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Abstract: Vibration signals contain abundant information that reflects the health status of wind
turbine high-speed shaft bearings ((HSSBs). Accurate health assessment and remaining useful life
(RUL) prediction are the keys to the scientific maintenance of wind turbines. In this paper, a method
based on the combination of a comprehensive evaluation function and a self-organizing feature map
(SOM) network is proposed to construct a health indicator (HI) curve to characterizes the health state
of HSSBs. Considering the difficulty in obtaining life cycle data of similar equipment in a short time,
the exponential degradation model is selected as the degradation trajectory of HSSBs on the basis
of the constructed HI curve, the Bayesian update model, and the expectation–maximization (EM)
algorithm are used to predict the RUL of HSSBs. First, the time domain, frequency domain, and time–
frequency domain degradation features of HSSBs are extracted. Second, a comprehensive evaluation
function is constructed and used to select the degradation features with good performance. Third,
the SOM network is used to fuse the selected degradation features to construct a one-dimensional
HI curve. Finally, the exponential degradation model is selected as the degradation trajectory of
HSSBs, and the Bayesian update and EM algorithm are used to predict the RUL of the HSSB. The
monitoring data of a wind turbine HSSB in actual operation is used to validate the model. The HI
curve constructed by the method in this paper can better reflect the degradation process of HSSBs. In
terms of life prediction, the method in this paper has better prediction accuracy than the SVR model.

Keywords: wind turbines; assessment; prediction; self-organizing feature map; exponential degrada-
tion model; comprehensive evaluation function

1. Introduction

Grid-connected wind turbines are required to operate in harsh environments for a
long time. Due to long-term uninterrupted operation and the impact of extreme weather,
rainfall, snowfall, etc., the health status and reliability of various wind turbine components
will inevitably decline over time, eventually leading to failure. Studies have shown that
the main sources of wind turbine failure include transmission shaft systems, gearboxes,
generators, electrical control systems, and other key components. The maintenance cost
of these faults will directly affect the economic benefits of wind farms [1]. According to
surveys, the maintenance cost of onshore wind turbines with a design service life of 20 years
accounts for about 15–20% of the total profit of the wind farm, while the maintenance cost
of offshore wind turbines accounts for as much as 20–25% of the total profit [1,2]. As a key
and vulnerable mechanical component of wind turbine transmission systems, high-speed
shaft bearings (HSSBs) are of great practical significance for improving the safe operation
of wind turbines and reducing wind farm operation and maintenance costs [3,4].

The health status assessment of equipment uses state monitoring data to model the
performance degradation process, thereby constructing a one-dimensional health indicator
(HI) curve to characterize the performance degradation process of the equipment [5]. As
the running time increases, the health status of wind turbine HSSB is gradually degraded.
The health assessment is a quantitative assessment of HSSB from an intact state to a series
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of different degradation states. The constructed HI curve should be able to accurately
reflect the degradation process of the equipment in time. In recent years, researchers
have focused on the assessment of equipment health status and achieved fruitful results.
Reference [6] extracted time domain features from the vibration signal of rolling bearings
and used monotonicity indicators to evaluate the degradation process of time domain
features. Reference [7] used kurtosis to describe the degradation process of wind turbine
HSSBs and applied this indicator to the prediction of the remaining life of HSSBs. The
transmission structure of wind turbines is complex, a single feature cannot fully reflect
the operating state of the HSSB in the transmission system, and a single time-domain
or frequency-domain feature is easily affected by changes in operating conditions. Jin
et al. [8] first calculated the energy values of the wavelet decomposition coefficient of
the monitoring signal and fused them to construct an HI using the Mahalanobis distance
between the energy values. Reference [9] used principal component analysis (PCA) for data
fusion and constructs system health indicators using the first principal component with
the largest variance. Jianbo Yu [10] extracted principal components from multiple features
using dynamic PCA to construct the Mahalanobis distance based on the hidden Markov
model and used the distance as an HI to reflect the equipment degradation process. If PCA
is directly performed on all the extracted features, the first principal component after di-
mensionality reduction has a very low contribution rate, and the first principal component
cannot accurately reflect the degradation trend of the equipment because some of these
features contain a large amount of useless and redundant information that cannot be used
to characterize the performance degradation and failure of the equipment. Reasonable se-
lection of the degradation characteristics that can reflect the degradation state of equipment
is the key to constructing an HI curve. Javed K et al. [11] used trigonometric functions
and cumulative transformations for feature extraction, combined monotonicity, and trend-
ability to screen the extracted features and fuse them to construct an HI curve. Zhang B
et al. [12] constructed a feature evaluation function based on monotony, correlation, and
robustness, and screened the extracted features accordingly. Finally, the moving average
method was used to extract the selected degradation feature trends and construct HI curves.
Reference [13] used an improved restricted Boltzmann machine to extract features from
one-dimensional information and used the self-organizing mapping (SOM) network to
integrate multiple features into the HI curve. Rai A et al. [14] used conventional signal
processing techniques to extract multiple time-domain and frequency-domain features and
used a SOM network to fuse the manually selected features into a one-dimensional HI
curve. Due to the harsh operating environment and the complex transmission system of
wind turbines, the vibration signals of each component are coupled and superimposed
with each other. For these reasons, a comprehensive evaluation function is constructed to
select excellent time domain, frequency domain, and time–frequency domain degradation
features. The SOM network is used to fuse the selected degradation features and construct
an HI curve to characterize the health status of wind turbine HSSBs.

In the field of equipment health management, a health index curve can be used for
anomaly detection [15], fault prediction [16], etc. among which the remaining useful
life (RUL) prediction of equipment is a key area of research [17–19]. The conventional
RUL method is based on the full life cycle data of the equipment. However, in actual
industrial fields, it is difficult to obtain the full life cycle data of a large amount of similar
equipment in a short period of time. For expensive equipment such as wind turbines,
the cost of obtaining the full life cycle data of key components is too high, and it is
difficult to apply the conventional RUL prediction method based on full life cycle data
to expensive equipment. Due to extreme environments and loads, the performance of
the equipment will degrade with time and ultimately fail [20]. Therefore, establishing
the degradation trajectory model by monitoring the equipment degradation data and
predicting the RUL of the equipment is an economical and feasible method. Thus far,
the exponential degradation model is one of the most popular degradation models [21].
In [22], an exponential stochastic model was used to describe the cumulative degradation
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process of bearings, and the Bayesian method was used to update the random parameters
of the exponential degradation model and predict the RUL of bearings. Si X S et al. [23]
used an exponential stochastic degradation model to model the cumulative degradation
process of equipment and used the Bayesian update and expectation–maximization (EM)
algorithm to estimate the model parameters and predict the RUL. Li N et al. [20] proposed
an improved exponential stochastic degradation model to predict the RUL of rolling
bearings. In [24], an exponential stochastic degradation model was used to model the
life cycle of lithium batteries. In practice, it is often difficult to obtain sufficient historical
degradation data for similar equipment, especially for newly operating equipment and
expensive equipment. Considering these problems, this work uses the Bayesian update
and expectation–maximization algorithm to predict the RUL of wind turbine HSSBs.

This work can be summarized into four steps: (1) extract the time domain, frequency
domain, and time–frequency domain degradation characteristics of the vibration signal
of the wind turbine HSSB; (2) use the comprehensive evaluation function constructed
by monotonicity, correlation, and robustness to screen the degradation features; (3) use
the SOM network to fuse the selected degradation features and construct the HI curve;
(4) combine the Bayesian update and the expectation–maximization algorithm on the basis
of the constructed HI curve to predict the RUL of the wind turbine HSSB.

The remaining sections of this paper are organized as follows: Section 2 introduces
the theoretical basis of this paper. Section 3 presents the structure and main steps of the
proposed method. Section 4 includes the experiments and data analysis. The conclusions
are drawn in Section 5.

2. Theoretical Methodology
2.1. Feature Evaluation Indicators

At present, the commonly used evaluation indicators for degradation include mono-
tonicity, correlation, and robustness. The definition of each evaluation index is given
below [12,25].

2.1.1. Monotonicity

The monotonicity index reflects the consistency degree of performance degradation
between extracted features and equipment, namely, the intensity of a monotonically in-
creasing or monotonically decreasing trend. The value range of this index is (0–1). The
larger the monotonicity index is, the better the monotonicity trend of the features with the
deterioration of equipment is. The monotonicity index is defined as follows:

Mon(X) =
1

K− 1
|No.o f

d
dx

> 0− No.o f
d

dx
< 0| (1)

where X = (x1, x2, · · ·, xn) is the time series of the selected feature; K represents the length
of the selected feature; d

dx = xn+1 − xn represents the differential of adjacent values in a
sequence; No.o f d

dx > 0 and No.o f d
dx < 0 represent the counting values of the positive and

negative derivatives, respectively.

2.1.2. Correlation

The correlation index reflects the degree of correlation between the extracted features
and the equipment running time, and its value range is (0–1). The larger the correlation
index is, the greater is the time correlation between the feature and equipment performance
degradation; in other words, the degradation feature can better describe the equipment
degradation process. The correlation index is defined as follows:
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Corr(X) =

|n∑
i

xiti −∑
i

xi∑
i

ti|√
[n∑

i
xi

2 − (∑
i

xi)
2][n∑

i
ti

2 − (∑
i

ti)
2]

(2)

where X = (x1, x2, · · ·, xn) is the time series of the selected feature, n is the sample number,
and T = (t1, t2, · · ·, tN) is the sampling time series.

2.1.3. Robustness

The robustness index reflects the anti-interference ability of feature extraction, and
its value range is (0–1). The larger the robustness index is, the smoother the variation
rule of the feature with the degradation of equipment performance. This indicates that
the uncertainty of the feature in the equipment performance degradation model and the
prediction for the remaining life will be reduced.

Rob(X) =
1
n ∑

i
exp
(

xi − x̃i
xi

)
(3)

where X = (x1, x2, · · ·, xn) is the time series of the selected feature, and X̃ = (x̃1, x̃2 · ··, x̃n)
is the trend of the selected feature.

2.2. Minimum Quantization Error Based on SOM
2.2.1. SOM

SOM is a typical unsupervised competitive neural network [26]. The target output
does not need to be given in advance and adaptive feature mapping can be performed
according to the input data, which is very suitable for feature mapping and dimension
reduction. The basic principle of SOM is to search and calculate the nearest neuron to the
winning neuron according to Euclidean distance. The neuron with the minimum Euclidean
distance is the winning neuron. The weights are adjusted according to the winning neuron.
The specific implementation steps of the algorithm are as follows:

(1) The number of neurons in the topological layer is set as d, and the maximum train-
ing time is T. In general, the number of neurons in the topological layer is d = 5

√
M [27],

and M is the number of input samples;
(2) The network weights are randomly initialized;
(3) The input eigenvectors X = [x1, x2, · · ·, xk]

T , a group of input samples are randomly
selected xk, and the Euclidean distance between xk and the network weights is calculated,
as shown in Equation (4)

dj = ||xk −wj|| =

√√√√ k

∑
i=1

(xi − wij)
2 (4)

where, wij is the weight vector between the i-th neuron in the input layer and the j-th
neuron in the topology layer;

(4) Select the neuron with the minimum distance in dj as the best matching neuron, as
shown in Equation (5)

||xi − wc|| = min
{

dj
}

(5)

where wc is the weight vector of the winning neuron c, and updates its neighborhood
neuron set at the same time;
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(5) The inner star rule is used for weight learning, and the connection weight of the
winning neuron c is updated and corrected, as shown in Equation (6)

wij(t + 1) = wij(t) + η(t) ∗ (xi(t)− wij(t)) (6)

where η(t) is the learning rate, 0 < η(t) < 1, which decreases gradually with increasing
training times;

(6) Training step t = t + 1, return to step (3) until the maximum number of training T
is reached, and wBMU is the weight vector of the best matching unit c.

2.2.2. Minimum Quantization Error

In most cases, accurately collecting failure mode data is difficult, but obtaining data
in the normal state is more convenient. Therefore, the quantization error deviating from
the normal feature space can be used to describe the performance degradation process
of equipment. First, the SOM is trained with data in the normal state, and the minimum
quantization error is calculated by inputting the acquired measurement data into the SOM
trained with normal data, which can be used as a new performance evaluation index. The
distance between wBMU and the input data indicates that the input data deviates from the
normal state, and therefore, the health index of the device equipment can be defined as
follows [28]:

Health Indicator = MQE = ||X− wBMU || (7)

where MQE is the minimum quantization error, X is the input eigenvector, and the health
indicator is the health index curve of the equipment.

2.3. Degradation Model and Life Prediction
2.3.1. Degradation Modeling

The exponential degradation model is one of the most common methods used to
describe the degradation process of components. At present, the exponential degradation
model has been widely used in describing bearing wear, equipment corrosion, and other
fields and has achieved good prediction results [21,22,24]. Let HI(t) denote the degradation
at a time t; then, the equipment adopts the exponential degradation model at the discrete-
time monitoring point.

HI(t) = ϕ + θ exp(βtk + ε(tk)−
σ2

2
) (8)

where ϕ is a fixed constant; θ and β are random variables, ln θ ∼ N(µ0, σ2
0 ) and

β ∼ N(µ1, σ2
1 ) are used to describe the individual differences between different devices;

ε(tk) is a random error term that obeys a Gaussian distribution ε(tk) ∼ N(0, σ2). ε(t1), ε(t2), · ·
·ε(tk) are independent and identically distributed random variables, and ε(tk) are inde-
pendent of each other. Generally, logarithmic change is used to simplify the exponential
degradation modeling process. After transforming Equation (8), Equation (9) can be
obtained.

L(tk) = ln(HI(t)− ϕ) = ln θ − σ2

2
+ βtk + ε(tk) = θ′ + βtk + ε(tk) (9)

where θ′ = ln θ − σ2

2 , θ′ ∼ N(µ0
′, σ2), and µ0

′ = µ0 − σ2

2 .
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2.3.2. Stochastic Parameter Update of the Degradation Model Based on the
Bayesian Method

Let L1:k = {L1, L2, · · ·, Lk} and L(tk) = ln(HI(t)− ϕ); since ε(t1), ε(t2), · · ·ε(tk) are
independent and identically distributed random variables, under the conditions of θ′ and
β, the conditional joint density function of the degenerate sample L1:k is

p
(

Ll:k|θ′, β
)
= (

1
n
∏
j=1

√
2πσ2

)kexp[−
k

∑
j=1

(
Lj − θ′ − βtj

)2

2σ2 ] (10)

Since the prior distributions of θ′ and β are Gaussian distributions, the posterior
distributions of θ′ and β still obey a Gaussian distribution under given conditions L1:k,
θ′, β|L1:k ∼ N(µθ′ ,k, σ2

θ′ ,k, µβ,k, σ2
β,k, ρk) [23]. Thus,

p(θ′, β|L1:k) ∝ p(L1:k|θ′, β)p(θ′, β)

∝ 1
2πσθ′ ,kσβ,k

√
1−ρ2

k

exp[− 1
2(1−ρ2

k)
·

(
(θ′−µθ′ ,k)

2

σ2
θ′ ,k

− 2ρk
(θ′−µθ′ ,k)(β−µβ,k)

σθ′ ,kσβ,k
+

(β−µβ,k)
2

σ2
β,k

)]

(11)

where

µθ′ ,k =

(
k
∑

i=1
Liσ

2
0 + µ′0σ2)(

k
∑

i=1
t2
i σ2

1 + σ2)− (
k
∑

i=1
tiσ

2
0 )(

k
∑

i=1
Litiσ

2
1 + µ1σ2)

(kσ2
0 + σ2)(

k
∑

i=1
t2
i σ2

1 + σ2)− (
k
∑

i=1
tiσ

2
1 )(

k
∑

i=1
tiσ

2
0 )

(12)

µβ,k =

(kσ2
0 + σ2)(

k
∑

i=1
Litiσ

2
1 + µ1σ2)− (

k
∑

i=1
tiσ

2
1 )(

k
∑

i=1
Liσ

2
0 + µ′0σ2)

(kσ2
0 + σ2)(

k
∑

i=1
tiσ

2
1 + σ2)− (

k
∑

i=1
tiσ

2
1 )

k
∑

i=1
tiσ

2
0

(13)

σ2
θ′ ,k =

−
σ

2

σ2
1

k
∑

i=1
t2
i σ2

1 + σ2

(kσ2
0 + σ2)(

k
∑

i=1
t2
i σ2

1 + σ2)− (
k
∑

i=1
ti)2σ2

0 σ2
1

(14)

σ2
β,k =

−
σ

2

σ2
0

kσ2
0 + σ2

(kσ2
0 + σ2)(

k
∑

i=1
t2
i σ2

1 + σ2)− (
k
∑

i=1
ti)2σ2

0 σ2
1

(15)

ρk =

−σ0σ1
k
∑

i=1
ti√

kσ2
0 + σ2

√
k
∑

i=1
t2
1σ2

1 + σ2

(16)

−
σ

2
= σ2σ2

0 σ2
1 (17)

µθ′ ,k and µβ,k are the mean values of the posterior estimate of θ′ and β, µ2
θ′ ,k, and µ2

β,k
are variances of the posterior estimate of θ′ and β, and ρk is the corresponding correlation
coefficient.

2.3.3. RUL Prediction

To predict the RUL of the wind turbine HSSB, it is necessary to predict the future
degradation trend of the equipment based on L1:k. When the degradation of HSSB exceeds
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the given failure threshold w, the equipment will fail, and the useful life will end; therefore,
the prediction of RUL is transformed into a predicted time when the degradation reaches
the failure threshold w. For the current time t at t + tk through time tk, its logarithmic
degradation is L(t + tk), L(t + tk) can be proven to obey a Gaussian distribution [24], that is

L(t + tk)|L1:k ∼ N(µ̃(t + tk), σ̃2(t + tk)) (18)

where

µ̃(t + tk) = µθ′ ,k + µβ,k(t + tk)−
σ2

2
, σ̃2(t + tk) = σ2

θ′ ,k + σ2
β,k(t + tk)

2 + σ2 + 2ρk(t + tk)σθ′ ,kσβ,k.

Suppose the time interval from the current time tk to equipment failure is T, that is, T
is the remaining useful life of the time tk. From the above definition of degradation failure
and the logarithmic transformation characteristics of the degradation model, T should
satisfy L(tk + T) = ln w. Then, for a given L1:k, the conditional cumulative distribution
function of the RUL is

FT|L1:k
(t) = P(T ≤ t|L1:k) = P(L(t + tk) ≥ ln ω|L1:k) = 1− P(L(t + tk)< ln ω|L1:k)

= 1− P(Z < ln ω−µ̃(t+tk)√
σ̃2(t+tk)

) = P(Z ≥ ln ω−µ̃(t+tk)√
σ̃2(t+tk)

)

= Φ(g(t))

(19)

where g(t) = µ̃(t+tk)−ln w√
σ̃2(t+tk)

, Z obeys a standard normal distribution, and Φ(·) is the cumu-

lative distribution function of the standard normal distribution random variables. Since
T represents the RUL of the moment tk, T is a non-negative real number, namely, T ≥ 0.
The RUL conditional cumulative distribution function is truncated under the condition of
T ≥ 0, and the following estimation results are obtained:

FT|L1:k ,T≥0(t) = P(T ≤ t|L1:k, T ≥ 0) =
P(0 ≤ T ≤ t|L1:k)

P(T ≥ 0|L1:k)
=

Φ(g(t))−Φ(g(0))
1−Φ(g(0))

(20)

Then, the conditional probability density function of the corresponding RUL is

fT|L1:k ,T≥0(t) =
dFT|L1:k ,T≥0(t)

dt
=

φ(g(t))
1−Φ(g(0))

g′(t) (21)

where φ(·) is the probability density function of standard normal distribution random
variables.

Equations (20) and (21) are the conditional cumulative distribution function and con-
ditional probability density function of the RUL, respectively. It is difficult to calculate
the RUL directly through Equations (20) and (21). According to the previous definition of
degradation failure and the logarithmic transformation characteristics of the degradation
model, we can obtain L(tk + T) = ln w. The mean value µ̃(t + tk) of the predicted degra-
dation is replaced with L(tk + T), and we can obtain µ̃(t + tk) = ln w. The approximate
estimated value T of the RUL at moment tk under the maximum probability is [25]

T =
ln w− µθ′ ,k +

σ2

2
µβ,k

− tk (22)

where µθ′ ,k and µβ,k can be calculated according to Equations (12) and (13), but σ2, µ′0,
µ1, σ2

0 , and σ2
1 are unknown in Equations (12) and (13). The abovementioned unknown

parameters can be estimated using the maximum expectation algorithm.
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2.3.4. Parameter Estimation Based on EM Algorithm

Reference [22] used the EM algorithm to estimate the parameter vector Θ = (σ2, µ′0, µ1, σ2
0 , σ2

1)
of five unknown parameters. Based on the method of maximum likelihood estimation,
after obtaining the monitoring data L1:k at time tk, the logarithmic likelihood function of
L1:k is calculated as follows:

lk(Θ) = ln[p(L1:k|Θ)] =
k

∑
j=2

ln[p(Lj|L1:j−1, Θ)] (23)

where p(L1:k|Θ) represents the joint probability density function of the degraded data, and

therefore, the Θ of maximum likelihood estimation
∧
Θk at moment tk is

∧
Θk = argmax

Θ
lk(Θ) (24)

where argmaxlk(Θ) is the value of the parameter vector Θ corresponding to the maximum

value, i.e.,
∧
Θk.

Using the Bayesian method and EM method, the estimation method of Θ can be
implemented through the following iterative process.

(1) Calculate l(Θ|
∧
Θ

(i)

k )

l(Θ|
∧
Θ

(i)

k ) = E
θ′ ,β|L1:k,

∧
Θ
(i)

k

{ln p(L1:k, θ′, β|Θ)} (25)

where
∧
Θ

(t)

n represents the latest value of the ith iteration.

(2) Calculate
∧
Θ

(t+1)

n = argmax
Θ

l(Θ|
∧
Θ

(t)

n ).

Usually, when the difference between
∧
Θ

(i)

n and
∧
Θ

(i+1)

n is less than a relatively small
value, the iteration is terminated, and the result of the final estimation is taken as the final
parameter estimation result at time tk [29]. Then, the EM algorithm is used to estimate the
unknown parameters. For all the degradation monitoring data L1:k up to the time tk, the
unknown estimation parameters are expressed as

Θk = [σ2
k , µ′0,k, µ1,k, σ2

0,k, σ2
1,k] (26)

The results Θn of the ith iteration under the maximum expectation algorithm are
as follows:

∧
Θ

i

k = [
∧
σ

2(i)

k ,
∧
µ′

(i)

0,k,
∧
µ
(i)

1,k,
∧
σ

2(i)

0,k ,
∧
σ

2(i)

1,k ] (27)

Then, the complete log-likelihood function can be expressed as

ln p(L1:k, θ′, β|Θk) = ln p(L1:k|θ′, β, Θk) + ln p(θ′, β|Θk)

= − k+2
2 ln 2π − k

2 ln σ2
k −

k
∑

j=1

(Lj−θ′−βtj)
2

2σ2
k

− 1
2 ln σ2

0,k

− 1
2 ln σ2

1,k −
(θ′−µ′0,k)

2

2σ2
0,k
− (β−µ1,k)

2

2σ2
1,k

(28)
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From Equations (25) and (28), we can obtain

l(Θk|
∧
Θ

(i)

k ) = E
θ′ ,β|L1:k,

∧
Θ
(i)

k

{ln p(L1:k, θ′, β|Θ)}

= − k+2
2 ln 2π − k

2 ln σ2
k−

k
∑

j=1

L2
j−2Lj(µθ′ ,k+µβ,ktj)+µ2

θ′ ,k+σ2
θ′ ,k+2tj(ρkσθ′ ,kσβ,k)+t2

j (µ
2
β,k+σ2

β,k)

2σ2
k

−

1
2 ln σ2

0,k −
1
2 ln σ2

1,k −
µ2

θ′ ,k+σ2
θ′ ,k−2µθ′ ,kµ′0,k+µ′0,k

2

2σ2
0,k

−
µ2

β,k+σ2
β,k−2µβ,kµ1,k+µ2

1,k

2σ2
1,k

(29)

Let ∂l(Θk |
∧
Θ
(i)

k )
∂Θk

= 0, and we can obtain the parameter estimation

∧
Θ

(i+1)

k = [
∧
σ

2(i+1)

k ,
∧
µ′

(i+1)

0,k ,
∧
µ
(i+1)

1,k ,
∧
σ

2(i+1)

0,k ,
∧
σ

2(i+1)

1,k ] of step i + 1. References [22,29] show that

this is the only solution of ∂l(Θk |
∧
Θ
(i)

k )
∂Θk

= 0.
Among which

∧
σ

2(i+1)

k =
1
k

k

∑
j=1

(L2
j − 2Lj(µθ′ ,k + µβ,ktj) + µ2

θ′ ,k + σ2
θ′ ,k + 2tj(ρkσθ′ ,kσβ,k + µθ′ ,kµβ,k) + t2

j (σ
2
β,k + µ2

β,k))

∧
µ′

(i+1)

0,k = µθ′ ,k,
∧
µ
(i+1)

1,k = µβ,k,
∧
σ

2(i+1)

0,k = σ2
θ′ ,k,

∧
σ

2(i+1)

1,k = σ2
β,k

The abovementioned parameter estimation method is an iterative process to estimate
unknown parameters Θk based on the degradation data L1:k to time tk. The iteration
termination condition is that when the norm of the difference between the parameter
vectors of the two iterations is less than a certain threshold, the iteration will be stopped,
and the last Θi

k is taken as the parameter used to calculate the RUL at time tk.

3. Plan Steps
3.1. Construct Comprehensive Evaluation Function

To select features with excellent performance, the above monotonicity, correlation,
and robustness should be considered comprehensively [12]. A linear combination equation
is established, and the features with larger weights are selected as sensitive features for
constructing the HI curve and RUL prediction through multiobjective optimization. The
linear combination is established as follows:

W = w1Mon(X) + w2Corr(X) + w3Rob(X)

s·t·

{
wi ≥ 0

∑
i

wi = 1
(30)

where W is the comprehensive evaluation function of multiobjective optimization and
wi(i = 1, 2, 3) are the weights of the three evaluation indexes. W can be used as a com-
prehensive evaluation function to extract features by weighted fusion. The larger the W
of a certain feature is, the better the overall performance of the feature, which can better
describe the degradation process of equipment performance.
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3.2. Construct HI Curve

To evaluate the health status of a wind turbine HSSB, the HI curve is constructed using
a comprehensive feature evaluation function and SOM. The flow chart used to construct
the HI curve is shown in Figure 1 below.
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Figure 1. Flow chart for constructing HI curve.

The specific steps are as follows:

• Collect acceleration vibration signals of wind turbine HSSB;
• Extract degradation features of the vibration signal in the time, frequency, and time–

frequency domain;
• Construct a comprehensive evaluation function considering monotonicity, correlation,

and robustness and use the comprehensive evaluation function to select degradation
features with excellent performance;

• Use SOM to fuse the selected degradation features;
• Calculate the minimum quantization error and construct the HI curve.

3.3. Use Exponential Degradation Model to Predict the RUL of HSSB

Based on the constructed health index curve, an exponential degradation model is
selected to describe the degradation process of high-speed shaft bearings in wind turbines.
The Bayesian update and expectation–maximization algorithm are combined to calculate
the parameters of the exponential degradation model and predict the remaining life of the
high-speed shaft bearings. The flow chart of the exponential degradation model is shown
in Figure 2 below.
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Figure 2. Flow chart of exponential degradation model.

The specific steps are as follows:

• Select the exponential degradation model according to the constructed health index
curve;

• Initialize the degradation model parameters;
• Utilize the method combining Bayesian update and expectation–maximization algo-

rithm to update and estimate the exponential degradation model parameters;
• Predict the RUL of high-speed shaft bearings.

4. Data Analysis
4.1. Data Sets

The HSSB test data in this work are from a real wind turbine provided by the US
Green Power Monitoring System [7,30]. The wind turbine is 2.2 MW, and the vibration
data are continuously sampled for 50 days. Each sample is 6 s, and the sampling frequency
is 97,656 Hz. The sensor is installed radially on the high-speed shaft, the HSSB is supported
by the gearbox bearing, and the sensor measures the vibration signal perpendicular to
the shaft. The bearing model is a 32222-J2-SKF tapered roller bearing, which has 20
rolling elements, 16 degrees taper, and weighs approximately 20 pounds. The bearing was
running at approximately 30 Hz, and on the last day, there was an inner race fault during
the inspection. The HSSB test set is shown in Figure 3. As the recording time of vibration
signals was 6 s per day for 50 days, the raw run-to-failure history of the tested bearing is
shown in Figure 4. The time-domain features based on Table 1 provide 50 values of each
feature where Figure 5 presents the evolution of some from the healthy bearing state to the
failure state.
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Table 1. Time-domain features.

Expression Expression Expression Expression

P1 =

N
∑

n=1
x(n)

N P2 =

√
N
∑

n=1
(x(n)−P1)

2

N−1 P3 =

 N
∑

n=1

√
|x(n)|

N

2

P4 =
N
∑

n=1
|x(n)|

P5 =

N
∑

n=1
(x(n))3

N P6 =

N
∑

n=1
(x(n))4

N P7 =

N
∑

n=1
(x(n))2

N
P8 = maxx(n)

P9 = minx(n) P10 = P8 − P9 P11 = P2
P4

P12 = P8
P2

P13 = P8
P4

P14 = P8
P3

P15 = P5

(
√

P7)
3 P16 = P6

P7
2
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Due to the complex structure of the wind turbine transmission system, the harsh
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P17 =

K
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k=1
y(k)

K P18 =

K
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(y(k)−P17)
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K−1 P19 =

K
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k=1
(y(k)−P17)

3

K(
√

P18)
3 P20 =

K
∑

k=1
(y(k)−P17)

4

KP18
2

P21 =

K
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( fky(k))

K
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y(k)

P22 =√
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2y(k)]

K
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√
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∑
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( fk
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∑
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√
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( fk
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∑
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( fk
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∑
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( fk

2y(k))√
[

K
∑
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K
∑
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P26 = P22
P21 P27 =
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∑
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KP22
3 P28 =
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∑
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P29 =
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∑

k=1
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√
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4.2.3. Time–Frequency Domain Features

Compared with ensemble empirical mode decomposition (EEMD), complementary
ensemble empirical mode decomposition (CEEMD) has almost zero reconstruction error
and can be used to solve the problem of different numbers of modes realized by different
signals plus noise [32]. Entropy is a description of the degree of system uncertainty [33].
The more uncertain the information in the system is, the larger the corresponding entropy
value is. Therefore, CEEMD decomposition and entropy can be combined to make use of
their advantages and achieve impact signal analysis. The intrinsic mode function (IMF)
energy entropy can reflect the change in amplitude energy in each frequency band of the
signal, and therefore, this paper chooses to extract the IMF energy entropy as the time–
frequency domain features of the vibration signal. The detailed calculation process of the
CEEMD method is described in [32,34], which will not be repeated here. The calculation
steps of IMF energy entropy are as follows:

The vibration signals of the wind turbine HSSB are decomposed by CEEMD, and the
sum of a group of IMF components and residual terms are obtained [35–37]. The first n
IMF energies are calculated as follows:

Ei =
J

∑
j=1
|xij

2| (31)

where J is the number of IMF component data points, and xij is the amplitude of each point
in the i-th IMF component.

The total energy of the first N IMF components is calculated as

E =
n

∑
i=1

Ei (32)

The proportion of IMF components of each order is

pi =
Ei
E

(33)

From this, the energy entropy of IMF is

HEn = −
n

∑
i=1

pilgpi (34)

According to the above calculation process, the first 7 IMF energy entropies are
selected as the time–frequency domain features.

4.3. Select Degradation Features

Since some of the extracted degradation features contain much useless information
that cannot characterize the performance degradation and failure of HSSB, some features
cannot be used for degradation assessment, HI construction, and RUL prediction. Therefore,
the degradation features must be effectively selected.

Monotonicity is more important when modeling the degradation process. Therefore,
for Equation (30), the weights assigned to monotonicity, correlation, and robustness alloca-
tion are w1 = 0.5, w2 = 0.2, and w3 = 0.3. With the addition of the weights into Equation
(30), the comprehensive evaluation values of each feature are shown in Figure 6. A his-
togram, that can be used to show the comprehensive evaluation index of each degradation
feature more intuitively.

Select the features of the comprehensive evaluation index W > 0.45. The final selected
degradation features are P2, P4, P8, P9, P10, P11, P16, P17, P19, P20, P21, P22, P23, P24, P25, P26,
P27, P28, for a total of 18-dimensional features.
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4.4. Construct HI Curve

After the degraded features are selected, multiple degraded features must be fused
into a curve that can reflect the degradation state. In this paper, the SOM algorithm,
combined with the minimum quantization error, is used to perform unsupervised feature
fusion for the selected degradation features.

The number of nodes in the input layer of the SOM network is 18, which is consistent
with the degradation feature dimension; the number of neurons is d = 25, and the number
of feature iterations is 500. The normal state data of the first 5 days are selected to obtain
the weight vector of the best winning unit. Then, according to Equation (7), the distance
between the degradation characteristic data of 50 days and the best winning unit is calcu-
lated, which represents the HI of HSSB every day, and the distance quantitatively describes
the performance degradation of bearings. The curve is processed by a moving average
with a window size of 5 to reduce local noise, and the results are normalized and shown in
Figure 7.
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To verify the advantages of this method, RMS, PCA, and the HI curves constructed
by SOM network fusion of all degradation features are used for comparative analysis.
These curves are processed using a moving average with a window size of 5. The HI
curve is constructed by the method in this paper, and the abovementioned comparison
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algorithm is shown in Figure 8. Obviously, the resulting HI curve is smoother and has
better monotonicity and trend. The HI curve constructed by the method in this paper is an
exponential function curve, and hence, the HI curve can be described by the exponential
degradation model.
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4.5. Using an Exponential Degradation Model to Predict the RUL of HSSB

To eliminate the influence of burrs on the model parameters, db5 wavelet packet
decomposition is used to decompose the HI curve constructed above. Equation (8) is
selected as the exponential degradation model. Let the parameters of the model be ϕ = −1,
ln θ ∼ N(1, 1× 10−6), β ∼ N(1, 1× 10−6), σ2 = 1× 10−2, and ε(tk) ∼ N(0, σ2). The
failure threshold is the HI value of the high-speed shaft bearing on the last day, namely,
w = 50. The data of the first 30 days are selected to train and modify the parameters
of the degradation model, and the parameters of the modified degradation model are
ϕ = −1, ln θ ∼ N(2.5599, 4.2× 10−3), β ∼ N(0.0669, 1.0947× 10−6), σ2 = 0.098, and
ε(tk) ∼ N(0, σ2). Based on this, the actual degradation trajectory of the wind turbine HSSB
and the degradation trajectory predicted by the exponential degradation model are shown
in Figure 9.
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Figure 9. Degradation trajectory of HSSB and prediction trajectory of the exponential degradation
model.
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The point estimation of the RUL mentioned in this paper can be obtained through
Equation (22). After the prediction is made, the parameters of the exponential degra-
dation model are adjusted to ϕ = −1, ln θ ∼ N(2.5147, 1.8 × 10−3), σ2 = 0.096, β ∼
N(0.0674, 4.6243× 10−7), and ε(tk) ∼ N(0, σ2). Figure 10 shows the prediction results of
the HSSB’s RUL using the method in this paper and the method in [7].
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4.6. Evaluation Index

To analyze the effectiveness and accuracy of the prediction results of HSSB with the
method in this paper and [7], the mean absolute error (MAE) [38] and root mean square
error (RMSE) [39] are used as evaluation indexes for the prediction results of the two
methods. According to these two indexes, the absolute error and relative error of each
prediction result can be calculated. The calculation formulas are as follows:

MAE =
1
N

N

∑
i=1

|Yi −Y∗i |
N

× 100% (35)

RMSE =

√√√√ 1
N

N

∑
i=1

(Yi −Y∗i )
2 (36)

where Yi is the observed value; Y∗i is the predicted value; N is the number of samples.
According to Equations (14) and (15), the prediction results of the method in this paper

and [7] are shown in Table 3. From the table, the selected method has greater advantages
than the method in [7] in the RUL prediction of HSSBs.

Table 3. Prediction error of the two methods.

Prediction Methods MAE (%) RMSE

SVR 2.27 2.3090
Degration Model 2.11 1.4113

5. Conclusions

In this paper, a method combining a comprehensive evaluation function and a self-
organizing neural network is proposed to construct an HI curve to evaluate the health
status of wind turbine HSSBs. The method also uses an exponential degradation model to
predict the RUL of the HSSB. This work can provide a theoretical basis for the subsequent
maintenance plan of wind turbines.
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1. For the extracted high-dimensional degradation features, the comprehensive evalu-
ation function can be used to eliminate features that do not reflect the degradation
process of the wind turbine HSSB and that cannot reflect the degradation process
effectively.

2. It is difficult to reflect the degradation trend of wind turbine HSSB with a single
time-frequency degradation feature. The HI curve generated by fusing the selected
degradation features with the SOM algorithm can more accurately reflect the health
status of HSSB.

3. For the wind turbine HSSB, which lacks similar life cycle degradation data, the
exponential degradation model based on the Bayesian update and expectation–
maximization algorithm has degradation model parameters that will continue to
update and continuous improvement of RUL prediction accuracy with the continuous
accumulation of historical operation data.

This work has significance for the health assessment and RUL prediction of wind
turbine HSSBs and provides scientific and reasonable support for subsequent maintenance
plans.
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