by

∆YAB(1) = min|YA(1)−YB(n)| (18)

• Second step
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According to the similar method, we calculated ∆YAB(1) to ∆YAB(100) in turn to form
sequence ∆YAB(n) and selected the maximum value in ∆YAB(n) as the one-way distance
h(A, B) from A to B.

• Third step

We used the same method to calculate the one-way distance h(B, A) from B to A and
selected the larger of h(A, B) and h(B, A) as the similarity coefficient PAB of the A–B phase
current mutation, which is expressed by

PAB = max[h(A, B), h(B, A)] (19)

The calculation process of the similarity coefficient PAB of the A–B phase current
mutation is completed. The similarity coefficient PBC of the B–C phase current mutation
and the similarity coefficient PCA of the C–A phase current mutation can be calculated by
the same method.

4.1.3. Obtaining Faulty Phase Selection Parameters

We defined the average similarity of the current mutation sequence of phase A as
PA, defined the average similarity of the current mutation sequence of phase B as PB and
defined the average similarity of the current mutation sequence of phase C as PC. They can
be expressed by

PA =
PAB + PCA

2
(20)

PB =
PAB + PBC

2
(21)

PC =
PBC + PCA

2
(22)

We defined the phase A fault evaluation parameter as λA, defined the phase B fault
evaluation parameter as λB and defined the phase C fault evaluation parameter as λC.
They can be expressed by

λA = |PA − PB|+ |PA − PC| (23)

λB = |PB − PA|+ |PB − PC| (24)

λC = |PC − PA|+ |PC − PB| (25)

We set the faulty phase selection standard λset and the sensitivity factor ε(λA,B,C/λset)
to indicate the practicality of the proposed method. λset is expressed by

λset =
1
3
(λA + λB + λC) (26)

4.1.4. Faulty Phase Selection Process

When a SPG occurs in a resonant grounded distribution system, the process of the
proposed faulty phase selection method based on HD in this paper is as follows.

Firstly, we performed data sampling and normalization. Secondly, we calculated
the phase-to-phase similarity coefficient. Then, we calculated the faulty phase selection
parameters. Finally, we compared the A, B and C phase faulty evaluation parameters and
the faulty phase selection standard, respectively.

If λA > λset, it is judged that there is a SPG occurring in phase A; if λB > λset, it is
judged that there is a SPG occurring in phase B and if λC > λset, it is judged that there is a
SPG occurring in phase C. The faulty phase selection flowchart is shown in Figure 5.



Energies 2021, 14, 4695 10 of 19

Energies 2021, 14, x FOR PEER REVIEW 10 of 20 
 

 

defined the average similarity of the current mutation sequence of phase C as CP . They 
can be expressed by 

2
AB CA

A
P PP +

=  (20) 

2
AB BC

B
P PP +

=  (21) 

2
BC CA

C
P PP +

=  (22) 

We defined the phase A fault evaluation parameter as Aλ , defined the phase B fault 
evaluation parameter as Bλ  and defined the phase C fault evaluation parameter as Cλ . 
They can be expressed by 

A A B A CP P P Pλ = − + −  (23) 

B B A B CP P P Pλ = − + −  (24) 

C C A C BP P P Pλ = − + −  (25) 

We set the faulty phase selection standard setλ  and the sensitivity factor ε (

, ,A B C setλ λ ) to indicate the practicality of the proposed method. setλ is expressed by 

( )1
3set A B Cλ λ λ λ= + +  (26) 

4.1.4. Faulty Phase Selection Process 
When a SPG occurs in a resonant grounded distribution system, the process of the 

proposed faulty phase selection method based on HD in this paper is as follows. 
Firstly, we performed data sampling and normalization. Secondly, we calculated the 

phase-to-phase similarity coefficient. Then, we calculated the faulty phase selection pa-
rameters. Finally, we compared the A, B and C phase faulty evaluation parameters and 
the faulty phase selection standard, respectively. 

If A setλ λ> , it is judged that there is a SPG occurring in phase A; if B setλ λ> , it is 
judged that there is a SPG occurring in phase B and if C setλ λ> , it is judged that there is a 
SPG occurring in phase C. The faulty phase selection flowchart is shown in Figure 5. 

Calculate the similarity 
coefficient        ,         ,         among the 

three phases 

Calculate fault evaluation 
parameters       ,       ,       and the faulty 

phase selection standard       

Faulty phase selection start 

The phase current of 5ms after the 
fault minus the phase current of 

20ms～15ms before the fault to get 
the three-phase current mutation 

Normalization The phase whose fault evaluation 
parameters exceeds the phase 

selection standard is the faulty phase 

Output result 

Aλ Bλ Cλ

ABP BCP CAP

setλ

 
Figure 5. Flowchart of the faulty phase selection method based on HD. 

  

Figure 5. Flowchart of the faulty phase selection method based on HD.

4.2. MOHD-Based Faulty Phase Selection Process

In the field, there is a short transient process when a SPG occurs in the distribution
system. The duration of the transients also varies for different scales of the system. The
moment of fault occurrence is determined by detecting a sudden rise in zero-sequence
voltage at the substation. The distribution system operates in a harsh environment, and the
signals are easily disturbed by a variety of factors. It may happen that the collection terminal
online is not sampled for a very short time after the zero-sequence voltage fluctuates,
resulting in the loss of transient fault data. The HD-based faulty phase selection method
proposed in Section 4.1 uses a fixed 5-ms time window. In the field, the faulty phase may
be incorrectly selected.

The faulty phase selection matrix (MOHD) based on an optimized HD algorithm
(OHD) was first proposed in this paper. With the MOHD, the faulty phase selection time
window can be determined adaptively. Suppose a SPG occurs in the distribution system,
the transient data within T after the fault is missing, and the transient process ends at T’
after the fault. It therefore makes sense for transient fault data to be sampled from T to T’
after the fault. This valid data sampling time window is defined as WT−T′ .

The sampling process is divided into n faulty phase selection units (SUs), each with
a time duration of ms. For each SU, a data sequence of the three-phase current mutation
will be synthesized, and then, the faulty phase selection will be completed. The above
process will be repeated n times, and there will be a continuous data sampling process. The
transient data sampling time window is shown in Figure 6.
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In Figure 6, a SPG occurs at 0.2 s, with a data loss of 0.003 s after the fault. At T’
seconds after the fault, the fault transient process ends. The transient data sampling time
window WT−T′ is made up of n SUs.

The faulty phase selection vector αn is set to represent the faulty phase selection result
of the nth SU.

When the faulty phase is phase A, αn = [1, 0, 0]T ;
When the faulty phase is phase B, αn = [0, 1, 0]T ;
When the faulty phase is phase C, αn = [0, 0, 1]T .
The matrix MOHD is expressed by

MOHD = [α2 − α1, α3 − α2, · · · , αn − αn−1]3×n−1
= [β1, β2, · · · , βn−1]3×n−1

(27)

The time window 1-norm µ was set to indicate the consistency of the αn and the αn−1,
which are expressed by

µ = ‖βn−1‖1 =
3

∑
i=1
|βn−1| (28)

When µ = 0, this means that the nth SU is still in WT−T′ , and faulty phase selection
continues in the n + 1th SU. When µ 6= 0, this means that the nth SU is already outside
WT−T′ , and the faulty phase selection process is complete. The flowchart of faulty phase
selection based on MOHD is shown in Figure 7.
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The time window WT−T’ is determined as from T to T + a(n − 1) after the fault. With
the MOHD and WT−T’, the proposed faulty phase selection method can be adapted to
different scales of the distribution system. The effect of the missing sampling data on the
faulty phase selection results is also taken into account in this method. In addition, the
WT−T’ can provide a reliable transient database for the rest of the transient-based relay
protection methods.

5. Simulation Verification and Results Analysis

In this paper, a typical medium voltage distribution system is modeled in a Power
Systems Computer-Aided Design/Electromagnetic Transients, including the DC. The three-
phase current mutation is collected in PSCAD/EMTDC, and the similarity coefficient is
calculated in MATLAB. The distribution system model is shown in Figure 8.
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The parameters of the HV/MV transformer and the 10-kV feeder are shown in
Tables 1 and 2, respectively. The arc suppression coil is grounded through the secondary
side of the zigzag transformer, and its equivalent inductance value is 0.1078 H. The distri-
bution loads are connected to the end of the feeders with capacities of 0.39 + j0.18 MVA.

Table 1. Parameters of the HV/MV transformer.

Rated Capacity
(MVA)

Voltage Rate
(kV)

No Load Loss,
P0 (kW)

Copper Loss,
Pk (kW) I0 (%) Uk (%)

50.0 110/10 25.6 125.8 0.2 10.5
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Table 2. Parameters of the feeders (per kilometer).

Feeder Types Phase Sequence r
(Ω/km)

L
(mH/km)

C
(µF/km)

Cable feeder
Positive sequence 0.11 0.52 0.25

Zero sequence 0.34 1.54 0.19

Overhead feeder
Positive sequence 0.096 1.22 0.011

Zero sequence 0.23 3.66 0.007

Suppose a SPG occurs in phase A of feeder 2 of the distribution system simulation
model with a system sampling rate of 20 kHz. The fault inception angle of the voltage is
90◦, and the fault resistance is 1 Ω, 25 Ω, 100 Ω, 500 Ω, 1000 Ω and 2000 Ω, respectively.
After the SPG occurs, the waveforms of the phase current mutation in phases A, B and C
are shown in Figure 9.
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resistance is 1000 Ω. (f) The phase current mutation waveform when the fault resistance is 2000 Ω.

As can be seen from Figure 9, the phase current mutations in phase A, phase B
and phase C all decrease gradually as the fault resistance increases. During this process,
the differences between the phase current mutation waveforms of the faulty phase and
the ones of the sound phase gradually decrease, and the difference between the phase
current mutation waveforms of the two sound phases gradually increases. When the fault
resistance is 1000 Ω and above, there is no situation where the difference between the faulty
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phase and the sound phase is more significant than the difference between the two sound
phases, which increases the difficulty of faulty phase selection.

We calculated the similarity coefficient of the data sequence of the A, B and C phase
current mutations through the Hausdorff distance algorithm in MATLAB. Then, we calcu-
lated the fault evaluation parameter and faulty phase selection standard. The faulty phase
selection was completed, and the results are shown in Table 3.

Table 3. Similarity parameters and faulty phase selection results.

Fault Resistance
(Ω)

Similarity Parameters
Result

PAB PBC PCA PA PB PC λA λB λC 1.4λset

1 0.53 0.01 0.52 0.53 0.27 0.27 0.52 0.26 0.27 0.49 A
25 1.00 0.04 1.00 1.00 0.52 0.52 0.96 0.48 0.48 0.91 A

100 1.00 0.08 1.00 1.00 0.54 0.54 0.92 0.46 0.46 0.85 A
500 1.03 0.23 1.03 1.02 0.63 0.62 0.79 0.40 0.42 0.76 A
1000 1.05 0.42 1.05 1.04 0.74 0.73 0.62 0.32 0.33 0.59 A
2000 1.10 0.78 1.10 1.10 0.94 0.94 0.32 0.16 0.16 0.29 A

Table 3 shows that when the fault resistance varies from 1 Ω to 2000 Ω, the fault
evaluation parameters λA of the faulty phase A are all much greater than the faulty phase
selection standard λset. When the fault resistance is a constant value, the proposed faulty
phase selection method based on the transient current similarity measurements correctly
identifies the faulty phase A. In all cases, the sensitivity factors ε (λA/λset) exceeded 1.4, so
the proposed method is effective in harsh environments.

Three sets of fault signals were collected in a real power distribution system in the
Wenzhou area of China. The fault signals were collected in a fault indicator. The fault
indicator was installed near the output of the substation with a sampling frequency of
4096 Hz. The performance of the proposed method was verified, and the results are
shown in Table 4. The faulty phase selection method based on the transient current
similarity measurements proposed in this paper correctly selected the faulty phase in a real
distribution system.

Table 4. Similarity parameters and faulty phase selection results in a real power distribution system.

Number
Similarity Parameters

Result
PAB PBC PCA PA PB PC λA λB λC 1.4λset

1 0.45 0.95 0.89 0.67 0.70 0.92 0.28 0.25 0.47 0.46 C
2 1.07 1.07 0.22 0.65 1.07 0.65 043 0.85 0.43 0.79 B
3 2.00 0.45 1.86 1.93 1.23 1.16 1.48 0.78 0.85 1.45 A

The three methods of faulty phase selection that are widely used in the field are
listed as follows. The method proposed in this paper (Method 1) is compared with these
three methods.

• Method 1: The novel faulty phase selection method for SPG in a distribution system
based on the transient current similarity measurements proposed in this paper.

• Method 2: The phase with the lowest phase voltage is judged to be the faulty phase
when a SPG occurs in a resonant grounded distribution system.

• Method 3: When the system is in the overcompensation state, the phase leading
to the highest voltage phase is the faulty phase, when the system is in the under-
compensation state, the phase lagging the highest voltage phase is the faulty phase.

• Method 4: The first half-wave method.

The first half-wave method has been widely used in faulty line selection, which was
used to select the fault phase in this paper. The polarity standard is defined as ζ. When the
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polarity of the phase current is positive, ζ > 0. When the polarity of the phase current is
negative, ζ < 0. ζ can be expressed by

ζ =


M
∑

k=1
sign(i(k)), sign(i(M)·i(M + 1)) ≤ 0, M ∈ [1, N)

N
∑

k=1
sign(i(k)), sign(i(m)·i(m + 1)) = 1, ∀m ∈ [1, N)

(29)

i(k) is the kth sample value of the fault current. N is the number of half-cycle sampling
points. In the simulation model in Figure 8, the fault resistance was set as 100 Ω and
2000 Ω, respectively. The distribution system was set up as a symmetrical system and an
asymmetrical system, respectively, and the asymmetry of the system was set as 0% and
−1.095%, respectively. The results of the faulty phase selection for Method 1 and the other
methods are shown in Table 5. The method proposed in this paper (Method 1) is able
to select the faulty phase accurately, without interference from fault resistance, system
compensation and system symmetry. When the fault resistance is high, Methods 2 and 4
will identify the sound phase as the faulty phase by mistake. Method 3 will identify the
sound phase as the faulty phase in an asymmetrical distribution network.

Table 5. The faulty phase selection results of Method 1, Method 2, Method 3 and Method 4.

Symmetry Fault Resistance Method 1 Method 2 Method 3 Method 4

symmetrical
system

high fault resistance Yes No Yes No
low fault resistance Yes Yes Yes Yes

asymmetric
system

high fault resistance Yes No No No
low fault resistance Yes Yes No No

6. Discussion of the Anti-Interference
6.1. The Influence of the Sudden Change of the Fault Resistance Value on the Proposed Method

When SPGs occur in the distribution system, there may be an arc at the fault point, so
the fault resistance is not constant. In a resonant grounded distribution system, the fault
point is set at phase A of feeder 2. There is a sudden change in the fault resistance value
2.5 ms after the fault. The change of the fault resistance is shown below:

1. The fault resistance changes abruptly from 25 to 50 and 1000, respectively.
2. The fault resistance changes abruptly from 1000 to 800 and 25, respectively.

The similarity parameters and faulty phase selection results under the influence of
the sudden change of the fault resistance are shown in Table 6. The results show that the
proposed method is able to accurately select the faulty phase A when there is a sudden
increase or a sudden decrease in the fault resistance.

Table 6. Similarity parameters and faulty phase selection results under the influence of the sudden change of the fault
resistance value.

Fault Resistance
(Ω)

Similarity Parameters
Result

PAB PBC PCA PA PB PC λA λB λC 1.4λset

25→50 1.00 0.04 1.00 1.00 0.52 0.52 0.96 0.48 0.48 0.90 A
25→1000 1.00 0.04 1.00 1.00 0.52 0.52 0.96 0.48 0.48 0.90 A
1000→800 1.04 0.42 1.04 1.04 0.73 0.73 0.62 0.31 0.31 0.57 A
1000→25 1.01 0.05 1.01 1.01 0.53 0.53 0.96 0.48 0.48 0.90 A

6.2. The Influence of the Fault Inception Angle on the Proposed Method

The fault inception angle of the phase voltage affects the waveform of the phase
current mutation. The performance of the proposed method may be disturbed by the fault
inception angle. In the simulation model in Section 5, the fault resistance is set to 100 Ω,
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and the fault phase is phase A of feeder 2. The fault inception angle is set to 0◦, 30◦, 60◦

and 90◦, respectively. The similarity parameters among the waveforms of the three-phase
current mutations are shown in Table 7. The results show that the faulty phase selection
method based on the transient current similarity measurements is not affected by the fault
inception angle.

Table 7. Similarity parameters and faulty phase selection results under the influence of the fault inception angle.

Inception Angle
(◦)

Similarity Parameters
Result

PAB PBC PCA PA PB PC λA λB λC 1.4λset

0◦ 1.07 0.12 1.01 1.04 0.60 0.57 0.92 0.48 0.50 0.90 A
30◦ 1.01 0.08 1.01 1.01 0.55 0.55 0.93 0.47 0.47 0.87 A
60◦ 1.01 0.07 1.01 1.01 0.54 0.54 0.94 0.47 0.47 0.88 A
90◦ 1.00 0.08 1.00 1.00 0.54 0.54 0.92 0.46 0.46 0.85 A

6.3. The Influence of the System Topology on the Proposed Method

The distribution system is directly connected to a large number of electricity con-
sumers. There are a variety of network topologies in the power distribution system. In
this paper, the effect of system topology on the proposed method is explored by varying
the number of feeders. The model in Section 5 will be designed as four new scenarios that
contain one feeder, three feeders, five feeders and seven feeders, respectively. The fault
resistance is set to 100Ω, and the fault inception angle is set to 90◦. The phase similarity
coefficients are calculated by the HD, and the faulty phase selection results are listed in
Table 8. The results show that the HD-based faulty phase selection method is not affected
by changes in the number of feeders. This method has a certain degree of anti-disturbance
when the system topology changes.

Table 8. Similarity parameters and faulty phase selection results under the influence of the system topology.

Number of
Feeders

Similarity Parameters
Result

PAB PBC PCA PA PB PC λA λB λC 1.4λset

1 1.00 0.01 1.00 1.00 0.51 0.51 0.99 0.50 0.50 0.92 A
3 1.00 0.03 1.00 1.00 0.52 0.52 0.97 0.49 0.49 0.91 A
5 1.00 0.05 1.00 1.00 0.53 0.53 0.95 0.48 0.48 0.90 A
7 1.00 0.06 1.00 1.00 0.53 0.53 0.94 0.47 0.47 0.88 A

6.4. The Influence of the Sampling Time Window on the Proposed Method

The sampling data length will affect the similarity coefficient of the three-phase current
mutations calculated by the HD. When the sampling time window is increased, there may
be a loss of accuracy because of the inclusion of useless data from the fault steady state.
At the same time, the efficiency of the faulty phase selection may be reduced because of
the larger size of the sampling database. When the sampling data length is small, the
calculation speed is improved, but a smaller amount of sampled data may lead to incorrect
faulty phase selection. When the fault resistance is large or the fault inception angle is
small, the transient decay process is also very short. We modified the sampling time length
to 1 ms, 2 ms, 5 ms and 10 ms, respectively. The simulation results are shown in Table 9. As
shown in the table, the method based on HD can correctly select the faulty phase when the
sampling time window fluctuates within a limited range.
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Table 9. Similarity parameters and faulty phase selection results under the influence of the sampling time window.

Time Window
(ms)

Similarity Parameters
Result

PAB PBC PCA PA PB PC λA λB λC 1.4λset

1 1.03 0.05 1.01 1.02 0.54 0.53 0.97 0.49 0.50 0.91 A

2 1.03 0.05 1.01 1.02 0.54 0.53 0.97 0.49 0.50 0.91 A

5 1.01 0.08 1.01 1.01 0.53 0.53 0.96 0.48 0.48 0.90 A

10 0.51 0.09 0.51 0.51 0.30 0.30 0.42 0.21 0.21 0.39 A

6.5. The Influence of the Missing Sampling Data on the Proposed Method

There is a complex operating environment for power distribution systems. Missing
sampling data often occurs in rural distribution networks. Assuming that a small amount
of data is missing in a short period of time after the fault, the data missing rate is set at 10%,
20%, 30% and 40%, respectively. The faulty phase current is collected in the simulation
model in Section 5. The sensitivity factor ε (λA/λset) is set to 1.4. The data missing rate and
faulty phase selection results are shown in Table 10. When the sampling data missing rate is
less than 30%, the method proposed in this paper still accurately identifies the faulty phase.

Table 10. Similarity parameters and faulty phase selection results under the influence of the missing sampling data.

Missing Rate
(%)

Similarity Parameters
Result

PAB PBC PCA PA PB PC λA λB λC 1.4λset

10 1.00 0.08 1.00 1.00 0.54 0.54 0.92 0.46 0.46 0.86 A

20 1.00 0.11 1.00 1.00 0.56 0.56 0.89 0.45 0.45 0.83 A

30 1.00 0.11 1.00 1.00 0.56 0.56 0.89 0.45 0.45 0.83 A

40 0.77 0.13 0.64 0.71 0.45 0.39 0.58 0.32 0.39 0.60 No

7. Conclusions

When a high-resistance SPG occurs in a distribution system, the steady-state compo-
nents of the fault signals are too weak to be used for faulty phase selection. The traditional
faulty phase selection methods based on the power–frequency amplitude and phase charac-
teristics have a complicated and unfeasible process. A novel faulty phase selection method
based on the transient current similarity measurements is proposed in this paper.

The data sampling process has been divided into several faulty phase selection units
(SUs). For each SU, the transient phase current mutation is synthesized from the difference
in the phase currents before and after the fault. The HD algorithm is used to normalize
the phase current mutations and calculate the waveform similarities of the transient phase
current mutations among the three phases of the distribution system. The MOHD is synthe-
sized based on the faulty phase selection results of the SUs. The phases where the fault
evaluation parameter (λA,B,C) exceeds the selection standard (λset) are identified as faulty
phases. With the MOHD, the proposed faulty phase selection method can be applied to any
scale of the distribution systems, and the proposed method can be applied in cases where
a small amount of sampling data is missing. After a theoretical analysis and simulation
verification, the following two conclusions can be drawn:

• When any SPG occurs in a typical medium-voltage distribution system, the proposed
faulty phase selection method can accurately select the faulty phase over a wide range
of fault resistances with a system sampling rate of 20 kHz and a time window of
5 ms. This method is still valid, even when the fault resistance reaches 2000 Ω or the
fault resistance varies during the fault process. In all cases, the sensitivity factors ε
(λA,B,C/λset), the ratio of the evaluation parameter of the faulty phase to the selection
standard, all exceeded 1.4.
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• When the fault inception angle varies from 0◦ to 90◦or the number of system feeders
changes, the proposed method can select the faulty phase correctly. Although the
similarity between the faulty phase and sound phase increases as the sampling time,
the window changes from 1 ms to 10 ms, which raises the difficulty of faulty phase
selection, and the proposed method can still accurately select the faulty phase. In
addition, the proposed method is still valid when the missing rate of the sampled data
is below 30%.
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