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Abstract: Rural two-lane highways are the most common road type both in Poland and globally. In 

terms of kilometres, their length is by far greater than that of motorways and expressways. They are 

roads of one carriageway for each direction, which makes the overtaking of slower vehicles possible 

only when there is a gap in the stream of traffic moving from the opposite direction. Motorways 

and express roads are dual carriageways that are expected to support high speed travel mainly over 

long distances. Express roads have somewhat lower technical parameters and a lower speed limit 

than motorways. Two-lane highways are used for both short- and long-distance travel. The paper 

presents selected studies conducted in Poland in 2016–2018 on rural two-lane highways and focuses 

on the context of the need for their reliability. The research was carried out on selected short and 

[longer road sections located in various surroundings, grouped in terms of curvature change rate 

CCR, longitudinal slopes and cross-sections (width of lanes and shoulders). The studies of traffic 

volumes, travel time and travel speed, as well as traffic density, will be used to analyze traffic 

performance and identify measures of travel time reliability. The analyzed roads were characterized 

by good technical parameters and significant variability of traffic volume throughout the day, week 

and year. Some roads experience congestion, i.e., situations in which traffic volume Q is close to or 

above respective road capacity C. In order to determine the form of the suitable reliability measures, 

it will be important to determine the extent to which a road’s geometric and traffic characteristics 

impact travel speed and time. The paper presents well-known reliability measures for dual 

carriageways and proposes new measures, along with an evaluation of their usefulness in the 

assessment of the functioning of two-lane highways. 

Keywords: reliability measures; two-lane highways; travel speed; travel time; empirical research 

 

1. Introduction 

Reliability is a major criterion for assessing selected elements of technical 

infrastructure such as transmission [1], information technology (IT) [2] or energy [3] 

infrastructure. The reliability of road infrastructure is also the subject of many studies, 

because of the role the parameter plays in traffic performance [4,5] and the safety of road 

users [6–8]. In the case of road safety, speed tests and testing of speed’s impact on road 

safety measures are very important. In the tests [9] floating car data were used to achieve 

the goal. Ensuring the reliability of road infrastructure at a level acceptable to road users 

is a key aspect of planning and design decisions [10,11]. 

There are not many reliability analyses of two-way highways in scientific literature. 

Instead, researchers focus mainly on dual carriageways, i.e., motorways [12–14], 

expressways [15–18] or other dual carriageways [19,20], inter alia, analyzing the impact 

of Intelligent Transport System (ITS) solutions [21–23]. In simulation analyses and field 

research [24], the impact of selected parameters on the level of service (LOS) under 

heterogeneous traffic conditions for a two-lane highway was identified. The work [25] 

also analyzed (LOS) on the basis of estimation of passenger car unit values. The research 
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[26] also pointed out the variability of traffic flow on individual road lanes. Some studies 

concern themselves with sections of motorways and expressways in urban areas [27–29]. 

Obtaining reliable data is an extremely important aspect of reliability studies. The work 

[30] presents various techniques for examining road traffic parameters. It compares the 

pneumatic tube detector method, video capturing method, moving observer method and 

the classic manual method. The studies [31] indicate the effectiveness of combining the 

moving observer method and digital image processing. The work [32] presents the effects 

of using stationary devices along the road to collect road traffic data. The research [33] 

provides an example of an effective use of video traffic monitoring. Modern techniques 

allow the use of Bluetooth technology to collect data on traffic parameters [34–36] and 

Lidar technology to collect data on road and its surroundings parameters [37–39]. 

Road traffic parameters depend on many factors, including the driver’s 

psychophysiological characteristics, road and meteorological conditions [40]. A very 

important aspect influencing traffic conditions is constituted by road geometry, including 

the parameters of horizontal curves [41]. One factor related to driver behaviour is the 

distance between vehicles [42]. 

An example of research conducted on two-lane highways is provided by reliability 

analyses carried out on Poland’s road network [43]. These studies were undertaken on 

higher standard roads managed by the General Directorate for National Roads and 

Motorways, with speed limits of 70–90 km/h, and a typical lane width of 3.5 m (with or 

without a hard shoulder). In Poland, these roads account for over 86% of all national 

roads, including motorways, expressways and accelerated main roads. According to the 

standards specified in the American method [44], these are first-class roads on which 

drivers expect travel speeds close to the speed limit. In Germany, a similar approach 

applies to roads with a similar function marked as EKLII and EKLIII [45]. 

The project [43] and work [14] also present studies on dual-carriageways, i.e., 

motorways, expressways and roads of lower technical class, on which speed limits in 

Poland are 140 km/h, 120 km/h and 100 km/h respectively. In Poland, motorways are 

roads of the highest technical standard, where traffic can be joined only through 

interchanges. In the case of expressways and other dual carriageways of the lower 

technical class, traffic can be joined through interchanges or through intersections (usually 

signalised). 

The analyzed two-lane highways mainly support traffic functions typical of roads of 

higher technical classes, although they have a limited capacity (max. 3200 veh/h according 

to [44], approx. 2600 veh/h according to [45]) compared to high-speed roads (highways, 

expressways). Reliability, measured in terms of travel speed or time, is highly variable on 

the analyzed roads and depends on the time of day, day of the week or month. It also 

varies in the longer term (analysis by year). Therefore, it is necessary to identify the most 

important factors that influence their reliability levels and to indicate the best reference 

level for analyses conducted on two-lane highways.  

The main aim of the analyses presented in the paper is to answer the research 

questions:  

 Whether and to what extent selected traffic parameters impact the functional 

reliability measures of single carriageways and two-lane highways? 

 Whether the measures and reference values for dual carriageways can be 

transplanted directly onto analyses of two-lane highways? 

An indirect aim pointing the directions of further research work revolves around 

answering the question of 

 whether the statistical parameters describing travel time variability are sufficient to 

analyze and assess the reliability of a road section in a probabilistic approach that 

takes into account the risk of the occurrence of road incidents happening during 

travel speeds exceeding the speed limit? 
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The answers will provide the foundation for an effective transformation of the 

existing road network, enabling the attainment of a standard of travel that will be 

acceptable to road users. 

The paper is divided into several parts which include a review of literature providing 

a description of the reliability measures used, selected results of empirical studies 

conducted on Poland’s two-lane highways, and reliability studies conducted on a selected 

road section where use is made of GPS data. At the end of the paper, conclusions are 

drawn and directions for further work are stated. 

2. Materials and Methods 

2.1. Reliability Measures 

Travel time reliability depends on a benchmark and therefore has no fixed value. Its 

value is influenced by a number of factors of various origins [46,47], including traffic 

factors (traffic intensity, types of vehicles), geometry, road’s location and type of 

surroundings, the knowledge of which is necessary in order to identify the reliability 

process, interactions between the variables and the correct interpretation of the results. 

General factors influencing road reliability include: 

 The presence of traffic control–traffic signals, including in particular incorrectly 

designed control parameters, rail-road crossings, 

 Daily, weekly or seasonal fluctuations in traffic, 

 Occasional events—various types of events making the traffic flow value different 

from the typical values of the flow on this road (religious, public holidays, days off, 

etc), 

 Road capacity—dependent on road geometry and a number of other factors e.g., the 

technical condition of road surface, 

 Weather conditions, in particular snowfall, heavy or prolonged rainfall, fog, 

 Road accidents and other road incidents blocking passing vehicles, 

 Road works resulting in a taper of the road’s cross-section, alternating traffic, 

temporary road blockage. 

Considering the above division, it is possible to introduce a classification [48] that 

assigns the indicated factors to three different groups (Figure 1) on account of: 

 Infrastructure, i.e., a road’s geometry and its standard, including the road’s curvature 

change rate CCR [49,50], longitudinal slope [51,52] and width [53,54] and traffic 

organization, including road works [55–57], temporary and permanent taper of the 

road’s cross-section, and the presence of traffic lights [58,59], 

 Road traffic, including traffic volume [60,61], its generic and directional structure 

[62,63] as well as road incidents [64,65], 

 Road surroundings [66,67] and weather conditions [68–70]. 
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Figure 1. Interactions between sources of failure. 

The diagram in Figure 1 shows interactions between the main sources of failure and 

the relationship between demand (traffic) and supply (infrastructure). The authors of 

paper [71] point out that the indicated interactions are the main determinants of road 

functionality. Both demand and supply vary over time, as both traffic and road capacity 

are influenced by various deterministic and random factors. Weather conditions, 

especially adverse ones, such as prolonged rainfall, snowfall, etc., have a significant 

impact on drivers’ behaviour. The research [72–74] shows that road and intersection 

capacity decreases in such conditions by as much as 20%. The type of road surroundings 

resulting from the road’s location often translates into the type of trips [75], which also 

determines drivers’ behaviour. In cities and agglomerations where short trips, mostly 

related to commuting to work, shops, schools, and other facilities, predominate, the 

behaviour and expectations of vehicle drivers regarding traffic conditions and network 

reliability are completely different from such expectations outside cities, or during long-

distance travel [O5] spread over a longer period of time. In the worst case scenario, all of 

these variables may affect travel time reliability. This situation occurs in the common 

sections of all three circles. 

Over the past few decades, many studies have been conducted in the USA on existing 

roads to describe the reliability of travel times. In the research into and evaluation of 

reliability, generally available models were used, their modifications were created or 

completely new solutions were developed. Table 1 [76] shows an example of the 

application of reliability measures in practice, i.e., it lists selected US transport agencies 

and identifies indicators used by them to describe the functional reliability of roads.  

Current methods of analysis [61] can be divided into: 

 Statistical methods, 

 Buffer time methods, 

 Late travel indicators, 

 Probabilistic methods, 

 Skewness methods (treated as part of statistical methods in the paper). 

Table 1. Reliability metrics used by selected US transport agencies 

Agency Reliability Metrics Used 

Buffer Index 
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Georgia Regional Transportation Authority 

and Georgia DOT 
Planning Time Index 

Southern California Association of 

Governments 

On-Time Index 

Buffer Index 

Washington State DOT 95th Percentile Travel Time 

National Transportation Operations 

Colation (NTOC) 
Buffer Index 

Maryland SHA 
Travel Time Index 

Planning Time Index 

Below, the authors present selected methods of analysis, including their advantages 

and disadvantages. 

2.1.1. Statistical Methods 

One of the oldest approaches to the description of travel time reliability used by 

Abishai Polus in 1979 [77] was based on a simple measure—standard deviation δ, showing 

the variability of the metric’s value in relation to its mean value (Equation (1) ). The author 

was one of the first to indicate the travel time variable as the best measure with which to 

describe a road’s functional reliability. 

� = �
1

� − 1
∙ �(�� − �̅)�

�

���

 (1)

where: 

n—number of travels, 

ti—i- travel time, 

�̅—average travel time. 

The author defined a road’s functional reliability using a measure of variability, i.e., 

travel time variance [78]. The higher the variance, the less reliable the road (Equation (2)). 

� =
1

[���(�)]
�
�

=
1

[�(��) − (�(�))�]
�
�

 (2)

where: R—road’s functional reliability, x—reliability measure (in this case–travel time), 

Var(x)—variance of reliability measure, E(x)—expected value of reliability measure. 

The simplicity of the approach accounts for its advantage, while its low usefulness is 

a disadvantage because in most cases the empirical distributions describing the variability 

of travel time are not symmetrical and show considerable skewness. However, this did 

not prevent the development of these methods, and in subsequent editions, 

recommendations for reliability were developed based on the ranges of skewness as 

presented in publications [12,13,18]. The value of the standard deviation was used to build 

subsequent measures, such as the time window (Equation (3)) and the coefficient of 

variability (Equation (4)). 

���� ������ = �̅ ± � (3)

����������� �� ����������� =
�

�̅
∙ 100% (4)

where: �̅— arithmetic mean of all travel times, δ—standard deviation of travel time. 

The time window can have two values—one lower and another greater than the 

arithmetic mean by the value ±δ. The road user receives information about possible travel 

time discrepancies. In order to increase the scope of analyses, the δ may be multiplied. 
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The travel time variation coefficient can be used to compare travel time variability 

between days, weeks, or road sections. 

A measure that allows the comparison of traffic conditions between peak and off-

peak times is the index of variation (Equation (5)). 

����� �� ����������� ��������� =
��,��� − ��,���

��,��� − ��,���

 (5)

where: V1,+95, V1,−95—upper and lower values between which there are 95% of travel times 

during the peak traffic period, V0,+95, V0,−95—upper and lower values between which 95% 

of travel times lie outside the peak hours. 

The index of qualitative variation may apply to roads close to urban agglomerations, 

where increased traffic may occur because of urban traffic peaks. Due to the larger 

discrepancy between the peak and off-peak traffic, the value of the index is often greater 

than 1.0. 

2.1.2. Buffer Time Methods  

The term “buffer time” means extra time added to a specific activity in order to 

ensure no delays and an optimum time to reach the destination [79]. In the analysis of 

travel time reliability, it is the additional amount of time needed for the road user to reach 

their destination at their desired hour with a probability of 95%, taking the arithmetic 

mean of all travel times [18] (Equation (6)) as the expected travel time. 

�� = ��� − �̅ (6)

where: t95—95th percentile of travel time, �̅—average travel time. 

The 95th percentile of travel time represents the worst possible traffic situation. This 

means that users may experience issues resulting in travel time delays in 1 out of 20 

travels. Other percentiles can also be used depending on the needs of the research, e.g., 

90th or 85th percentile [80]. 

The buffer time index (Equation (7)) is a derivative metric. It is calculated as the ratio 

of the buffer time to the arithmetic mean. This variable value exceeds 1.0. For example, a 

value of 1.7 means that in 95% of cases it takes 70% more time than the average travel time 

to reach the destination at the expected time [81]. Travel time reliability decreases as the 

buffer time index increases. 

��� =
��

�̅
 (7)

where: BT—buffer time, �̅—average travel time. 

Instead of average travel time, it is also possible to use median travel time. When the 

analyzed road section is divided into several sub-sections due to traffic volume or other 

factors differentiating individual road sub-sections, then the weighted average buffer time 

index can be calculated (Equation (8)): 

���� =  
∑ (���� ∙ �� ∙ ��)

�
���

∑ �� ∙�
��� ��

 (8)

where: BTIi—buffer time index for an i sub-section of the road, Qi—traffic volume on i 

sub-section of the road, Li—length of i sub-section of the road, n—number of sub-sections. 

The BT, BTI and ABTI measures can be used to assess the reliability of city street 

networks and routes leading to daily destinations. These measures could be incorporated 

into GPS navigation systems to assist drivers in route planning. Other measures derived 

from the buffer time method are described below. 

2.1.3. Planning Time 
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Planning time is the total time needed to reach the destination at the scheduled time 

with a 95% probability. The measure is easy to interpret and allows the user to plan the 

trip correctly. Comparing the 95th percentile from different hours shows the variability of 

road functional reliability over the course of the day. The measure is also important for 

the road manager, who, by using the PTI value, can classify the roads under his 

management in terms of reliability, as well as plan the reconstruction of sensitive sections 

of a road to improve travel time. 

Another measure derived from PT is the planning time index (PTI), which informs 

how many times more time the road user needs to reach the destination relative to the 

travel time in free-flow conditions allowing the driver full freedom in choosing the speed 

(Equation (9)). 

��� =
���

��

 (9)

where: t95—95th percentile of travel time, to—travel time in conditions perceived as free 

flow (Equation (10)). 

�� =
3600

��

∙ � (10)

where: vf—travel time in free-flow conditions (determined e.g., based on [43–45]), L—

length of road section. 

PTI values exceed 0. Existing literature [82] allows us to find a categorization of PTI 

values in terms of service reliability level developed for practical use by road users, as 

well as road managers. It is recommended that the thresholds be adapted to the nature of 

the road (Table 2) [67]. 

Table 2. Thresholds values of PTI for individual levels of functional reliability. 

Reliability Performance PTI (–) 

good ≤1.3 

fair 1.3 ÷ 2.0 

poor >2.0 

PTI is one of the variants of TTI, or travel time index, which can be calculated for any 

percentile (Equation (11)) . 

��� =
��

��

 (11)

where: tx—any percentile of travel time. 

Literature also contains other measures relating to situations of failure, i.e., the failure 

measure or the misery index, which show how many times more time is needed to make 

the longest trips in relation to the travel time in free-flow conditions (equation 12). 

������� ���� =
��̅%

��

 (12)

where: ��̅%—average travel time in the group of the longest trips, i.e., the 5th percentile; 

the so-called misery time. 

All of the above-mentioned measures can be used separately or in combination 

(Figure 2) [46]. The latter option is more advisable and universal because it shows the size 

of various reliability measures and their comparison. The use of selected measures, and 

at best all measures, allows for a broader view of the issue of reliability and for finding 

appropriate solutions to improve traffic conditions. 
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Figure 2. Chart with measures of the time buffer method. 

In conducting research, it is important to select a suitable length of the road’s section 

and research time to reflect the specific conditions on a given road and the objectives of 

the analyses. Time periods should be selected to reflect traffic conditions of a similar 

nature and intensity. It is recommended to conduct research and traffic observation on a 

continuous basis, using GPS devices and software. Morning and afternoon traffic peaks 

should not be combined in determining the 95th percentile [80]. 

Above the authors show selected more important measures used in the description 

of reliability of dual carriageways, where road features (road geometry) have a much 

smaller impact on driver behaviour, speed and travel time than on single carriageways, 

on which additionally vehicle overtaking occurs. The measures were subject to 

verification, analysis of variability and usefulness, and the possibility of adjusting their 

form to the analyses of two-lane highways. Traffic on single-carriageways is characterized 

by a significant variability of traffic intensity and speed over time and the presence of all 

types of vehicles on single lanes supporting traffic in two directions. Destinations are also 

more varied than on dual carriageways, which support mostly long-distance trips. Single-

carriageways are used mainly in everyday travel, hence the assessment of their reliability 

is extremely important from the point of view of the average road user and road manager. 

Unfortunately, this type of road is omitted from the literature on reliability assessment. 

The next chapter will present selected results of travel speed studies conducted in the 

period 2016–2018 in Poland on two-lane highways [43], along with the indication of the 

extent to which statistically significant factors affect the travel speed and its variability 

relevant from the point of view of reliability analysis. 

2.2. Travel Speed Research on Two-Lane Highways 

This chapter presents selected results of research conducted as part of project [43] 

focused on the variability of travel speed and impact factors resulting from geometric, 

traffic and location features. The tests were carried out in favourable weather conditions, 

with very good visibility on selected road sections without intersections or other traffic 

disturbances. 

When traffic volumes are not high, travel speed and thus travel time are significantly 

affected by the road’s geometric features, such as road (CCR), radius and turning angle of 

the horizontal curve, longitudinal slopes, road width and type of cross-section, as well as 

traffic factors, including those related to the share of heavy vehicles in traffic. In view of 

the continuous changes in the car fleet, the roads’ technical condition and geometry as 

well as drivers’ behaviour, empirical research should be constantly updated, which was 
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recently done and included in [43], resulting, among others, in a new regression model 

used to estimate travel speed on two-lane highways. 

The tests were carried out in selected road cross-sections, at the beginning and end 

of the analysed section (speed and travel time were examined), and numerous trips 

behind the leader were made with continuous recording of data on the speed of moving 

vehicles (the leader).  

The driving speed profile behind the leader was determined empirically using a GPS 

device. The influence of selected geometric features on vehicles’ travel speed (free flow, 

no platoon traffic) is shown in Figure 3. The diagram shows that apart from the presence 

of horizontal curves, speed is also significantly affected by the length of the sections 

preceding the curves. It is assumed that a length of the section before the horizontal curve 

in excess of 400 m has no effect on the free-flow speed of vehicles. The chart shows speed 

limits for this road section due to the presence of horizontal curves and the values of 

superelevation on the curve implemented to ensure the safe passage of vehicles. Safe 

journeys should be made in accordance with the speed limit on the road. The chart shows 

that the speed limit is exceeded by approx. 10 km/h, which is informally allowed on Polish 

roads. From the point of view of the needs of road safety and the needs of road network 

reliability, preventive measures should be applied that would force drivers to drive within 

the speed limit, just like in other European countries which have a low number of deaths 

per 100,000 accidents. The impact of the presence of horizontal curves on travel speed and 

thus travel time is clearly visible. 

 

 

Figure 3. Selected drives behind the leader showing the impact of horizontal curves located close to 

each other on the variability of vehicles’ free-flow speed. 

Using the empirically collected data from 96 sections of two-lane highways with a 

length of 1 km to 5 km [43], relating to features of traffic, road and surroundings (Table 

3), relationships were created showing the variability of travel speed, and thus indirectly 

also travel time. Selected interactions of travel speed and traffic volume, CCR and the 

interaction of the road’s longitudinal slope and the share of heavy vehicles on two-lane 

highways are presented below. The significant dispersion of points arises from an 

aggregation of data from all research sites (96) and directions of traffic (192) and the 

differences between them. 

Figure 4 shows a slight influence of traffic volume on the speed of vehicles and 

additionally illustrates the number of overtakes typical of two-lane highways. The 

number of overtakes depends on the traffic volume across the road’s cross-section, traffic’s 

Horizontal 

curve no 1 

Horizontal 

curve no 2 
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directional structure and the number of slow-moving vehicles. Road’s CCR undoubtedly 

has an influence on the number of overtakes. The greater the CCR, the smaller the number 

of overtakes. High values of CCR often coexist with high values of longitudinal slopes.  

Table 3. Technical parameters of two-lane highways covered by the RID-I−50 Project. 

Road Design Parameter Range of Parameters 

Design speed Sd (km/h) 40–100, road serpentine 15–30 

Speed limit SSL (km/h) 40–90 

Technical class of road Z–S 

Horizontal curve radius RH (m) 30–3200 

Vertical curve radius RV (m) not specified 

Type of cross-section 1 × 2; 2 + 1 

Lane width s (m) 3.0–3.5 

Hard shoulder width sup (m) 0–1.5 

Average weighted longitudinal slope i (m) 0.1–9.0 

Length of measured section L (m) 400–3900 

Curvature change rate CCR (g/km) 0–630 

Percentage of sections where overtaking is 

possible pw (%) 
0–100 

Access—point density Ap (Ap/km) 0–42 

 

Figure 4. Interaction between travel speed, the number of overtakes and traffic volume throughout 

a road’s cross-section, with the traffic density below 30 veh/km. Curvature change rate CCR divided 

into two groups–below and above 180 grad/km. The sample size is 12,565 cases. 

With the traffic volume in a road’s cross-section exceeding 800 veh/h, the number of 

overtakes is much smaller. This is due to traffic characteristics as well as road 

characteristics. In these circumstances, drivers will not overtake for safety reasons and 

follow a slow-moving vehicle until it can be overtaken. The more tortuous the road, the 

fewer overtaking manoeuvres. 

The impact of a road’s CCR on a vehicle’s travel speed is very significant (Figure 5). 

Apart from a reduction in the median and average values of speed, the range of vehicle 

speed variability also decreases as the road CCR increases. The speed dispersion is much 
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smaller on roads with greater rather than smaller CCR. The greater the road’s curvature 

change rate CCR, the smaller the standard deviation of travel time and the greater the 

kurtosis. The chart also shows that the types of speed distributions in the distinguished 

ranges of CCR for the entire data set, including for low and high traffic volume, deviate 

from the normal distribution. High dispersion of speed at low curvature change rate CCR 

is due to a road’s features and the possibility of overtaking slow-moving vehicles. At high 

CCR, a significant share of platoon traffic is manifest leading to smaller speed dispersion. 

 

Figure 5. Interaction of travel speed and a road’s curvature change rate CCR. 

Figure 6 shows the combined impact of a road’s longitudinal slope and the share of 

heavy vehicles in traffic on vehicles’ travel speed. The statistical analyses carried out in 

[43] show that a road’s longitudinal slope alone does not have as strong an impact on 

speed as a variable of the product of longitudinal slope and the share of heavy vehicles in 

traffic. A decrease in the impact of longitudinal slope in relation to previous studies [83] 

results from the improvement of the vehicle fleet in Poland. Nowadays, the capabilities of 

vehicle engines usually guarantee a smooth drive on a road with a variable longitudinal 

slope. Only heavy goods vehicles slow down when driving up or downhill, thus limiting 

the travel speed of other road users.  
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Figure 6. Interaction between travel speed and the combined effect of slope and the share of heavy 

vehicles. 

Analysis of changes in a road’s geometric features along the analyzed road sections 

shows that their impact on drivers’ behaviour is varied and significant. When analyzing 

speed variability and thus travel times over a longer section (over 5 km), such a road 

section should be divided into sections that are homogeneous in terms of the described 

geometric and location features. The structure of traffic volume does not usually change 

significantly along the length of the road section and over the analyzed period of time. 

The division of the section into shorter sections allows you to analyze changes in travel 

speed and times and to eliminate places limiting travel speed and time e.g., by rebuilding 

the section. 

The research shows that a road’s geometric parameters and the share of heavy 

vehicles on roads with a significant longitudinal slope have a significant impact on the 

travel speed and thus travel time, including in free flow conditions. Therefore, these 

factors have a significant impact on the reliability of two-lane highways and should be 

included in reliability measures. 

3. Results and Discussion 

3.1. Functional Reliability of Two-Lane Highways  

The functioning of two-lane highways differs significantly from that of dual 

carriageways in terms of the number and nature of factors affecting the speed of vehicle 

movement. In the case of two-lane highways, it is the traffic characteristics that mainly 

determine vehicle speed. Road features do matter but play a secondary role due to a need 

to adjust them to the high technical class of the road, its function and expected high travel 

speed in the early stages of the road’s design. In the case of two-lane highways, the 

functional assessment of the road is significantly affected not merely by traffic 

characteristics, but by the geometric characteristics of the road and of its surroundings as 

well. Current computational methods mainly aim to assess the quality of traffic 

performance through analysis of measures of conditions including the average travel 

speed and the percentage of driving time in platoons [44], traffic density [43], [45] and 

other indirect metrics such as the degree of capacity utilization or the reserve capacity. 

These measures are mainly used by road managers for decision-making, design or 

operational purposes. 

Reliability measures related mainly to travel time (described in Section 2) may be 

used by road managers and additionally by road users to plan travel time or make up-to-
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date decisions on route selection if the data are provided on an ongoing basis e.g., via 

navigation systems. Road managers may also use reliability measures to analyze the 

functioning of the road in order to decide on the reconstruction of road sections in order 

to improve the road’s standard and speed and shorten travel time.  

3.2. Scenario Analysis and Reliability Measures of Two-Lane Highways 

Analyses of the reliability of road functioning are based on the decisions of road users 

who drive along the road and generate travel times adequate to the traffic situation. Road 

managers can analyse such trips and on this basis decide on the type of measures that can 

be put in place to reduce travel times and improve road reliability and traffic safety. Such 

analyses can be conducted for the entire road or for selected sensitive road sections. 

Time-related measures of reliability (Section 2) are closely related to road speed, 

which is limited by law, or locally by road signs. In the case of two-lane highways, the 

location of road signs often results from the characteristics of the road and the need to 

ensure safe passage. Free flow travel at speeds close to the permitted speed limit usually 

means a high level of functional reliability for people who are aware of the route they are 

taking. There is some synergy between the local speed limits set by road managers in 

hazardous locations and travel time reliability related to this speed. 

The research conducted in [43] shows that roads with lower technical parameters 

have a lower capacity value, therefore, increased traffic relatively quickly leads to an 

unfavourable level of service and a significant increase in travel time as seen in Figure 7. 

The green colour representing a smooth drive does not change on the access sections of 

the serpentine at either of the analyzed times, and the colour of the highly winding 

sections does change, indicating a low travel speed in increased traffic [84]. 

 

Figure 7. Change in the travel speed caused by a road’s geometrical features and traffic features. 

The left panel shows the situation at 2:30 pm in conditions of a higher traffic volume, and the right 

one at 8:30 pm when traffic volume is low. 

A justified and correct location of speed limit signs reflecting the local technical 

parameters of the road and traffic safety considerations should correspond well with a 

speed reflecting the 85th percentile and indirectly with the possible capacity of a given 

road section, as traffic volume reaches the optimum value. Thus, it can be noted that the 

travel time determined by the speed limit on the road is the appropriate travel time 

reference value in operational reliability analyses. If a road section consists of several sub-

sections with different speed limits, the average weighted speed and travel time should 
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be determined. The above studies show three possible scenarios of functional reliability 

analysis in relation to two-lane highways: 

Scenario 1: The road is functioning reliably. Travel time is similar to the travel time 

at the speed limit (85th percentile) or possibly higher. Traffic volumes Q in both directions 

are much lower than road capacity C (V/C < 0.5). Overtaking is mainly determined by the 

road’s geometry, i.e., its CCR and longitudinal slopes, etc. Drivers’ acceptance level of 

traffic performance is high. 

Scenario 2: Traffic volumes in both directions are much higher than in scenario 1 

(V/C ranges from 0.5 to 0.9), and overtaking is limited both by the road’s geometry and 

by higher traffic volumes of the analyzed direction and the opposite one. In drivers’ 

opinion, the road may be functioning reliably and unreliably. Variability of the traffic 

volume affects traffic performance, and that’s why drivers’ acceptance level of traffic 

performance may differ. 

Scenario 3: The road functions unreliably. Travel time is long and drivers, who travel 

at a much lower speed than the permitted speed, find it unacceptable. Traffic volume is 

close to or exceeds road capacity (V/C > 0.9). Overtaking is not possible due to high levels 

of traffic volume. Geometric factors play a minor role. Drivers’ acceptance level of traffic 

conditions is very low. 

The use of the limit speed as a reference value for determining reliability measures 

does not disqualify the use of other types of speed and thus travel times (statistical 

parameters). However, from the point of view of road and traffic characteristics, traffic 

safety needs, and the needs of practical application, this value is the most appropriate one 

for two-lane highways. Having analyzed the reliability measures used (Section 2), the 

planning time index (Equation (13)) and the travel time index (Equation (14)) are the most 

suitable metrics for two-lane highways, assuming that the base travel time refers to the 

permissible speed on the road or other local limits when a road section is divided into 

shorter sub-sections (in which case it is advisable to determine the weighted average PTISL 

and TTISL). The thresholds values of PTISL and TTISL for individual levels of functional 

reliability are presented in Table 2. The indicated division of the section corresponds to 

the three analyzed reliability scenarios described in this chapter. 

����� =
���

���

 (13)

����� =
��

���

 (14)

where: t95—95th percentile of travel time, tx—any percentile of travel time, tSL—travel time 

determined by speed limits on the road. 

Additionally, other statistical measures cited in Section 2 can be used to describe 

travel time variability. When the road is located near a large agglomeration and the 

influence of urban activity on traffic variability is noticeable, the buffer time index 

referring to the average value may also be used, as long as it is calculated separately for 

individual sub-sections of the road’s section with different speed limits (Equations (7) and 

(8)). 

3.3. Sample Reliability Analysis for A Selected Road Section 

A section of a two-way highway marked as national road No. 47 between Rabka 

Zdrój and Klikuszowa, Poland was selected for analysis and was subsequently divided 

into two subsections. The first subsection, 1459 m long, starts outside the section with a 2 

× 2 cross-section, and the second, 750 m long, consists of straight subsections of the road 

and a horizontal curve as denoted with the red arrows in Figure 8. The speed limit along 

the first subsection is 90 km/h, and within the second section, the speed limit of 60 km/h 

was introduced due to the presence of the horizontal curve having a large angle and a 

small radius. The speed limit of 60 km/h ensures safe vehicle driving on the road curve 
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reflecting its technical parameters, including the superelevation used. Driving at a higher 

speed increases the risk of the vehicle skidding off the road and thus the occurrence of a 

traffic blockage, which would adversely affect the functional reliability of the analyzed 

road section.  

The road traffic parameters were measured on the selected section of the road (Figure 

8) around the clock, for 12 consecutive days of the week, i.e., from 13:15 on 13 May 2021 

until 13:10 on 25 May 2021 using the GPS technology. The travel times of all vehicles 

(without a break-down into light and heavy vehicles) were obtained automatically from 

Google-associated paid applications for one direction, i.e., Kraków–Zakopane. The data 

were collected at 15-min intervals for which the average value of travel time was 

determined, with a break-down for each of the analyzed subsections (Figure 8) The 

introduction of a division of time into 15-min intervals results from the classic and 

practical approach to the study of traffic volumes and traffic conditions [O2]. The HCM 

method [O6] also indicates analyzing changes in traffic conditions in consecutive 15-min 

intervals as one of the possible analysis periods. 

 

Figure 8. Analyzed section of the road divided into two subsections with speed limits of 90 km/h 

and 60 km/h. 

Observation of the traffic volume on the analyzed section of the national road reveals 

considerable variability of traffic during the 24 h time period, in relation to work-related, 

recreational and tourist traffic. The traffic volume on the national road No. 47 on weekend 

days often exceeds road capacity and contributes to congestion. Table 4 summarizes the 

statistical parameters describing the variability of travel time in consecutive 15-min 

intervals of the analyzed 12-day period, with a break-down into two analyzed road 

subsections. Additionally, the table specifies the unit travel time t100 (s/100 m) relating to 

two subsections of the road having the same length of 100 m. The summary aims to show 

the impact of different road features on travel time. Eliminating the impact of the different 

lengths of individual road subsections on travel time will allow comparison of the 

statistical parameters describing the variability of the unit travel time on a straight part of 

the road (subSection 1) and on a horizontal curve (subSection 2), with different speed 

limits in place on the road (Figure 9) and under the same traffic and weather conditions. 

Table 4. Statistical parameters describing travel time variability determined for subsequent 15 

min. time intervals. 

Variable Subsection 
Sample 

Size 
Average Median Min Max 

Percentile 

5% 

Percentil

e 95% 

Standard 

Deviation 

Coefficient 

of Variation 
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t100 (s/100 

m) 
1 1090 4.7 4.7 4.0 11.0 4.2 5.6 0.61 12.9 

t (s) 1 1090 69.2 68.0 58.0 160.0 62.0 81.0 8.96 12.9 

t100 (s/100 

m) 
2 1090 6.0 5.5 4.4 35.0 4.8 7.9 2.1 35.2 

t (s) 2 1090 44.8 41.0 33.0 264.0 36.0 59.0 15.8 35.2 

 

Figure 9. Comparison of 50, 85 and 95% quantile of unit travel time t100 determined for a 100 m 

length of subsections 1 and 2. 

The analyses revealed a much greater value and variability of the unit travel time t100 

along the horizontal curve (Section 2) than along the straight stretch of the road (Section 

1). They showed a significant impact of the presence of the horizontal curve, markings 

limiting the speed to 60 km/h and road safety devices (roadside barriers) on the speed of 

vehicles, and thus on travel time. The impact of the presence of horizontal curves on travel 

speed will be the greater, the greater the number of horizontal curves on the analyzed 

section (Figures 5), and when the horizontal curves have a small radius and a 

superelevation along the curve which are not adjusted to the speed limit on the road. The 

situation is made worse by the road’s design featuring large turning angles and small 

curve radii at the same time. Then the parameters of the horizontal curve do not allow for 

driving along the curve at a speed of 90 km/h and there appears a need to introduce a 

speed limit necessitated by the requirements of traffic safety (Figures 3 and 8). In most 

cases, drivers adjusted their speed (85% quantile) to the applicable speed limit on the road, 

accepting the reasonableness of vertical markings ensuring safe driving on the curve, and 

thus accepting the increased travel times resulting from its presence. 

Table 5 presents the results of planning time index analyses conducted in a classic 

way (Equation (9)) and in the way proposed in the paper (Equation (13)), i.e., relating to 

the travel time in accordance with the speed limit enforced on the road. The travel time t0, 

in conditions considered to allow free flow was determined based on the American 

recommendations [44]. Method [44] states that the initial speed of vehicles in free flow 

traffic can be determined by increasing the speed limit on a two-way highway by 15 km/h. 

Table 5. Summary of calculation data and analysis results regarding PTI and PTISL values. 
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Subsection t95 (s) t0 (s) PTI (Equation (9)) tSL (s) 
PTISL (Equation 

(13)) 

1 81.0 50.0 1.62 58.4 1.39 

2 59.0 36.0 1.64 45.0 1.31 

Comparing the results of the analyses, it can be concluded that the classical analysis 

performed on the basis of Equation 9 yields much worse results than in the case relating 

to travel time in accordance with the speed limit. In both cases, in accordance with the 

criteria in Table 2, the same fair level of functional reliability was obtained. The classical 

approach refers to much higher travel speeds typical of free flowing traffic. An analysis 

performed in this way results from vehicle drivers’ expectations which are overestimated 

and inconsistent with applicable regulations, expectations which ignore road safety. It is 

worth noting that any increase in vehicle speed above the applicable speed limit increases 

the risk of road incidents. In the analyzed case, the risk will be much greater on a 

horizontal curve than on a straight stretch of the road (risk of the vehicle skidding off the 

road at a higher speed). 

When assessing the road’s functional reliability in a dependable manner, apart from 

the impact of traffic variability, one should also take into account the possibility of traffic 

jams resulting from road incidents. When these occur, they block the possibility of driving 

on a two-way highway, and their high frequency, e.g., due to increased travel speed, 

reduces the level of the road’s functional reliability and the reliability of the analyses. The 

number of road incidents strongly corresponds to the traffic volume on the road and 

therefore it is important to maintain vehicle speed below the speed limit by applying 

appropriate preventive (fines) and engineering measures (speed limit signs, speed 

cameras, sectional speed measurements, etc.). By showing a slightly worse functional 

reliability of the road in the classic approach (referring to the free flow speed), it is possible 

to incorrectly assess the functional state of the road and incorrectly plan financial outlays. 

Therefore, the conducted analyses indicate a very strong correlation between functional 

reliability measures and road safety levels, defined, inter alia, in terms of geometric 

parameters and applicable speed limits. 

4. Conclusions 

The research carried out on two-way highways allowed to achieve the goal of the 

analysis and provided an answer to the research question. The geometrical differentiation 

of two-lane highways has a significant impact on drivers’ behaviour and the speeds they 

achieve, and, consequently, on travel times. On the analyzed roads, especially when there 

are heavy vehicles in traffic, one can often observe platoon driving with vehicles following 

the leader. Its duration depends not only on the volume of heavy vehicle traffic and traffic 

from the opposite direction but also on the geometric features of the road, such as CCR, 

longitudinal slope, the width of the road and the type of shoulder. Travel time may also 

be occasionally inflated by adverse weather conditions that adversely affect drivers’ 

behaviour and road capacity, as well as other random incidents on the road often 

occurring due to increased travel speeds. On the basis of Polish research, the influence of 

these factors on travel speed and thus on travel time as well as a road’s functional 

reliability was demonstrated. Analyses of the currently used reliability measures 

conducted mainly for dual carriageways indicate the need for an appropriate reference 

level that will reflect the road type and its standard. The reference parameter should 

combine the appropriate road and traffic characteristics from the point of view of 

describing reliability, functionality and traffic safety. The paper proposes that permissible 

speed is the best reference level for two-lane highways. The proposed parameter is 

different from that recommended for dual carriageways of high technical parameters. The 

speed limit on single carriageways changes rather frequently along the road and depends 

on the road’s characteristics, indicating to drivers the safe and reliable travel speed. 
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Reliability analyses require therefore that a road section be divided into shorter sub-

sections. The influence of traffic characteristics (traffic volume and structure) 

differentiates travel time in relation to the time resulting from the speed limit, and its 

comparison with the marginal values allows classifying individual sub-sections and the 

entire section’s functional reliability. 

Current reliability analyses barely take into consideration the need to relate the 

reference level (arising e.g., from the free flow speed or various quantiles of travel speed) 

to the needs of road safety (resulting e.g., from the applied speed limits on the road or 

from risk analyses of road incidents). Often it is difficult and complicated to determine 

the value of free flow speed and, consequently, such determination may not correspond 

to the actual conditions. Pertinent literature does not assess the value of the difference 

between travel time arising, e.g., from the 85% quantile and the travel time resulting from 

the speed limits enforced on the road. The size of the analyzed difference may be related 

to the indicators concerning the number of road incidents and the risk of their occurrence. 

Further analyses and studies in this field are necessary, not only for single carriageways 

but also for dual carriageways. The paper shows gaps in research in the field of continuous 

traffic tests and reliability analyses into two-lane highways, and indicates the need to 

develop and quantify reliability measures, thanks to which actions can be taken to 

improve traffic flow on the analysed roads. The use in the presented analyses of a tool for 

continuous measurement of travel time using GPS devices installed in vehicles and mobile 

phones allowed for analysis of the variability of travel time on the analyzed road section 

over a long period of time, and thus allowed indicating the impact of selected road and 

traffic factors and the need to incorporate traffic safety recommendations into reliability 

analyses. In the development of methods of road reliability analysis, it is necessary to 

develop tools for the continuous collection and analysis of traffic data. 
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