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Abstract: The need for accurate measurements and for estimating the uncertainties associated with
measures are two pillars for researchers and metrologists. This is particularly true in distribution
networks due to a mass deployment of new intelligent electronic devices. Among such devices,
phasor measurement units are key enablers for obtaining the full observability of the grid. The
phasor measurement unit performance is mostly evaluated by means of the total vector error, which
combines the error on amplitude, phase, and time. However, the total vector error is typically
provided merely as a number, that could vary within an unknown interval. This may result into the
phasor measurement unit incompliance with the final user expectancies. To this purpose, and with
the aim of answering practical needs from the industrial world, this paper presents a closed-form
expression that allows us to quantify, in a simple way, the confidence interval associated with the
total vector error. The input required by the expression is the set of errors that typically affects
the analog to digital converter of a phasor measurement unit. The obtained expression has been
validated by means of the Monte Carlo method in a variety of realistic conditions. The results confirm
the applicability and effectiveness of the proposed expression. It can be then easily implemented in
all monitoring device algorithms, or directly by the manufacturer to characterize their devices, to
solve the lack of knowledge that affects the total vector error computation.

Keywords: total vector error; phasor measurement unit; uncertainty; measurement; Monte Carlo;

probability density function; algorithm

1. Introduction

The digitalization of the power network is becoming a priority for electric utilities
and system operators (SOs). Of course, the transmission and distribution portions of the
network (TN and DN) have different rates of digitalization due to their different topology
and due to the available investments per node of the grid. The two actors that are leading
this innovation process are as follows: the new generation of instrument transformers
(ITs), also referred to as low-power instrument transformers (LPITs) or non-conventional
instrument transformers (NCITs), and the intelligent electronic devices (IEDs).

Starting with the LPITs, they have brought a lot of benefits and new features to the
measurement of voltages and currents [1-3]. For example, they are smaller and lighter
compared to the bulky legacy ITs. Furthermore, they feature higher immunity towards
external influence factors, and they are easier to install in those sites where there is limited
space for additional equipment. As their name implies, their output never exceeds a few
voltampere, which make them suitable for being directly connected to the analog-to-digital
converters (ADC) of the typical acquisition systems. Finally, considering the increasing
interest of power quality (PQ) evaluation, LPITs typically have wider bandwidth compared
to the older technologies.

Turning to the standard perspective, LPITs can be found inside the IEC 61869 series. In
particular IEC 61869-6 [4] describes general aspects on their operation and limits, whereas
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documents —10 and —11 [5,6] specifically treat the current and voltage versions of the
LPITs, referred to as low-power current transformers (LPCTs) and low-power voltage
transformers (LPVTs), respectively.

The second main actor of the digitalization, as mentioned before, is the IED. In fact, a
variety of measurement instruments are being deployed in the DNs to collect the quantities
and the information necessary to improve the control and the management of the grid.
Among the IEDs there are: energy meters, smart protection devices, merging units (MUs)
and waveform recorders like the well-known phasor measurement units (PMUs).

PMUs are the core of this work. As a matter of fact, their spread among the DN
started slowly a couple of decades ago [7] and is increasing daily as it has been documented
in [8,9]. The added value of a PMU, as detailed in Section 2, is the possibility to associate
a time stamp, hence to synchronize the voltage and current measurements at each node
of the network with a reference time signal (typically the GPS). In fact, in case of loss of
synchronization [10-14], the PMU downgrades to an instrument with the same capabilities
of a legacy meter, without any added value (de facto, a PMU consists of an ADC plus a
GPS plus an intelligent device that performs the required operations on the samples).

PMUs, like all instruments and sensors, are affected by an uncertainty. This can be
distinguished between the contribution due to the intrinsic components inside the PMU,
and the contribution due to the sensors adopted to measure voltages and currents that
propagates up to the PMU’s output. Therefore, the PMU’s uncertainty affects all the
parameters computed from its measured data. Among these, the total vector error (TVE) is
a significant parameter that is used to assess the performance of a PMU in both static and
dynamic conditions. However, it is really difficult to find (i) any PMU manufacturer giving
the range of variation of the TVE. In fact, each PMU, despite having all the hardware with
the same nominal characteristics, features a specific TVE value, different from the others,
and (ii) any document within the literature estimating the range of variation of TVE (except
for the standard deviation obtained from the repeated measurements of the parameter).

In light of the above, authors in this paper formulate a closed-form expression that
associates a mean value and a variance to the TVE, considered as a random variable
(RV). The expressions are obtained starting from the typical factors affecting the collected
waveforms and due to the PMU’s hardware (non-linearity, offset, gain, delay, etc.).

Of course, literature does treat the uncertainties affecting the PMU and its parameters.
For example, [15] adopts the Monte Carlo method (MCM) and the TVE to assess an
algorithm for the phasor extraction. The role of disturbances, affecting the analog input
of a PMU, on the frequency and rate of change of frequency (ROCOF) computation is
discussed in [16]. How noise influences the power frequency extraction is detailed in [17].
In [18] a simulator of PMU has been developed to model its uncertainties by means of
the MCM. An interesting study on the limits of using TVE in the PMU’s performance
assessment is presented in [19]. The accuracy of the PMU’s measurements, focusing on the
phase and time synchronization requirements is treated in [20,21], respectively. Finally, the
uncertainty evaluation in case of state estimation or in case of loss of synchronization is
treated in [22,23], respectively.

However, despite the amount of literature on the topic, to the authors” knowledge,
there is a lack of material on how to estimate the range of variation of the TVE. The
importance of filling this gap consists of the fact that the TVE is used to accept or deny the
measures performed by a PMU. Therefore, it is critical to know how well the actual TVE
matches the rated one. Furthermore, considering that the intrinsic uncertainty contributions
adopted here are provided by the manufacturer, the outcome of this work may be used by
them to increase the information given to the final user.

Consequently, authors started from their previous experience on evaluating the uncer-
tainty of typical parameters (THD [24] and residual voltage [25]) to obtain the TVE mean
and variance.

It can be concluded that the added value of this work is to provide a simple expression
that allows the quantification of the TVE mean and variance. The two expressions will help
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(i) PMUSs producers to better quantify the goodness of the TVE that has been measured
during the PMU testing, (ii) final users for better assessing the TVE results when the PMU
measurements are involved, (iii) SOs to better assess the PMUs that are going to be installed
in their networks. Furthermore, the found expressions may then be included in all PMUs
(or their calibrators).

The remainder of this work is structured as follows. Section 2 contains a brief overview
of the PMU technology and on the TVE. The mathematic development necessary to obtain
the closed-form expression of the mean and standard deviation of the TVE is described in
Section 3. The validation of what is obtained, through the MCM, is described in Section 4.
Finally, the main achievements and conclusion are contained in Section 5.

2. PMU and Total Vector Error

The concept of phasor, on which the PMU is based, was firstly introduced by Proteus
Steinmetz in 1916 [26]. Nowadays, the PMU is standardized in the document IEC 60255-118-
1 [27], where it is defined as a “device or function in a multifunction device that produces
synchronized phasor, frequency, and rate of change of frequency estimates from voltage
and/or current signals and a time synchronizing signal”. In [27] the phasor is defined as
“complex equivalent of a sinusoidal wave quantity such that the complex modulus is the
cosine wave amplitude, and the complex angle (in polar form) is the cosine wave phase
angle”. The meaning of phasor is then enhanced when the concept of synchronization is
introduced to explain the functionalities of a PMU. Therefore, a synchrophasor is a “phasor
representing the fundamental of an AC signal whose magnitude is the RMS value of the
fundamental amplitude and angle is the difference between the signal fundamental angle
and the phase angle of a cosine at the nominal signal frequency that is synchronized to
UTC time” [27]. Furthermore, the generic synchrophasor X can be written as:

x() = () 00)) M)

where X,,(t) is the peak magnitude of the sinusoidal signal and ¢(t) is the phase difference
between the angular position and the phase due to the nominal frequency of the signal.
Overall, Figure 1 summarizes the working principle of a PMU. As it is clear from the
figure, the PMU receives the current and voltage waveforms as inputs, plus the UTC time.
This allows a time stamp to be associated with each synchrophasor produced by the PMU.

PMU
UTC Synchrophasor
Vol Phasor extraction
o tages 1 ith
and currents agorim Frequency, ROCOF

Figure 1. Simple schematic of the working principle of a PMU.

The reporting rate of a PMU defines how many times in a second the synchrophasor,
the frequency, and the ROCOF are provided to the data concentrator. In [27] the minimum
is defined, as well as the suggested reporting rates that a PMU shall comply with (from
10 to 100 frames per second in the case of a 50 Hz system). The synchrophasor is then
evaluated through the TVE, which is defined as:

2

2

2 A
TVE(m) = | Zrm) = Xi(m)) I (}?;i(m) — Xi(m))

(X (m))? + (X;(m))
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where m indicates the report number, Xr ) and X;(m) are the real and imaginary parts
of the reference value, whereas X, () and X;(m) are the real and imaginary parts of the
PMU estimates.

It is worth highlighting that the TVE is a parameter that blends the three sources of
error that affect the PMU measurements. As it is clarified in Figure 2, the three sources of
error are magnitude, phase, and the time synchronization error.

Phase and Time Error

\/
l/
\

\\

\
l
1
\L

Magnitude Error

Im 4

Re
Figure 2. Graphic representation of TVE and its components.

The fact of combining all the error sources might be seen either positively or nega-
tively, depending on the perspective. It could be positive if the interest is on the overall
performance of the PMU (accept or deny the measurements). On the contrary, using the
TVE becomes less significant when the PMU must be characterized, and the single sources
of error must be quantified.

3. Mean and Variance Estimation

After the brief introduction on the PMUs and TVE given in the previous section, this
section details the mathematic steps necessary to formulate the problem under investigation
and its resolution. Section 3.1 presents the idea underlying the work, whereas Section 3.2
contains the process that allows the finding of the mean value and variance of the TVE.

3.1. Problem Definition

The starting point of this study is (2), the definition of TVE. Such an expression uses
the real and imaginary part of the power system frequency component extracted from an
analog signal. Therefore, it is important to begin the analysis from the inputs that a PMU
receives. Note that, in this study, no distinguish between the steady-state and the dynamic
nature of the input signal is considered. This is because the analysis of the TVE is based on
assumptions independent of the input signal, which of course might be ideal or distorted,
static or dynamic.

Let’s define x a generic sequence of N elements, measured either with a current or a
voltage sensor, which is the input of the ADC of the PMU. Afterwards, x is corrupted by
the errors introduced by the ADC, namely: the gain error G, the offset O, the nonlinearity
error L, the noise R, and the phase delay Ay, which can be considered the overall term that
includes all time and phase delays (e.g., the UTC). Such error contributes can be considered
uniformly distributed, as detailed in Section 3.2. This choice is motivated by the fact that
the manufacturers of ADC almost never provide the probability density function (pdf)
associated to the accuracy parameters of their products (it is rare, but if it is provided
the following method can be easily adapted). Therefore, according to the Guide to the
Expression of Uncertainty in Measurements (GUM) [28] the worst case must be used: the



Energies 2021, 14, 4641

50f15

random variable must be considered as uniformly distributed when no other information
is available. However, the study presented here might be customized by the final user
depending on the information available. Therefore, the obtained results can be considered
the output of the worst and most general case.
The generic element of the corrupted sequence £, output of the ADC, can then be
written as:
2(n) = (x(n) +gx(n) + o+ 1(n)xps +r(n))e ¥ 3)

where 7 is the element counter, x is the ideal sample, and g, 0, [, r, and i are the generic ele-
ments of the distributions of which G, O, L, R, and A represent the extremes, respectively.
Finally, xfg is the ADC full scale and i is the complex operator.

To obtain the desired phasor, the next step is the application of the discrete Fourier
transform (DFT) (which is the most common among several filters that can be applied to
the signal to extract the phasor) to £:

N-1 ‘ ‘
X(k) = % Y (x(n) + gx(n) + 0+ 1(n)xps + r(n))e 2/ Ne=ity (4)
n=0
which in the case of considering one period (k = 1), for the sake of simplicity but without

loss of generality, becomes:

X o N21 ‘ 1 N-1 , ,
X=|X+gX+ %5 (l(n))efzznn/N + N Z (r(n))eszmz/N oDy (5)
n=0 n=0

Two simple comments arise from (5): (i) after the application of the DFT the offset
term disappears; (ii) moving from (4) to (5) it becomes clear which sources of error remain
constant for the entire sequence (g and A), and which vary from sample to sample (!
and r). A small note on this comment: the assumptions used to write (5) are based on the
datasheets of common ADC adopted in the measurement field. Therefore, our aim is not to
confute or to verify if the behavior of the given parameters differs from what is specified.

Equation (5) can be rewritten explicating the sine and cosine terms by means of the
Euler expression:

N-1 N-1
X = (X +eX+ 2 Y (1(m))em /N 4 % Y (r(n))e 2/ N) (cos A+ isin Ayp) ©)
n=0 n=0

By considering that the error contributes are very small, let us assume that the product
of two of them is negligible (e.g., gXsinAyp) when the sine is involved. In the case of the
cosines, they are approximated with 1. The result is:

N-1 N-1

A . 1 )

X = Xcos Ay + iXsin A + gX + %S (I(m))e 2N 4 = 3 (r(m))e 2PN (7)
n=0 n=0

Considering the numerator of the TVE in (2), the measured X must be subtracted by
the ideal or reference phasor X, obtaining:

N-1 . N-1 )
AX = X(cos A +isin A + g — 1) + % Y (I(n))e~2m/N —i—% Y (r(n))e 2™/N (8)
n=0 n=0

The second hypothesis that is introduced consists of considering the ideal phasor
constituted only by a real component X = X +i0. Such a choice does not affect the
computation, but it simplifies the study. Furthermore, the ideal phasor is selected by the
algorithm developer; hence, the choice of a real phasor is completely reasonable.
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From (8) it is possible to separate the real and imaginary parts as:

RE{AX} =X -X=X-X= X(cosAy+g—1)+
N-1

iy (I(n)) cos(2tn/N) + ﬁ,jg:(r(n))COS(Zﬂn/N)

n=0

©)

Im{AX} = X; — X; = X; = Xsin Ay+

N—1 N-1 (10)
s go(l(n))sin(Znn/N)—l—% Y. (r(n))sin(2mtn/N)

n=0

By squaring (9) and (10) one obtains the addends of the numerator of (2).

- 2
Re{AX}Z = X?(cos A + g — 1)2+ (361@5]:;:( (n ))C05<2;\Tln)>

B 2
( Y (( ))cos(zf,”)) +2X(cosAp +g¢—1)

Nﬁqzo N-1
% (I(n)) cos(E) +2X(cos Ap + g —1)% ¥ (r(n)) cos(Z2)

n=0 n=0

-1 N-1
+22 ngo(l(n))cos(Znn/N)% Y (r(n))cos(2mn/N)

n=0

(11)

o2 . 2 N=1 2 ’
Im{AX}" = X2(sinAy)* + ( 3 L (I(n))sin( 53"))
n=0
N-1 2 . N-1
+<}V L (r (n))sm(%’s”)) +2Xgsin Ay ¥ (I(n)) sin (%)
nzONi1 n=0 (12)
—E E (r(n )) cos(3)+

N-1 N
2% ngo (I(n)) sin(27tn/N) & ngo (r(n))sin(27n/N)
As a final hypothesis let us assume to approximate all terms with sinAy with the
angle Ay and the terms with cosAy with 1. This way, (11) and (12) are simplified as:

B 2
Reafy” = (g + (3 L (1) cos () )
_ 2 _
+<}VN21< (n >>cos<2;5”>) 12X " (1)) cos (222
n=0 n=0 (13)

N-1
AL (r(n)) cos(3) +
N-1

2x N-1
28 ngo(l(n))cos(Zmz/N) Y. (r(n))cos(2mtn/N)

n=0

B 2
Im{AX}? = (XAyp)? + (’3@5 jg:(l(n)) Sm(zﬁ"))

_ 2 -
(% E ) sin(z) +”"3@5A1”fz;<< sin(%) 09
N—

+ 2o g (r(n)) cos(2mn/N) + 2 z (( )) sin(27tn/N) fz:(r(n))sin(znn/N)
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Overall, the real and imaginary parts inside (13) and (14) consist of six elements each.
Now, (2) can be rewritten, for the sake of the analysis, as:

o 2 o 2
TUE — Re(AX)™ + im (AX) (15)
(X)
where the symbol TVE has been used to distinguish the definition given in (2) from the
expression obtained in (13) after the assumptions.
In the following Section 3.2, each term of (13) and (14) is individually studied to find
an associated pdf, hence a mean value and a variance.

3.2. Mean and Variance Expression

The goal of this section is to find a closed-form expression for the mean value and the
variance of the TVE. Therefore, this implies knowledge of the pdf associated with the TVE.
To obtain it, the pdfs of each term, (13) and (14), must be found and propagated till the pdf
of the TVE is achieved.

For the sake of clarity, the analysis is distinguished between (13) and (14), hence
between the real and imaginary parts.

Before detailing each term, the first step is to describe the RVs representing the
previously described error sources of the ADC. As already introduced in Section 3.1, G,
O, L, and R are the extremes of uniformly distributed RVs with zero mean and variance
according to the definition (e.g., L?/3). The same holds for Ay with the exception that the
mean is not zero but Ay /2. The reason is that the delay contribution cannot be negative,
otherwise it becomes an anticipation.

Table 1 summarizes the mean values y and variances ¢ of the described RVs.

Table 1. Summary of the characteristics of the RVs.

RV Distribution H o?
g Uniform 0 G%/3
0 Uniform 0 0%/3
Uniform 0 1%2/3
r Uniform 0 R%2/3
Ay Uniform Ayp/2 AY?/12

In what follows the twelves terms are indicated with a number from 1 to 12. Such
numbers are used as subscripts for the relevant mean and variance symbols.

3.2.1. Real Part Re{A}A(}2

The first term to consider, term 1, is (X g)z. It consists of a constant term X2 and of the
square of a RV uniformly distributed ¢2. The mean value of the term g2 is easily obtained
from the definition of variance of a generic RV y:

Var(y) = E[y?] - (Ely])® (16)

Hence, according to Table 1, the mean of g? is G?/3. As for the variance of g2, there
is no closed expression to calculate it; therefore, the approximation of considering the
product of two RVs has been adopted. The mean value and variance of the product of two
independent RVs y and z are:

Elzy] = E[ZIEly] a7)

Var(zy) = (Var(z) + (E2))?) (Var(y) + (Ely)?) = (ERD*(EB)® (8)
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Of course, the considered RV is not independent of itself. However, it can be numeri-
cally proven that the approximation of considering two independent RVs does not affect
the results.

In light of the above, the mean and variance of the first term (X g)2 are:

= (XG)*/3 (19)
o? = (XG)*/9 (20)

2
The second term to consider, term 2, is: (% YN (1(n)) cos(2mtn/ N )) . It consists of

a constant term (%)2 and of a squared sum. It can be demonstrated that the summation
is normally distributed with zero mean and variance NL?/6. Consequently, the square of a
normal distribution is a chi-distribution with one degree of freedom [29] with mean value
and variance equal to:

E[chi] = Var(nor) + (E[nor])* (21)

Var(chi) = 2{1 +2 {(E[nor])z/Var(nor)} }(Var(nor))2 (22)

where chi and nor are RVs referring to the chi and normal distributions, respectively. Starting
from (21) and (22), the mean and variance of the second term become:

p2 = (xpsL)?/ (6N) (23)
02 = (xpsL)*/ (18N2> (24)

2
The third term, term 3, is: (% YN (r(n)) cos(2mtn /N )) , which has the same struc-
ture of the second term. Therefore, it is straightforward to obtain the mean value and the
variance as:

Hs = (R)*/(6N) (25)
0% = (R)*/ (18N2) (26)

The fourth term of the real part, term 4, is: ZXg% YN (1(n)) cos(27tn/ N). It consists

of a constant term ZX%, a uniformly distributed, and a normally distributed RV. By

implementing the product of RVs, described in (17) and (18), the mean value and variance
of the fourth term become:
pa =0 (27)

07 = 2(XxpsGL)*/ (9N) (28)

The fifth term, term 5, is: % YN} (r(n)) cos(27tn/N), which is analog to the fourth.
Hence, under the same hypothesis, its mean value and variance are:

ps =0 (29)
02 = 2(XGR)?*/(9N) (30)

The last term of the real part, term 6, is: 2;\%5 ZnNz_Ol(l(n)) cos(2tn/N) Zy;ol(r(n))
cos(27tn/N). It consists of the product between two normally distributed RVs. Therefore,
the product distribution still applies, and the mean value and variance of this term become:

fe =0 (31)

02 = (xpsLR)?/ (9N2) (32)
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3.2.2. Imaginary Part Im{A)A(}2
Now that the approximations and the mathematic tools have been introduced for the
real part of {AX }2, the imaginary part analysis becomes straightforward.

The seventh term to be studied, the first in (14) and term 7, is: (XAI/J)Z. Analogously
to the first term, it consists of the square of a uniform distribution. Therefore, its mean
value and variance are:

i = (XA)*/3 (33)
02 = 7(XAp)*/144 (34)
2
The eighth and nine terms, 8 and 9, are: (% YN (I(n)) sin(2mtn/ N )) and:

2
(% Zyz_ol(r(n)) sin(27tn/N )) , respectively. Both are squares of normally distributed
RVs; therefore, their mean values and variances are:

ns = (xesL)?/ (6N) (35)
02 = (xpsL)*/ (18N2) (36)
Ho = (R)*/(6N) (37)
3 = (R)*/(18N2) (38)

Terms tenth and eleventh, 10 and 11, are both the multiplication between a normal
and a uniformly distributed RV. Therefore, analogously to what written for the real part,
the mean value and variance of these two terms are:

H10 =10 (39)

070 = 2(XxpsApL)*/ (9N) (40)
p11 =0 (41)

ofy = 2(XAPR)?/ (9N) (42)

The last term, number 12, is: 2268 YN-1(1(n)) sin(27tn/N) & ZN- 1 (r(n)) sin(27tn/N).
It is a product between normally distributed RVs; hence:

p12 =0 (43)

oh = (xesLR)*/ (ON?) (44)

A final comment before proceeding is that another approximate method like the
central limit theorem for the randomly indexed m-dependent RVs could be used [30].
However, it is not as accurate as needed for the expression development.

3.2.3. Radicand

Now all terms under the square root of (15) are known in terms of mean value
and variance.

To obtain the mean value and variance of the numerator, which is the sum of several
RVs is sufficient to implement the linear combination of RV formulas. If w = az + by,
where w is a RV and a and b two coefficients, then:

E[w] = aE[z] + bE[y], (45)

Var(w) = a®Var(z) + b*Var(y) (46)
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Consequently, combining the 12 terms introduced in Sections 3.2.1 and 3.2.2, the mean
value and variance of the numerator inside (15) becomes:

Jinum = (X2G2 + XAy + [Pxp? /N + Rz/N) /3 (47)

Gt | 7Apt Lix} R | 2R?L%x% 5x2
Chum = X4(7 + %) + 5 o T o + By (L*GPxgg + GPR? us)

+afsAY?L? + AYPR?)

3.2.4. Final Expressions

To achieve the initial goal of finding the expressions of mean and variance of TVE, two
last steps are needed. In particular, the numerator of (15) studied in (3) must be divided by
the constant term X. Then the square root provides the desired TVE.

The linear combination of the terms studied in (2) may result into a normal distri-
bution. However, focusing on the single terms, they are either the square of a RV or
strictly positive. Therefore, the sum term (the radicand) is biased by the predominant
RVs, hence not normally distributed. To better understand the radicand distribution, a
chi-test has been performed: the result confirmed that the radicand distribution is not
normal. Consequently, the square root of the radicand can be treated with the Nakagami
distribution [31]. Such a distribution can be applied on a RV following vZ2 and it is
characterized by two parameters:

"= Var(Z?2) “9)
O=E [Zz} (50)

Then, the mean value and variance of v/ Z2 are calculated as:

F<m+%) <Q>1/z o

2= "Tm)y \m
T(m+3
=0f1-_ (I,(mf) 52)

The application of the Nakagami distribution to the radicand of the TVE provides:

2
fitve = % ! (fél;?m:)%) ( iiam ) . (53)
2

num

Hnum

2
‘unum 1
. [r(t 1)

N oo
(T%VE = fnum| 1 — r21um Yo (54)
Hnum T (Plg&)
Unum

The two expressions are closed-form relations that allow, at a glance, the parameters
of the TVE pdf to be quantified.

The added value of the obtained expressions is that they can be implemented in
any algorithm of a PMU to enhance its capabilities by providing a range of variation for
the TVE.

In the following Section 4, the two expressions are assessed and tested with realistic
data and by using the MCM as suggested by the GUM [28] and its supplement [32].
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4. Numerical Validation

The validation of the obtained expressions is performed by using the MCM. In partic-
ular, the TVE expression in (2) is reproduced inside the Matlab environment. Afterwards,
the mean value and variance are computed with both the Matlab tools (taken as reference)
and the expressions (54) and (55). A set of realistic tests is designed, and, for each test,
100,000 iterations are performed.

4.1. Definition of the Tests

The idea underlying the testing of the obtained expressions is to simulate realistic
conditions to assess their performance. Therefore, Table 2 contains all the performed tests,
from #1 to #14.

Table 2. List of the tests performed with the MCM.

Test Ay (Rad) G L (V) R (V) XV
#1 6x107% 2x107* 1.22 x 1073 3.66 x 10~* 7
#2 6 x 1074 2x 1074 1.22 x 1073 3.66 x 1074 3
#3 6 x10% 2x107* 1.22 x 1073 3.66 x 10~* 1
#4 6 x 1074 2x 1074 1.22 x 1073 3.66 x 1074 0.1
#5 6 x 103 2x107* 1.22 x 1073 3.66 x 107* 7
#6 6 x 1074 2x1073 1.22 x 1073 3.66 x 1074 7
#7 6 x10% 2x107* 1.22 x 1072 3.66 x 10~* 7
#8 6 x 1074 2x 1074 1.22 x 1073 3.66 x 1073 7
#9 6x1073 2x1073 1.22 x 1072 3.66 x 1073 7
#10 1.2 x 1072 2x10% 1.22 x 1073 3.66 x 10% 7
#11 6x107% 4x1073 1.22 x 1073 3.66 x 10~* 7
#12 6 x 1074 2x 1074 244 x 1072 3.66 x 1074 7
#13 6 x107% 2x107* 1.22 x 1073 732 x 1073 7
#14 1.2 x 1072 4x1073 244 x 1072 7.32 x 1073 7

#is used to numerate the tests.

The variables of the tests are the error sources introduced in Section 3 (Ay, G, L, and
R) and the ideal phasor value. The full scale of the ADC is taken as fixed (£10 V) for the
sake of simplicity and because it is a typical value.

Test #1 can be considered as the reference. In fact, it contains values taken from a
typical off-the-shelf ADC with 16-bit resolution and 10 V full scale. In addition, the ideal
phasor X is set close to the selected full scale (7 V RMS).

Then, tests #2 to #4 aim to verify the performance of the expressions when one works
far from the full scale. Therefore, these tests are identical to #1 except for the value of X.
Turning to tests #5 to #8, in each of them one of the sources of error at the time is increased
10 times compared to its initial value (test #1). Test #9, instead, consists of all the sources of
error 10 times greater than their initial values. Note, the value of X for the tests #5 to #9 is
always fixed at 7 V RMS.

Finally, tests #10 to #14 are analog to tests #5 to #9 but with the error sources 20 times
higher. Again, the ideal phasor is fixed at 7 V RMS.

4.2. Results

Table 3 lists the results from the 14 tests performed by using the MCM. The table
contains (i) the test number, (ii) the mean value and standard deviation obtained with the
Matlab tools, ytyg and oryg, respectively, and (iii) the mean value and standard deviation
obtained with the developed expressions (54) and (55), fityg and Oryg, respectively. Both
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standard deviations values have been written with two significant digits for the sake of
comparison. With the same logic, and for increasing the readability, both mean values have
been written with two significant digits. The choice of presenting the standard deviation in
place of the variance is due to its higher significance in the confidence interval computation.

Table 3. List of the results from the MCM testing.

Test prvE (=) orve (—) Aitve (—) Frve ()
#1 33 %1074 1.6 x 1074 34 x1074 1.4 x 1074
#2 34 x1074 1.6 x 10* 35x107% 1.5x 1074
#3 43 %1074 22x1074 43 x 1074 21x107%
#4 28 %1073 1.5 x 1073 2.8x1073 15 %1073
#5 3.0x 1073 1.7 x 1073 31x1073 15 %1073
#6 1.1x1073 53x 1074 1.1x 1073 47 x 1074
#7 51x 1074 26x107% 51x107% 26x107%
#8 33x1074 1.6 x 1074 34 x1074 1.4 x 1074
#9 33x1073 1.6 x 1073 34x1073 1.4 x 1073
#10 6.0 x 1073 34x1073 6.3x1073 3.0x1073
#11 21x1073 1.1x 1073 21x1073 1.0 x 1073
#12 8.6 x 10~* 45x1074 8.6 x 1074 45x107%
#13 33x107% 1.6 x 107* 34 %1074 14 x107*
#14 6.6 x 1073 31x1073 6.8 x1073 29 %1073

# is used to numerate the tests.

To increase the readability and comprehension of the results, they have been graphed
with their error bar in Figure 3.

%1073 Results with error bars
8 i MCM .
i Estimate

67 1
2
~4r |

2F |

} * * | | | }\ ‘ |

| S B
o 1 2 3 4 5 6 7 8 9

Test Number (-)

Figure 3. Test results presentation with error bars.

10 11 12 13 14

15

Starting from an overall look at the results, it is possible to confirm the efficacy and
accuracy of the obtained expressions.
In detail, the tests vs phasor amplitude (#1 to #4) provide accurate results for both
the estimates of mean and standard variation. A slight variation of the standard deviation
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(0.2 x 10~%), compared to the reference, can be noted for high values of the phasor X. This
is due to its weight in all the expressions that led to (54) and (55) and to the Nakagami
distribution, as explained in the following.

Analyzing tests #5 to #14, specific comments arise. First, in all tests the mean value is
accurately estimated. Second, the error introduced by the delay and the gain are the most
significant among all contributes. This is verified looking at tests #6, #10, and #11, in which
the errors are 10, 10, and 20 times higher, respectively, than those selected as reference in
test #1.

Third, the nonlinearity and noise errors are almost negligible in the TVE computation.
This is highlighted from the results of tests #12 and #13 in which L and R are 20 times
higher than the starting values but the TVE is comparable to it.

Finally, a potential reason for the found slight discrepancies in the standard deviation is
the following. The numerator of (15) consists of the sum of 12 terms. Therefore, according to
the central limit theorem, the distribution of the sum should tend to a normal distribution.
However, it has been verified that it is not normally distributed, but it is something
in-between a normal and a chi-square distribution. Hence, it is not a proper gamma
distribution as required by the Nakagami distribution.

Overall, it can be concluded that:

e The obtained expressions to estimate the mean value and variance of the TVE have
been confirmed to be applicable and effective in all the realistic conditions tested.

e The phase delay and the gain error are the most critical sources of error that increase
the TVE. Therefore, when the ADC of a PMU must be selected, those two values
should be as low as possible.

e Due to its expression, the TVE always has a mean value different from zero and
positive in all nonideal conditions (hence, in all practical applications). Furthermore,
the TVE distribution is not normal (and, in particular, it lays in-between a normal and
a chi-square distribution), hence the information of the variance should be completed
with the desired confidence interval. To this purpose, the cumulative distribution
function of the Nakagami distribution must be used:

F(x) = T 0%) 55)

where () is the lower incomplete gamma function.

5. Conclusions

The concept of achieving very accurate measurements can be extended to those
parameters computed starting from such measurements. Therefore, this paper aimed at
associating a confidence interval to the parameter used to assess the performance of a
PMU; the TVE. To this purpose, the mathematic steps to obtain the closed-form expressions
for the mean value and variance of TVE were described and then assessed by means of
the MCM. The results from the realistic tests confirmed the validity and effectiveness of
the developed expressions. Furthermore, such results aim at (i) highlighting which are
the main sources that contribute to the TVE uncertainty (hence on the PMU uncertainty);
(ii) providing to the manufacturer a simple tool to quantify the intrinsic uncertainty of
his products and (iii) consequently the user will be given more details on the accuracy
performance of the purchased PMU.

Another way of highlighting the findings of the work is to demonstrate the implica-
tions. In fact, the method that leads to find the expressions of mean and variance of the
TVE can be customized according to the available information of the user. For example,
the input parameters can be known as having specific probability distributions or values.
In addition, the method can be replicated (not always) for other accuracy parameters as
well. Overall, the study conclusions vary depending on the performed measurements and
the parameters computed in the field.
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